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Abstract. This is Part 2 of a two part series on a class of cooperative reaction-diffusion systems

with free boundaries in one space dimension, where the diffusion terms are nonlocal, given by

integral operators involving suitable kernel functions, and they are allowed not to appear in some

of the equations in the system. Such a system covers various models arising from mathematical

biology, including in particular a West Nile virus model [10] and an epidemic model [33], where

a “spreading-vanishing” dichotomy is known to govern the long time dynamical behaviour, but

the question on spreading speed was left open. In this two part series, we develop a systematic

approach to determine the spreading profile of the system. In Part 1, we obtained threshold

conditions on the kernel functions which decide exactly when the spreading has finite speed, or

infinite speed (accelerated spreading), and when the spreading speed is finite, we showed that

the speed is determined by a particular semi-wave. In Part 2 here, for some typical classes

of kernel functions, we obtain more precise estimates on the spreading rate for both the finite

speed case, and the infinite speed case. These extend the results for a single equation in [12] to

a general system.
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1. Introduction

This is Part 2 of a two part series aiming to determine the long-time behaviour of cooperative
systems with nonlocal diffusion and free boundaries of the following form:

(1.1)



∂tui = diLi[ui](t, x) + fi(u1, u2, · · · , um), t > 0, x ∈ (g(t), h(t)), 1 ≤ i ≤ m0,

∂tui = fi(u1, u2, · · · , um), t > 0, x ∈ (g(t), h(t)), m0 < i ≤ m,
ui(t, g(t)) = ui(t, h(t)) = 0, t > 0, 1 ≤ i ≤ m,

g′(t) = −
m0∑
i=1

µi

∫ h(t)

g(t)

∫ g(t)

−∞
Ji(x− y)ui(t, x)dydx, t > 0,

h′(t) =

m0∑
i=1

µi

∫ h(t)

g(t)

∫ ∞
h(t)
Ji(x− y)ui(t, x)dydx, t > 0,

ui(0, x) = ui0(x), x ∈ [−h0, h0], 1 ≤ i ≤ m,

where 1 ≤ m0 ≤ m, and for i ∈ {1, ...,m0},

Li[v](t, x) :=

∫ h(t)

g(t)
Ji(x− y)v(t, y)dy − v(t, x),

di > 0 and µi ≥ 0 are constants, with

m0∑
i=1

µi > 0.

The initial functions satisfy

ui0 ∈ C([−h0, h0]), ui0(−h0) = ui0(h0) = 0, ui0(x) > 0 in (−h0, h0), 1 ≤ i ≤ m.(1.2)

The kernel functions Ji(x) (i = 1, · · · ,m0) satisfy

(J): Ji ∈ C(R) ∩ L∞(R) is nonnegative, even, Ji(0) > 0,

∫
R
Ji(x)dx = 1 for 1 ≤ i ≤ m0.

As in Part 1 [11], we will write F = (f1, ..., fm) ∈ [C1(Rm+ )]m with

Rm+ := {x = (x1, ..., xm) ∈ Rm : xi ≥ 0 for i = 1, ...,m},

and use the following notations for vectors in Rm:

(i) For x = (x1, · · · , xm) ∈ Rm, we simply write (x1, · · · , xm) as (xi). For x = (xi),
y = (yi) ∈ Rm,

x � (�) y means xi ≥ (≤) yi for 1 ≤ i ≤ m,
x � (≺) y means x � (�) y but x 6= y,

x ��(≺≺) y means xi > (<) yi for 1 ≤ i ≤ m.

(ii) If x � y, then [x, y] := {z ∈ Rm : x � z � y}.
(iii) Hadamard product: For x = (xi), y = (yi) ∈ Rm,

x ◦ y = (xiyi) ∈ Rm.

(iv) Any x ∈ Rm is viewed as a row vector, namely a 1 × m matrix, whose transpose is
denoted by xT .

Our basic assumptions on F are:

(f1) (i) F (u) = 0 has only two roots in Rm+ : 0 = (0, 0, · · · , 0) and u∗ = (u∗1, u
∗
2, · · · , u∗m)��0.

(ii) ∂jfi(u) ≥ 0 for i 6= j and u ∈ [0, û], where either û = ∞ meaning [0, û] = Rm+ , or
u∗≺≺û ∈ Rm; which implies that (1.1) is a cooperative system in [0, û].

(iii) The matrix ∇F (0) is irreducible with principal eigenvalue positive, where ∇F (0) =
(aij)m×m with aij = ∂jfi(0).
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(iv) If m0 < m then ∂jfi(u) > 0 for 1 ≤ j ≤ m0 < i ≤ m and u ∈ [0,u∗].
(f2) F (ku) ≥ kF (u) for any 0 ≤ k ≤ 1 and u ∈ [0, û].
(f3) The matrix ∇F (u∗) is invertible, u∗[∇F (u∗)]T � 0 and for each i ∈ {1, ...,m}, either

(i)
m∑
j=1

∂jfi(u
∗)u∗j < 0, or

(ii)
m∑
j=1

∂jfi(u
∗)u∗j = 0 and fi(u) is linear in [u∗ − ε01,u∗] for some small ε0 > 0, where

1 = (1, ..., 1) ∈ Rm.
(f4) The set [0, û] is invariant for

Ut = D ◦
∫
R
J(x− y) ◦ U(t, y)dy −D ◦ U + F (U) for t > 0, x ∈ R,(1.3)

and the equilibrium u∗ attracts all the nontrivial solutions in [0, û]; namely, U(t, x) ∈
[0, û] for all t > 0, x ∈ R if U(0, x) ∈ [0, û] for all x ∈ R, and limt→∞ U(t, ·) = u∗ in
L∞loc(R) if additionally U(0, x) 6≡ 0.

In (1.3) we have used the convention that di = 0 and Ji ≡ 0 for m0 < i ≤ m, and

D = (di), J(x) = (Ji(x)).

This convention will be used throughout the paper.

The above assumptions on F indicate that the system is cooperative in [0, û], and of monos-
table type, with u∗ the unique stable equilibrium of (1.3), which is also the global attractor of
all the nontrivial nonnegative solutions of (1.3) in [0, û].

Problems (1.1) and (1.3) arise frequently in population and epidemic models. For example,
if m0 = m = 2, (1.1) contains the West Nile virus model in [10] as a special case, and with
(m0,m) = (1, 2), it covers the epidemic model in [33]. In these special cases, it is known
that the long-time dynamical behaviour of the solution to (1.1) exhibits a spreading-vanishing
dichotomy.

Similar to the special cases mentioned in the last paragraph, it can be shown that (1.1) with
initial data satisfying (1.2) and U(0, x) ∈ [0, û] has a unique positive solution (U(t, x), g(t), h(t))
defined for all t > 0. We say spreading happens if, as t→∞,

(g(t), h(t))→ (−∞,∞) and U(t, ·)→ u∗ component-wise in L∞loc(R),

and we say vanishing happens if

(g(t), h(t))→ (g∞, h∞) is a finite interval, and maxx∈[g(t),h(t)] |U(t, x)| → 0.

1.1. Main results of Part 1. Let us now recall the main results obtained in Part 1 [11]. When
spreading happens for (1.1), we proved in Part 1 that the spreading speed is finite if and only if
the following additional condition is satisfied by the kernel functions:

(J1):

∫ ∞
0
xJi(x)dx <∞ for every i ∈ {1, ...,m0} such that µi > 0.

If (J1) is not satisfied, then the spreading speed is infinite, namely accelerated spreading hap-
pens. Let us note that if for some i ∈ {1, ...,m0}, µi = 0, then no restriction on Ji is imposed
by (J1).

The proof of these conclusions rely on a complete understanding of the associated semi-wave
problem to (1.1), which consists of the following two equations (1.4) and (1.5) with unknowns
(c,Φ(x)):
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(1.4)

D ◦
∫ 0

−∞
J(x− y) ◦ Φ(y)dy −D ◦ Φ + cΦ′(x) + F (Φ(x)) = 0 for −∞ < x < 0,

Φ(−∞) = u∗, Φ(0) = 0,

and

c =

m0∑
i=1

µi

∫ 0

−∞

∫ ∞
0

Ji(x− y)φi(x)dydx,(1.5)

where D = (di), J = (Ji), Φ = (φi) and “◦” is the Hadamard product.
If (c,Φ) solves (1.4), we say that Φ is a semi-wave solution to (1.3) with speed c. This is

not to be confused with the semi-wave to (1.1), for which the extra equation (1.5) should be
satisfied, yielding a semi-wave solution of (1.3) with a desired speed c = c0, which determines
the spreading speed of (1.1).

We are interested in semi-waves which are monotone and with positive speed. The following
condition on the kernel functions will be used:

(J2):

∫ ∞
0
eλxJi(x)dx <∞ for some λ > 0 and every i ∈ {1, ...,m0}.

Theorem A. Suppose the kernel functions satisfy (J) and F satisfies (f1)− (f4). Then there
exists C∗ ∈ (0,+∞] such that

(i) for 0 < c < C∗, (1.4) has a unique monotone solution Φc = (φci ), and

lim
c↗C∗

Φc(x) = 0 locally uniformly in (−∞, 0];

(ii) C∗ 6=∞ if and only if (J2) holds;
(iii) the system (1.4)-(1.5) has a solution pair (c,Φ) with Φ(x) monotone if and only if (J1)

holds, and when (J1) holds, there exists a unique c0 ∈ (0, C∗) such that (c,Φ) = (c0,Φ
c0)

solves (1.4) and (1.5).

The spreading speed of (1.1) is determined by the following result:

Theorem B. Suppose the conditions in Theorem A are satisfied, (U, g, h) is the solution of
(1.1) with U(0, x) ∈ [0, û], and spreading happens. Then the following conclusions hold for the
spreading speed:

(i) If (J1) is satisfied, then the spreading speed is finite, and is determined by

− lim
t→∞

g(t)

t
= lim

t→∞

h(t)

t
= c0 with c0 given in Theorem A (iii).

(ii) If (J1) is not satisfied, then accelerated spreading happens, namely

− lim
t→∞

g(t)

t
= lim

t→∞

h(t)

t
=∞.

1.2. Sharp estimates on the rate of spreading. The main purpose of Part 2 here is to
sharpen the conclusions in Theorem B for some typical kernel functions. The results here
extend those for a single equation (namely (1.1) with m = m0 = 1) in [12] to a general system.

For α > 0, we introduce the condition

(Jα):

∫ ∞
0
xαJi(x)dx <∞ for every i ∈ {1, ...,m0}.

Let us note that (J1) implies (J1), but unless µi > 0 for every i ∈ {1, ...,m0}, (J1) does not
imply (J1). On the other hand, if (J2) holds, then (Jα) is satisfied for all α > 0.
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Theorem 1.1. In Theorem B, suppose additionally (Jα) holds for some α ≥ 2, F is C2 and
u∗[∇F (u∗)]T≺≺0. Then there exist positive constants θ, C and t0 such that, for all t > t0 and
x ∈ [g(t), h(t)],

|h(t)− c0t|+ |g(t) + c0t| ≤ C,{
U(t, x) � [1− ε(t)]

[
Φc0(x− c0t+ C) + Φc0(−x− c0t+ C)− u∗

]
,

U(t, x) � [1 + ε(t)] min
{

Φc0(x− c0t− C), Φc0(−x− c0t− C)
}
,

where ε(t) := (t + θ)−α, and (c0,Φ
c0) is the unique pair solving (1.4) and (1.5) obtained in

Theorem A (iii), with Φc0(x) extended by 0 for x > 0.

Further estimates on g(t) and h(t) can be obtained if we narrow down more on the class of
kernel functions {Ji : i = 1, ...,m0}. We will write

η(t) ≈ ξ(t) if C1ξ(t) ≤ η(t) ≤ C2ξ(t)

for some positive constants C1 ≤ C2 and all t in the concerned range.
Our next two theorems are about kernel functions satisfying, for some γ > 0,

(Ĵγ): Ji(x) ≈ |x|−γ for |x| � 1 and all i ∈ {1, ...,m0}.

Note that for kernel functions satisfying (Ĵγ), condition (J) is satisfied only if γ > 1, and (J1)
is satisfied only if γ > 2. The next result determines the orders of accelerated spreading when
γ ∈ (1, 2].

Theorem 1.2. In Theorem B, if additionally the kernel functions satisfy (Ĵγ) for some γ ∈
(1, 2], then for t� 1,

−g(t), h(t) ≈ t ln t if γ = 2,

−g(t), h(t) ≈ t1/(γ−1) if γ ∈ (1, 2).

For kernel functions satisfying (Ĵγ), clearly (Jα) holds if and only if γ > 1 + α. Therefore
the case γ > 3 is already covered by Theorem 1.1. The following theorem is concerned with the
remaining case γ ∈ (2, 3], which indicates that the result in Theorem 1.1 is sharp.

Theorem 1.3. In Theorem B, suppose additionally the kernel functions satisfy (Ĵγ) for some
γ ∈ (2, 3], F is C2 and

F (v)− v[∇F (v)]T��0 for 0 ≺≺ v � u∗.(1.6)

Then for t� 1,

c0t+ g(t), c0t− h(t) ≈ ln t if γ = 3,
c0t+ g(t), c0t− h(t) ≈ t3−γ if γ ∈ (2, 3).

Note that (f2) implies

F (v)− v[∇F (v)]T � 0 for v ∈ [0,u∗].

Therefore (1.6) is a strengthened version of (f2). If we take v = u∗ in (1.6), then it yields
u∗[∇F (u∗)]T≺≺0. When m = 1, (1.6) reduces to F (v) > F ′(v)v for 0 < v ≤ û, which is
satisfied, for example, by F (v) = av − bvp with a, b > 0 and p > 1.

The proofs of Theorems 1.1 and 1.3 rely on some of the following estimates on the semi-wave
solutions of (1.3), which are of independent interests.

Theorem 1.4. Suppose that F satisfies (f1)− (f4) and the kernel functions satisfy (J), and
Φ(x) = (φi(x)) is a monotone solution of (1.4) for some c > 0. Then the following conclusions
hold:
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(i) If (Jα) holds for some α > 0, then for every i ∈ {1, ...,m},∫ −1

−∞

[
u∗i − φi(x)

]
|x|α−1dx <∞,

which implies, by the monotonicity of φi(x),

0 < u∗i − φi(x) ≤ C|x|−α for some C > 0 and all x < −1.

(ii) If (Jα) does not hold for some α > 0, then
m∑
i=1

∫ −1

−∞

[
u∗i − φi(x)

]
|x|α−1dx =∞.

(iii) If (J2) holds, then there exist positive constants C and β such that

0 < u∗i − φi(x) ≤ Ceβx for all x < 0, i ∈ {1, ...,m}.

1.3. Applications to epidemic models. Let us now apply the results above to the models
in [10] and [33].

The West Nile virus model in [10] is given by

(1.7)



Ht = d1L1[H](t, x) + a1(e1 −H)V − b1H, x ∈ (g(t), h(t)), t > 0,

Vt = d2L2[V ](t, x) + a1(e2 − V )H − b2V, x ∈ (g(t), h(t)), t > 0,

H(t, x) = V (t, x) = 0, t > 0, x ∈ {g(t), h(t)},

g′(t) = −µ
∫ h(t)

g(t)

∫ g(t)

−∞
J1(x− y)V (t, x)dydx, t > 0,

h′(t) = µ

∫ h(t)

g(t)

∫ ∞
h(t)

J1(x− y)V (t, x)dydx, t > 0,

−g(0) = h(0) = h0, H(0, x) = u0
1(x), V (0, x) = u0

2(x), x ∈ [−h0, h0].

where ai, ei and bi (i = 1, 2) are positive constants satisfying a1a2e1e2 > b1b2 (which is necessary
for spreading to happen). We thus have

F (u) = F1(u) :=
(
a1(e1 − u1)u2 − b1u1, a2(e2 − u2)u1 − b2u2

)
,

u∗ =

(
a1a2 − e1e2 − b1b2
a1a2e2 + a2b1

,
a1a2 − e1e2 − b1b2
a1a2e1 + a1b2

)
.

It is straightforward to check that conditions (f1)− (f3) are satisfied by F1 with û = (e1, e2).
Condition (f4) was shown to hold in [10]. It is also easy to see that F1 is C2 and

F1(u)− u[∇F1(u)]T = (a1u1u2, a2u1u2).

Therefore (1.6) holds as well. Thus all our results apply to (1.7).

The epidemic model in [33] is given by

(1.8)



ut = dL1[u]− au+ cv, t > 0, x ∈ (g(t), h(t)),

vt = −bv +G(u), t > 0, x ∈ (g(t), h(t)),

u(t, x) = v(t, x) = 0, t > 0, x = g(t) or x = h(t),

g′(t) = −µ
∫ h(t)

g(t)

∫ g(t)

−∞
J1(x− y)u(t, x)dydx, t > 0,

h′(t) = µ

∫ h(t)

g(t)

∫ +∞

h(t)
J1(x− y)u(t, x)dydx, t > 0,

−g(0) = h(0) = h0, u(0, x) = u0(x), v(0, x) = v0(x), x ∈ [−h0, h0],

where a, b, c, d, µ and h0 are positive constants, and the function G is assumed to satisfy
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(i) G ∈ C1([0,∞)), G(0) = 0, G′(z) > 0 for z ≥ 0;

(ii)
[
G(z)
z

]′
< 0 for z > 0 and lim

z→+∞
G(z)
z < ab

c ;

(iii) G′(0) > ab
c (necessary for spreading to happen).

In this example,

F (u) = F2(u) := (−au1 + cu2, G(u1)− bu2), u∗ = (K1,K2)

where (K1,K2)��0 are uniquely determined by

G(K1)

K1
=
ab

c
, K2 =

G(K1)

b
.

One easily checks that F2 satisfies (f1)− (f3) with û =∞. In [33], it was proved that (f4) also
holds. Clearly F2 is C2. However, u∗[∇F2(u∗)]T≺≺0 does not hold. Therefore all our results
apply to (1.8) except Theorems 1.1 and 1.3.

1.4. Organisation of the paper. The rest of the paper is organised as follows. In Section 2,
we prove Theorems 1.1 and 1.4. The proof of the former is built on the proof and conclusions
of the latter, where subtle analysis is used to find out the relationship between the behaviour of
the semi-wave solution and that of the kernel functions.

Sections 3 and 4 are devoted to the proof of Theorems 1.2 and 1.3 for kernel functions behaving
like |x|−γ near infinity. In Section 3, we completely determine the growth orders of c0t − h(t)
for γ in the range (2, 3], while in Section 4, we completely determine the accelerated spreading
orders of h(t) when γ falls into the range (1, 2]. Note that when γ > 3, the spreading behaviour
is already covered by the more general results in Section 2.

2. Sharper estimates for the semi-wave and spreading rate

2.1. Asymptotic behaviour of semi-wave solutions to (1.3). The purpose of this subsec-
tion is to prove the following three theorems, which imply Theorem 1.4.

Theorem 2.1. Suppose that F satisfies (f1)− (f4) and the kernel functions satisfy (J) and (Jα)
for some α > 0. If Φ(x) = (φi(x)) is a monotone solution of (1.4) for some c > 0, then for
every i ∈ {1, ...,m}, ∫ −1

−∞
[u∗i − φi(x)]|x|α−1dx <∞,

which implies, by the monotonicity of Φ(x),

0 < |x|α[u∗i − φi(x)] ≤ C for some C > 0 and all x < 0, i ∈ {1, ...,m}.

Under the condition (J), if the kernel functions satisfy (Jα) for some α = α0 > 0, then it is
easily seen that (Jα) is satisfied for all α ∈ [0, α0]. Therefore if (Jα) is satisfied for some but
not for all α > 0, then there exists α∗ ∈ (0,∞) such that the kernel functions satisfy (Jα) if and
only if α ∈ Iα∗ = [0, α∗) or [0, α∗] (depending on whether or not Jα

∗
is satisfied), namely

m0∑
i=1

∫ ∞
0

xαJi(x)dx <∞ for α ∈ Iα∗ ,

m0∑
i=1

∫ ∞
0

xαJi(x)dx =∞ for α ∈ (0,∞) \ Iα∗ .

Therefore, by Theorem 2.1 we have
m∑
i=1

∫ −1

−∞
[u∗i − φi(x)]|x|α−1dx <∞ for every α ∈ Iα∗ .(2.1)

The next result shows that this estimate is sharp.
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Theorem 2.2. Suppose that F satisfies (f1)− (f4) and the kernel functions satisfy (J). If (Jα)
is not satisfied for some α > 0, and Φ(x) = (φi(x)) is a monotone solution of (1.4) for some
c > 0, then

m∑
i=1

∫ −1

−∞
[u∗i − φi(x)]|x|α−1dx =∞.(2.2)

Theorem 2.3. Suppose that F satisfies (f1)− (f4) and the kernel functions satisfy (J). If (J2)
holds, and Φ(x) = (φi(x)) is a monotone solution of (1.4) for some c > 0, then there exist
positive constants β and C such that

0 < u∗i − φi(x) ≤ Ceβx for all x < 0, i ∈ {1, ...,m}.(2.3)

The following three lemmas play a crucial role in the proof of Theorem 2.1.

Lemma 2.4. Suppose that J(x) has the properties described in (J) and satisfies (Jα) for some
α ≥ 1. If ψ ∈ L1((−∞, 0]) is nonnegative, continuous and nondecreasing in (−∞, 0], and

(2.4)

∫ 0

−∞
|x|βψ(x)dx <∞ for some β ≥ 0,

then for any σ ∈ (0,min{β + 1, α}], there exists C > 0 such that

I = IM :=

∫ 0

−M
|x|σ

[∫ 0

−∞
J(x− y)ψ(y)dy − ψ(x)

]
dx ∈ [−C,C] for all M > 0.

Proof. For fixed M > 0 we have∫ 0

−M

∫ 0

−∞
|x|σJ(x− y)ψ(y)dydx

=

∫ M

0

∫ x

−∞
xσJ(y)ψ(y − x)dydx

=

∫ M

0

∫ 0

−∞
xσJ(y)ψ(y − x)dydx+

∫ M

0

∫ x

0
xσJ(y)ψ(y − x)dydx

=

∫ 0

−∞

∫ M

0
xσJ(y)ψ(y − x)dxdy +

∫ M

0

∫ M

y
xσJ(y)ψ(y − x)dxdy

=

∫ 0

−∞

∫ M−y

−y
(x+ y)σJ(y)ψ(−x)dxdy +

∫ M

0

∫ M−y

0
(x+ y)σJ(y)ψ(−x)dxdy,

and ∫ 0

−M
|x|σψ(x)dx =

∫
R

∫ M

0
xσJ(y)ψ(−x)dxdy.

Therefore we can write

I =

3∑
j=1

Ij

with

I1 :=

∫ 0

−∞

∫ M−y

−y
[(x+ y)σ − xσ] J(y)ψ(−x)dxdy

+

∫ M

0

∫ M−y

0
[(x+ y)σ − xσ] J(y)ψ(−x)dxdy,

I2 :=

∫ 0

−∞

∫ M−y

−y
xσJ(y)ψ(−x)dxdy −

∫ 0

−∞

∫ M

0
xσJ(y)ψ(−x)dxdy
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=

∫ 0

−∞

∫ M−y

M
xσJ(y)ψ(−x)dxdy −

∫ 0

−∞

∫ −y
0

xσJ(y)ψ(−x)dxdy,

I3 :=−
∫ M

0

∫ M

M−y
xσJ(y)ψ(−x)dxdy −

∫ ∞
M

∫ M

0
xσJ(y)ψ(−x)dxdy.

To estimate I1 we will make use of some elementary inequalities. If s, t > 0 and σ ∈ (0, 1],
then it is easily checked that

(s+ t)σ − sσ ≤ tσ.(2.5)

If σ = n+ θ with n ≥ 1 an integer, and θ ∈ (0, 1], then by the mean value theorem

(s+ t)σ − sσ = σ(s+ ζt)σ−1t ≤ σt(s+ t)σ−1 = σtsσ−1 + σt
[
(s+ t)σ−1 − sσ−1

]
≤

n∑
k=1

[
Πk−1
j=0(σ − j)tksσ−k

]
+ Πn−1

j=0 (σ − j)tn
[
(sθ + tθ)− sθ

]
≤

n∑
k=1

[
Πk−1
j=0(σ − j)tksσ−k

]
+ Πn−1

j=0 (σ − j)tn+θ

=

n∑
k=1

ckt
ksσ−k + cn+1t

σ

where ζ ∈ [0, 1], and ck = ck(σ) > 0 for k ∈ {1, ..., n+ 1}.
Applying this inequality to (x + y)σ − xσ with x + y > 0 and x > 0, we obtain, for the case

σ > 1,

|(x+ y)σ − xσ| ≤
n∑
k=1

ck|y|kxσ−k + cn+1|y|σ

with σ − n = θ ∈ (0, 1] and n ≥ 1 an integer, ck = ck(σ) > 0 for k ∈ {1, ..., n+ 1}.
Therefore, in the case σ > 1,

|I1| ≤
∫ 0

−∞

∫ M−y

−y

[
n∑
k=1

ck|y|kxσ−k + cn+1|y|σ
]
J(y)ψ(−x)dxdy

+

∫ M

0

∫ M−y

0

[
n∑
k=1

ck|y|kxσ−k + cn+1|y|σ
]
J(y)ψ(−x)dxdy

≤ 2
n∑
k=1

ck

∫ ∞
0

xσ−kψ(−x)dx

∫ ∞
0

ykJ(y)dy + 2cn+1

∫ ∞
0

ψ(−x)dx

∫ ∞
0

yσJ(y)dy

:= C1.

Since 1 ≤ k ≤ n < σ ≤ min{β + 1, α}, by the assumptions on J and ψ we see that C1 is a finite
number.

If σ ∈ (0, 1], then

|I1| ≤
∫ 0

−∞

∫ M−y

−y
|y|σJ(y)ψ(−x)dxdy +

∫ M

0

∫ M−y

0
|y|σJ(y)ψ(−x)dxdy

≤ 2

∫ ∞
0

ψ(−x)dx

∫ ∞
0

yσJ(y)dy := C̃1 <∞.

Since ψ(x) is nondecreasing, from (2.4) we easily deduce

ψ(−x) ≤ M1

xσ
for some M1 > 0 and all x > 1.
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Similarly, using (Jα) we obtain

M

∫ ∞
M

J(y)dy ≤M1−α
∫ ∞
M

yαJ(y)dy ≤
∫ ∞

1
yαJ(y)dy := M2 for M ≥ 1,

and hence

M

∫ ∞
M

J(y)dy ≤ min

{∫ ∞
0

J(y)dy,M2

}
:= M3 <∞ for all M > 0.

Therefore

|I2| ≤
∫ 0

−∞

∫ M−y

M
M1J(y)dxdy +

∫ 0

−∞

∫ −y
0

M1J(y)dxdy

= 2M1

∫ ∞
0

yJ(y)dy := C2 <∞,

and

|I3| ≤
∫ M

0
M1yJ(y)dy +

∫ ∞
M

M1MJ(y)dy

≤M1

∫ ∞
0

yJ(y)dy +M1M3 := C3 <∞.

We thus have

|I| ≤ C1 + C̃1 + C2 + C3 := C <∞ for all M > 0.

The proof is complete. �

Lemma 2.5. Suppose that J(x) has the properties described in (J) and satisfies (Jα) for some
α ∈ (0, 1). Let ψ be nonnegative, continuous and nondecreasing in (−∞, 0]. Then there exists
C > 0 such that

S = SM :=

∫ 0

−M
|x|α−1

[∫ 0

−∞
J(x− y)ψ(y)dy − ψ(x)

]
dx ≤ C for all M > 0.

Proof. As in the proof of Lemma 2.4, we deduce for fixed M > 0 and σ > −1,∫ 0

−M

∫ 0

−∞
|x|σJ(x− y)ψ(y)dydx

=

∫ 0

−∞

∫ M−y

−y
(x+ y)σJ(y)ψ(−x)dxdy +

∫ M

0

∫ M−y

0
(x+ y)σJ(y)ψ(−x)dxdy.

and ∫ 0

−M
|x|σψ(x)dx =

∫
R

∫ M

0
|x|σJ(y)ψ(−x)dxdy.

Hence

S =
3∑
i=1

Ĩi

with

Ĩ1 :=

∫ 0

−∞

∫ M−y

−y
[(x+ y)σ − xσ] J(y)ψ(−x)dxdy

+

∫ M

0

∫ M−y

0
[(x+ y)σ − xσ] J(y)ψ(−x)dxdy,

Ĩ2 :=

∫ 0

−∞

∫ M−y

M
xσJ(y)ψ(−x)dxdy −

∫ 0

−∞

∫ −y
0

xσJ(y)ψ(−x)dxdy,
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Ĩ3 :=−
∫ M

0

∫ M

M−y
xσJ(y)ψ(−x)dxdy −

∫ ∞
M

∫ M

0
xσJ(y)ψ(−x)dxdy.

Take σ = α− 1. It is clear that Ĩ3 ≤ 0. For Ĩ1, since σ < 0,

(x+ y)σ − xσ < 0 when x > 0 and y > 0,

and hence, by (Jα) and σ + 1 = α ∈ (0, 1),

Ĩ1 ≤
∫ 0

−∞

∫ M−y

−y
[(x+ y)σ − xσ] J(y)ψ(−x)dxdy

≤ψ(0)

∫ 0

−∞

∫ M−y

−y
[(x+ y)σ − xσ] J(y)dxdy

=
ψ(0)

σ + 1

∫ 0

−∞
[Mσ+1 − (M − y)σ+1 + (−y)σ+1]J(y)dy

≤ ψ(0)

σ + 1

∫ 0

−∞
(−y)σ+1J(y)dy =

ψ(0)

σ + 1

∫ ∞
0

yσ+1J(y)dy := C1 <∞.

Moreover, by (Jα), σ + 1 = α ∈ (0, 1) and (2.5),

Ĩ2 ≤
∫ 0

−∞

∫ M−y

M
xσJ(y)ψ(−x)dxdy ≤ ψ(0)

∫ 0

−∞

∫ M−y

M
xσJ(y)dxdy

=
ψ(0)

σ + 1

∫ 0

−∞
[(M − y)σ+1 −Mσ+1]J(y)dy

≤ ψ(0)

σ + 1

∫ ∞
0

yσ+1J(y)dy := C2 <∞.

Therefore,

S ≤ C1 + C2 := C <∞ for all M > 0.

The proof is complete. �

Denote

Ψ(x) = (ψi(x)) := u∗ − Φ(x) and G(u) = (gi(u)) := −F (u∗ − u).

Then Ψ satisfies

(2.6)


0 = D ◦

∫ 0

−∞
J(x− y) ◦Ψ(y)dy −D ◦Ψ +D ◦ u∗ ◦

∫ ∞
0

J(x− y)dy

+cΨ′(x) +G(Ψ(x)) for −∞ < x < 0,

Ψ(−∞) = 0, Ψ(0) = u∗.

Since u∗ is stable and ∇F (u∗) = ∇G(0) is invertible, the eigenvalues of ∇F (u∗) are all negative.
Therefore we can use the same reasoning as in the proof of Lemma ?? to find two vectors

Ã = (ãi)��0 and B̃ = (b̃i)≺≺0 such that, for U = (ui) ∈ [0, ε1] with ε > 0 sufficiently small,

m∑
i=1

ãigi(U) ≤
m∑
i=1

b̃iui ≤ −b̂
m∑
j=1

ãiui,

for some b̂ > 0.
Since Ψ(−∞) = 0 and Ψ(x) = (ψi(x))��0 for x < 0, we have 0 < ψi(x) < ε for x� −1, and

so
m∑
i=1

ãigi(Ψ(x)) ≤ −b̂ψ̃(x) for x� −1, with(2.7)
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ψ̃(x) :=
m∑
j=1

ãjψj(x).(2.8)

Lemma 2.6. Suppose (J) and (f1)− (f4) are satisfied. If (Jα) holds for some α ≥ 1, then∫ 0

−∞
ψ̃(x)dx <∞.

Proof. A simple calculation gives

D ◦
∫ 0

−∞
J(x− y) ◦Ψ(y)dy −D ◦Ψ +D ◦ u∗ ◦

∫ ∞
0

J(x− y)dy

=−D ◦
∫ 0

−∞
J(x− y) ◦ Φ(y)dy +D ◦ Φ.

Integrating the equation satisfied by ψ̃ over the interval (x, y) with x < y � −1, and making
use of (2.7), we obtain

c(ψ̃(y)− ψ̃(x)) +

m∑
i=1

∫ y

x
ãidi

[∫ 0

−∞
Ji(z − w)ψi(w)dw − ψi(z)

]
dz

+
m∑
i=1

∫ y

x
ãidiu

∗
i

∫ ∞
0

Ji(z − w)dwdz

=c(ψ̃(y)− ψ̃(x))−
m∑
i=1

∫ y

x
ãidi

[∫ 0

−∞
Ji(z − w)φi(w)dw − φi(z)

]
dz

=−
∫ y

x

m∑
i=1

ãigi(Ψ(z))dz ≥ b̂
∫ y

x
ψ̃(z)dz.

We extend Φ to R by define φi(x) = 0 for x > 0. Then the new function Φ is differentiable on
R except at x = 0. Due to (Jα), we have, for i ∈ {1, ...,m0},∣∣∣∣∫ y

x

(∫ 0

−∞
Ji(z − w)φi(w)dw − φi(z)

)
dz

∣∣∣∣ =

∣∣∣∣∫ y

x

(∫
R
Ji(z − w)φi(w)dw − φi(z)

)
dz

∣∣∣∣
=

∣∣∣∣∫ y

x

∫
R
Ji(w)(φi(z + w)− φ(z))dwdz

∣∣∣∣ =

∣∣∣∣∫ y

x

∫
R
Ji(w)

∫ 1

0
wφ′i(z + sw)dsdwdz

∣∣∣∣
=

∣∣∣∣∫
R
wJi(w)

∫ 1

0
[φi(y + sw)− φi(x+ sw)]dsdw

∣∣∣∣
≤ a∗i

∫
R
|y|Ji(y)dy =: Mi <∞.

Thus, for x < y � −1,

b̂

∫ y

x
ψ̃(z)dz ≤ c(ψ̃(y)− ψ̃(x)) +

m∑
i=1

ãidiMi ≤
m∑
i=1

ãi(cu
∗
i + diMi),

which implies

∫ 0

−∞
ψ̃(z)dz <∞. �

Proof of Theorem 2.1: Case 1. α ≥ 1.

With ψ̃ =
∑m

i=1 ãiψi given by (2.8), it suffices to show∫ 0

−∞
ψ̃(x)|x|α−1dx <∞.
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By Lemma 2.6 we have∫ 0

−∞
ψ̃(x)dx <∞ and hence

∫ 0

−∞
ψi(x)dx <∞ for i ∈ {1, ...,m}.

So there is nothing to prove if α = 1, and we only need to consider the case α > 1.
Suppose α > 1 and

(2.9)

∫ 0

−∞
|x|γψ̃(x)dx <∞ for some γ ≥ 0.

Then by Lemma 2.4, for any β satisfying 0 < β ≤ min{γ + 1, α}, and i ∈ {1, ...,m0},

(2.10)

∫ 0

−M

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
|x|βdx ≤ C for some C > 0 and all M > 0.

Moreover, if we fix M0 > 1 so that (2.7) holds for x ≤ −M0, then for M > M0 and β as above,
we have

b̂

∫ −M0

−M
ψ̃(x)|x|βdx

≤−
m∑
i=1

∫ −M0

−M
ãigi(Ψ(x))|x|βdx

= c

∫ −M0

−M
ψ̃′(x)|x|βdx+

m0∑
i=1

ãidi

∫ −M0

−M

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
|x|βdx

+

m0∑
i=1

ãidiu
∗
i

∫ −M0

−M

∫ ∞
0
|x|βJi(x− y)dydx.

By (2.10),

m0∑
i=1

ãidi

∫ −M0

−M

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
|x|βdx

≤ C
m0∑
i=1

ãidi −
m0∑
i=1

ãidi

∫ 0

−M0

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
|x|βdx

:= C1 <∞ for all M > M0.

Moreover, if we assume additionally that β ≤ α− 1, then we have, for i ∈ {1, ...,m0},∫ −M0

−M

∫ ∞
0
|x|βJi(x− y)dydx

≤
∫ M

0

∫ ∞
0

xβJi(x+ y)dydx =

∫ M

0

∫ ∞
x

xβJi(y)dydx

≤
∫ ∞

0

∫ ∞
x

xβJi(y)dydx =
1

β + 1

∫ ∞
0

yβ+1Ji(y)dy := C2 <∞.

Therefore, for β ∈ (0,min{γ + 1, α− 1}] and M > M0,

b̂

∫ −M0

−M
ψ̃(x)|x|βdx ≤ c

∫ −M0

−M
ψ̃′(x)|x|βdx+ C1 +

m∑
i=1

ãidiu
∗
iC2

≤ c
∫ M

1
xβψ̃′(−x)dx+ C3 ≤ c

∫ M

1
xγ+1ψ̃′(−x)dx+ C3

≤ cψ̃(−1) + c

∫ M

1
(γ + 1)xγψ̃(−x)dx+ C3 := C4 <∞ by (2.9).
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It follows that

(2.11)

∫ 0

−∞
ψ̃(x)|x|βdx <∞.

Thus we have proved that (2.9) implies (2.11) for any β ∈ (0,min{γ + 1, α− 1}].
If we write α− 1 = n+ θ with n ≥ 0 an integer and θ ∈ (0, 1]. Then by the above conclusion

and an induction argument we see that (2.11) holds with β = n. Thus (2.9) holds for γ = n.
So applying the above conclusion once more we see that (2.11) holds for every β ∈ (0,min{n+
1, α− 1}] = (0, α− 1], as desired.

Case 2. α ∈ (0, 1).
Let β = α− 1. As in Case 1, for M > M0,

b̂

∫ −M0

−M
ψ̃(x)|x|βdx

≤ c

∫ −M0

−M
ψ̃′(x)|x|βdx+

m0∑
i=1

ãidi

∫ −M0

−M

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
|x|βdx

+

m0∑
i=1

ãidiu
∗
i

∫ −M0

−M

∫ ∞
0
|x|βJi(x− y)dydx

≤ c

∫ −M0

−M
ψ̃′(x)|x|βdx+ C̃1 +

m0∑
i=1

ãidiu
∗
i

∫ −M0

−M

∫ ∞
0
|x|βJi(x− y)dydx,

where C̃1 > 0 is obtained by making use of Lemma 2.5. By (Jα) and β + 1 = α,∫ −M0

−M

∫ ∞
0
|x|βJi(x− y)dydx ≤

∫ ∞
0

∫ ∞
x

xβJi(y)dydx

=
1

α

∫ ∞
0

yαJi(y)dy := C̃2 <∞.

Due to β < 0, we have ∫ −M0

−M
ψ̃′(x)|x|βdx =

∫ M

M0

ψ̃′(−x)xβdx

=ψ̃(−M0)Mβ
0 − ψ̃(−M)Mβ + β

∫ M

M0

ψ̃(−x)xβ−1dx

≤ψ̃(−M0)Mβ
0 := C̃3 <∞.

Hence

b̂

∫ −M0

−M
ψ̃(x)|x|βdx ≤ C̃1 + C̃2

m0∑
i=1

ãidiu
∗
i + cC̃3 <∞

for all M > M0, which implies ∫ −1

−∞
ψ̃(x)|x|α−1dx <∞.

The proof is completed.
�

Proof of Theorem 2.2: We have

|gi(Ψ(x))| ≤ L
m∑
j=1

ψj(x) := Lψ̂(x) for some L > 0 and all x < 0, i ∈ {1, ...,m}.
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Now for M > 1 and β = α− 1,

L

∫ −1

−M
ψ̂(x)|x|βdx ≥ −

m∑
i=1

∫ −1

−M
gi(Ψ(x))|x|βdx

= c

∫ −1

−M
ψ̂′(x)|x|βdx+

m0∑
i=1

di

∫ −1

−M

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
|x|βdx

+

m0∑
i=1

diu
∗
i

∫ −1

−M

∫ ∞
0
|x|βJi(x− y)dydx

≥−
m0∑
i=1

di

∫ −1

−M
ψi(x)|x|βdx+

m0∑
i=1

diu
∗
i

∫ −1

−M

∫ ∞
0
|x|βJi(x− y)dydx

Therefore, with L̃ := L+
∑m0

i=1 di, we have

L̃

∫ −1

−M
ψ̂(x)|x|βdx ≥

m0∑
i=1

diu
∗
i

∫ −1

−M

∫ ∞
0
|x|βJi(x− y)dydx

=

m0∑
i=1

diu
∗
i

∫ M

1

∫ ∞
x

xβJi(y)dydx

=

m0∑
i=1

diu
∗
i

[ ∫ M

1

∫ ∞
1
−
∫ M

1

∫ x

1

]
xβJi(y)dydx

=

m0∑
i=1

diu
∗
i

β + 1

[ ∫ ∞
1

(Mβ+1 − 1)Ji(y)dy +

∫ M

1
(yβ+1 −Mβ+1)Ji(y)dy

]
≥

m0∑
i=1

diu
∗
i

β + 1

[ ∫ M

1
yβ+1Ji(y)dy −

∫ ∞
1

Ji(y)dy
]
→∞ as M →∞,

since β + 1 = α. Therefore (2.2) holds, as we wanted. �

To prove Theorem 2.3, we need the following lemma.

Lemma 2.7. Let the assumptions in Theorem 2.3 be satisfied and Ψ(x) = (ψi(x)) =: u∗−Φ(x).
Then for every small ε > 0, there exist β = β(ε) ∈ (0, λ] and C = C(ε) > 0 such that for all
M > 0 and i ∈ {1, ...,m},

Q(i) = Q
(i)
M :=

∫ 0

−M
e−βx

∫ 0

−∞
Ji(x− y)ψi(y)dydx ≤ (1 + ε)

∫ 0

−M
e−βxψi(x)dx+ C.(2.12)

Proof. By a change of variables, we deduce

Q(i) =

∫ 0

−M
e−βx

∫ −x
−∞

Ji(y)ψi(x+ y)dydx =

∫ M

0

∫ x

−∞
eβxJi(y)ψi(y − x)dydx

=

∫ M

0

(∫ 0

−∞
+

∫ x

0

)
eβxJi(y)ψi(y − x)dydx

=

∫ 0

−∞

∫ M

0
eβxJi(y)ψi(y − x)dxdy +

∫ M

0

∫ M

y
eβxJi(y)ψi(y − x)dxdy

=

∫ 0

−∞
eβyJi(y)

∫ M−y

−y
eβxψi(−x)dxdy +

∫ M

0
eβyJi(y)

∫ M−y

0
eβxψi(−x)dxdy

:=I + II.
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We have

I =

∫ 0

−M
eβyJi(y)

∫ M−y

−y
eβxψi(−x)dxdy +

∫ −M
−∞

eβyJi(y)

∫ M−y

−y
eβxψi(−x)dxdy

=

∫ 0

−M
eβyJi(y)

(∫ M

−y
+

∫ M−y

M

)
eβxψi(−x)dxdy +

∫ −M
−∞

eβyJi(y)

∫ M−y

−y
eβxψi(−x)dxdy

=

∫ 0

−M
eβyJi(y)

∫ M

−y
eβxψi(−x)dxdy +

∫ 0

−M
eβyJi(y)

∫ M−y

M
eβxψi(−x)dxdy

+

∫ −M
−∞

eβyJi(y)

∫ M−y

−y
eβxψi(−x)dxdy

:=B
(i)
1 +A

(i)
1 +A

(i)
2 ,

and

II =

∫ M

0
eβyJi(y)

∫ M

0
eβxψi(−x)dxdy −

∫ M

0
eβyJi(y)

∫ M

M−y
eβxψi(−x)dxdy

:=B
(i)
2 +A

(i)
3 .

Hence,

Q(i) =I + II = (B
(i)
1 +B

(i)
2 ) + (A

(i)
1 +A

(i)
2 +A

(i)
3 )

≤
∫ 0

−M
eβyJi(y)

∫ M

0
eβxψi(−x)dxdy +

∫ M

0
eβyJi(y)

∫ M

0
eβxψi(−x)dxdy

+ (A
(i)
1 +A

(i)
2 +A

(i)
3 )

=

∫ M

−M
eβyJi(y)dy

∫ M

0
eβxψi(−x)dx+ (A

(i)
1 +A

(i)
2 +A

(i)
3 ).

Set

P (γ) :=

∫
R
eγyJi(y)dy =

∫ ∞
0

[eγy + e−γy]Ji(y)dy.

Clearly P (γ) is increasing and continuous in γ ∈ [0, α], with P (0) = 1. Hence there exists small
β∗ = β∗(ε) ∈ (0, λ] such that for all 0 < β ≤ β∗(ε),

P (β) =

∫
R
eβyJi(y)dy ≤ 1 + ε.

Thus, for such β,

Q(i) ≤(1 + ε)

∫ M

0
eβxψi(−x)dx+ (A

(i)
1 +A

(i)
2 +A

(i)
3 ).

It remains to verify that A
(i)
1 + A

(i)
2 + A

(i)
3 has an upper bound which is independent of

M ∈ (0,∞). Using the monotonicity of ψi, we deduce

A
(i)
1 +A

(i)
3 =

∫ 0

−M
eβyJi(y)

∫ M−y

M
eβxψi(−x)dxdy −

∫ M

0
eβyJi(y)

∫ M

M−y
eβxψi(−x)dxdy

≤ψi(−M)

∫ 0

−M
eβyJi(y)

∫ M−y

M
eβxdxdy − ψi(−M)

∫ M

0
eβyJi(y)

∫ M

M−y
eβxdxdy

=
ψi(−M)

β

∫ 0

−M
eβyJi(y)[eβ(M−y) − eβM ]dy − ψi(−M)

β

∫ M

0
eβyJi(y)[eβM − eβ(M−y)]dy

=
ψi(−M)eβM

β

∫ 0

−M
Ji(y)[1− eβy]dy − ψi(−M)eβM

β

∫ M

0
Ji(y)[eβy − 1]dy
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=
ψi(−M)eβM

β

∫ M

0
Ji(y)[2− e−βy − eβy]dy ≤ 0,

and

A
(i)
2 =

∫ −M
−∞

eβyJi(y)

∫ M−y

−y
eβxψi(−x)dxdy ≤ ψi(0)

∫ −M
−∞

eβyJi(y)

∫ M−y

−y
eβxdxdy

=
u∗i
β

∫ −M
−∞

eβyJi(y)[eβ(M−y) − e−βy]dy =
u∗i (e

βM − 1)

β

∫ ∞
M

Ji(y)dy

≤u
∗
i (e

βM − 1)

β
e−βM

∫ ∞
M

eβyJi(y)dy ≤ u∗i
β

∫ ∞
0

eβyJi(y)dy := C <∞,

since β ≤ λ. Hence (2.12) holds. �

Proof of Theorem 2.3. With ψ̃ =
∑m

i=1 ãiψi given by (2.8), it suffices to show that there exists
β ∈ (0, λ] such that

ψ̃(x) = O(eβx) for large negative x.

By Lemma 2.7, there exist ε > 0 and β ∈ (0, λ] small such that (2.12) holds and b̂ ≥
∑m

i=1 ãidiε+

cβ. Multiplying e−βx on both sides of the equation satisfied by ψ̃ and then integrating the
resulting equation over the interval [−M, 0] with an arbitrary M > 0, we obtain

−
m∑
i=1

∫ 0

−M
ãigi(Ψ(x))e−βxdx−

∫ 0

−M
cψ̃′(x)(−x)βdx

=
m∑
i=1

ãidi

∫ 0

−M

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
e−βxdx

+
m∑
i=1

ãidiu
∗
i

∫ 0

−M
e−βx

∫ ∞
0

Ji(x− y)dydx =: S1(M) + S2(M).

(2.13)

In view of (J2) and β ∈ (0, λ], we have

S2(M) =
m∑
i=1

ãidiu
∗
i

∫ 0

−M
e−βx

∫ ∞
−x

Ji(y)dydx ≤
m∑
i=1

ãidiu
∗
i

∫ 0

−∞
e−βx

∫ ∞
−x

Ji(y)dydx

=

m∑
i=1

ãidiu
∗
i

∫ ∞
0

∫ 0

−y
e−βxJi(y)dxdy =

m∑
i=1

ãidiu
∗
i

β

∫ ∞
0

[eβy − 1]Ji(y)dy <∞.

This together with (2.12) implies

S1(M) + S2(M) ≤
m∑
i=1

ãidiε

∫ 0

−M
e−βxψi(x)dx+ C1(2.14)

for some C1 > 0 independent of M .
On the other hand, by (2.7) and b̂ ≥

∑m
i=1 ãidiε+ cβ we obtain, for M > M0 � 1,

−
m∑
i=1

∫ 0

−M
ãigi(Ψ(x))e−βxdx−

∫ 0

−M
cψ̃′(x)e−βxdx

≥b̂
∫ −M0

−M
ψ̃(x)e−βxdx−

∫ 0

−M
cψ̃′(x)e−βxdx

−
m∑
i=1

∫ 0

−M0

ãigi(Ψ(x))e−βxdx
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=b̂

∫ 0

−M
ψ̃(x)e−βxdx−

∫ 0

−M
cψ̃′(x)e−βxdx+ C2

≥
m∑
i=1

ãidiε

∫ 0

−M
ψ̃(x)e−βxdx+ cβ

∫ 0

−M
ψ̃(x)e−βxdx−

∫ 0

−M
cψ̃′(x)e−βxdx+ C2

=
m∑
i=1

ãidiε

∫ 0

−M
ψ̃(x)e−βxdx− c

∫ 0

−M
[ψ̃(x)e−βx]′dx+ C2

=

m∑
i=1

ãidiε

∫ 0

−M
ψ̃(x)e−βxdx− cψ̃(0) + cψ̃(−M)eβM + C2,

where

C2 := −
m∑
i=1

∫ 0

−M0

ãigi(Ψ(x))e−βxdx−
∫ 0

−M0

ψ̃(x)e−βxdx.

Therefore, by (2.13) and (2.14),

cψ̃(−M)eβM ≤ cψ̃(0) + C1 − C2 for all M > M0,

which implies ψ̃(x) = O(eβx) for x� −1. The proof is completed. �

2.2. Bounds for c0t − h(t), c0t + g(t) and U(t, x) for kernels of type (Jα). Let us first
observe that it suffices to estimate h(t)−c0t, since that for g(t)+c0t follows by considering (1.1)
with initial function u0(−x).

Theorem 1.1 will follow easily from Lemmas 2.8, 2.10 below and their proofs, where more
general and stronger conclusions are proved.

Lemma 2.8. In Theorem B, if additionally (Jα) holds for some α ≥ 1, F is C2 and u∗∇F (u∗)≺≺0,
then there exists C > 0 such that for t ≥ 0,

h(t)− c0t ≥ −C

[
1 +

∫ t

0
(1 + x)−αdx+

∫ c0
2
t

0
x2Ĵ(x)dx+ t

∫ ∞
c0
2
t
xĴ(x)dx

]
,

where c0 > 0 is given in Theorem A and Ĵ(x) :=
∑m0

i=1 µiJi(x).

To prove Lemma 2.8, we will need the following result.

Lemma 2.9. Suppose that F = (fi) ∈ C2(Rm,Rm), u∗��0 and

F (u∗) = 0, u∗[∇F (u∗)]T≺≺0.
Then there exists δ0 > 0 small such that for 0 < ε� 1 and u, v ∈ [(1− δ0]u∗,u∗] satisfying

(u∗i − ui)(u∗j − vj) ≤ Cδ0ε for some C > 0 and all i, j ∈ {1, ...,m},
we have

(1− ε)[F (u) + F (v)]− F ((1− ε)(u+ v − u∗)) � ε

2
u∗[∇F (u∗)]T .

Proof. Define

G(u, v) = (gi(u, v)) := (1− ε)[F (u) + F (v)]− F ((1− ε)(u+ v − u∗)), u, v ∈ Rm.

For u, v ∈ [(1− δ0)u∗,u∗] and each i ∈ {1, ...,m}, we may apply the mean value theorem to the
function

ξi(t) := gi(u
∗ + t(u− u∗),u∗ + t(v − u∗)

to obtain
ξi(1) = ξi(0) + ξ′i(ζi) for some ζi ∈ [0, 1].

Denote
ũ = ũi := u∗ + ζi(u− u∗), ṽ = ṽi := u∗ + ζi(v − u∗).
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Then the above identity is equivalent to

gi(u, v) =gi(u
∗,u∗) +∇u gi(ũ, ṽ) · (u− u∗) +∇v gi(ũ, ṽ) · (v − u∗)

=− fi((1− ε)u∗) + (1− ε)∇fi(ũ) · (u− u∗) + (1− ε)∇fi(ṽ) · (v − u∗)

− (1− ε)∇fi
(
(1− ε)(ũ+ ṽ − u∗)

)
· (u− u∗)

− (1− ε)∇fi
(
(1− ε)(ũ+ ṽ − u∗)

)
· (v − u∗).

Let us note that ũ ∈ [u,u∗] and ṽ ∈ [v,u∗]. Since F ∈ C2, there is C1 such that

|∂jkfi(u)| ≤ C1 for u ∈ [0,u∗], i, j, k ∈ {1, ...,m}.

A simple calculation gives

(1− ε)∇fi(ũ)(u− u∗)− (1− ε)∇fi
(
(1− ε)(ũ+ ṽ − u∗)

)
· (u− u∗)

=(1− ε)
[
∇fi(ũ)−∇fi

(
(1− ε)(ũ+ ṽ − u∗)

)]
· (u− u∗)

≤(1− ε)b1
m∑
j=1

(u∗j − uj),

where

b1 := C1|ũ− (1− ε)(ũ+ ṽ − u∗)|

= C1|εũ− (1− ε)(ṽ − u∗)| ≤ C1

m∑
j=1

[εũj + (1− ε)(u∗j − ṽj)]

≤ C2ε+ C1

m∑
j=1

(u∗j − vj) with C2 := C1
∑m

j=1 u
∗
j .

Similarly,

(1− ε)∇fi(ũ) · (v − u∗)− (1− ε)∇fi
(
(1− ε)(ũ+ ṽ − u∗)

)
· (v − u∗)

≤ (1− ε)b2
m∑
j=1

(u∗j − vj),

where

b2 := C1|εũ− (1− ε)(ũ− u∗)| ≤ C2ε+ C1

m∑
j=1

(u∗j − uj).

Thus

gi(u, v) ≤− fi((1− ε)u∗) + (1− ε)b1
m∑
j=1

(u∗j − vj) + (1− ε)b2
m∑
j=1

(u∗j − uj)

≤− fi((1− ε)u∗) +

C2ε+ C1

m∑
j=1

(u∗j − vj)

 m∑
k=1

(u∗k − uk)

+

C2ε+ C1

m∑
j=1

(u∗j − uj)

 m∑
k=1

(u∗k − vk)

=− fi((1− ε)u∗) + C2ε

m∑
k=1

[
(u∗k − uk) + (u∗k − vk)

]
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+ C1

m∑
j,k=1

(u∗j − vj)(u∗k − uk) + C1

m∑
j,k=1

(u∗j − uj)(u∗k − vk)

= ε∇fi(u∗) · u∗ + o(ε) + C2ε
m∑
k=1

[
(u∗k − uk) + (u∗k − vk)

]
+ 2C1

m∑
j,k=1

(u∗j − vj)(u∗k − uk),

where o(ε)/ε→ 0 as ε→ 0.
If u, v ∈ [(1− δ0]u∗,u∗], then

P = (pi) := u∗ − u, Q = (qi) := u∗ − v ∈ [0, δ0u
∗],(2.15)

and hence

gi(u, v) = gi(u
∗ − P,u∗ −Q)

≤ ε∇fi(u∗) · u∗ + o(ε) + C2ε

m∑
k=1

(pk + qk) + 2C1

m∑
j,k=1

pjqk

≤ ε
[
u∗ · ∇fi(u∗) + o(1) + 2(C2 + C1)δ0

]
≤ ε

2
u∗ · ∇fi(u∗) for i ∈ {1, ...,m}, 0 < ε� 1

provided that δ0 > 0 is sufficiently small. �

Proof of Lemma 2.8. Let (c0,Φ
c0) be the unique solution pair of (1.4)-(1.5) in Theorem A.

To simplify notations we write Φc0(x) = Φ(x) = (φi(x)). By Theorem 2.1 there is C > 0 such
that

m0∑
i=1

∫ ∞
0

Ji(y)|y|αdy ≤ C, 0 < u∗i − φi(x) ≤ C

xα
for x < −1, i ∈ {1, ...,m}.(2.16)

Define{
h(t) := c0t+ δ(t), t ≥ 0,

U(t, x) := (1− ε(t))[Φ(x− h(t)) + Φ(−x− h(t))− u∗], t ≥ 0, x ∈ [−h(t), h(t)],

where ε(t) := (t+ θ)−α and

δ(t) :=K1 −K2

∫ t

0
ε(τ)dτ − 2

m0∑
i=1

µiu
∗
i

∫ t

0

∫ − c0
2

(τ+θ)

−∞

∫ ∞
0

Ji(x− y)dydxdτ,

with θ, K1 and K2 large positive constants to be determined.
For any M > 0 and i ∈ {1, ...,m0},∫ −M

−∞

∫ ∞
0

Ji(x− y)dydx =

∫ ∞
M

∫ ∞
x

Ji(y)dydx

=

∫ ∞
M

∫ y

M
Ji(y)dxdy =

∫ ∞
M

(y − k)Ji(y)dy ≤
∫ ∞
M

yJi(y)dy.

Hence, due to

∫ ∞
0

yJi(y)dy <∞, we have

2

m0∑
i=1

µiu
∗
i

∫ t

0

∫ − c0
2

(τ+θ)

−∞

∫ ∞
0

Ji(x− y)dydxdτ
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≤ 2

m0∑
i=1

µiu
∗
i

∫ t

0

∫ − c0
2
θ

−∞

∫ ∞
0

Ji(x− y)dydxdτ

≤

[
2

m0∑
i=1

µiu
∗
i

∫ ∞
c0
2
θ
yJi(y)dy

]
t ≤ c0

4
t

provided that θ > 0 is large enough, say θ ≥ θ0.
For any given small ε0 > 0, due to Φ(−∞) = u∗ there is K0 = K0(ε0) > 0 such that

(1− ε0)u∗ � Φ(−K0),

which implies that

Φ(x− h(t)),Φ(−x− h(t)) ∈ [(1− ε0)u∗,u∗] for x ∈ [−h(t) +K0, h(t)−K0],(2.17)

where we have assumed h(0) = K1 > K0.
Clearly

K2

∫ t

0
(τ + θ)−αdτ ≤ K2θ

−αt ≤ c0

4
t

provided θ ≥ (4K2/c0)1/α. Therefore

h(t) ≥ c0

2
t+K1 ≥

c0

2
(t+ θ) > K0 for all t ≥ 0 provided that(2.18)

K1 ≥
c0

2
θ and θ ≥ max

{
(4K2/c0)1/α, θ0, 2K0/c0

}
.(2.19)

Define

ε1 := inf
1≤i≤m

inf
x∈[−K0,0]

|φ′i(x)| > 0.

Then

(2.20)

{
Φ′(x− h(t)) < −ε11 for x ∈ [h(t)−K0, h(t)],

Φ′(−x− h(t)) < −ε11 for x ∈ [−h(t),−h(t) +K0].

Claim 1: With U = (ui), and suitably chosen θ, K1, K2, we have

h′(t) ≤
m∑
i=1

µi

∫ h(t)

−h(t)

∫ ∞
h(t)

Ji(x− y)ui(t, x)dy, t > 0(2.21)

and

− h′(t) ≥ −
m∑
i=1

µi

∫ h(t)

−h(t)

∫ −h(t)

−∞
Ji(x− y)ui(t, x)dy, t > 0.

Due to U(t, x) = U(t,−x) and J(x) = J(−x), we just need to verify (2.21). We calculate

m0∑
i=1

µi

∫ h(t)

−h(t)

∫ ∞
h(t)

Ji(x− y)ui(t, x)dydx

=(1− ε)
m0∑
i=1

µi

∫ 0

−2h(t)

∫ ∞
0

Ji(x− y)φi(x)dydx

+ (1− ε)
m0∑
i=1

µi

∫ 0

−2h(t)

∫ ∞
0

Ji(x− y)[φi(−x− 2h(t))− u∗i ]dydx

=(1− ε)c0 − (1− ε)
m0∑
i=1

µi

∫ −2h(t)

−∞

∫ ∞
0

Ji(x− y)φi(x)dydx
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− (1− ε)
m0∑
i=1

µi

∫ 0

−2h(t)

∫ ∞
0

Ji(x− y)[u∗i − φi(−x− 2h(t))]dydx.

From (2.18), for t ≥ 0,

(1− ε)
m0∑
i=1

µi

∫ −2h(t)

−∞

∫ ∞
0

Ji(x− y)φi(x)dydx

+ (1− ε)
m0∑
i=1

µi

∫ −h(t)

−2h(t)

∫ ∞
0

Ji(x− y)[u∗i − φi(−x− 2h(t))]dydx

≤ 2

m0∑
i=1

µiu
∗
i

∫ −h(t)

−∞

∫ ∞
0

Ji(x− y)dydx

≤ 2

m0∑
i=1

µiu
∗
i

∫ − c0
2

(t+θ)

−∞

∫ ∞
0

Ji(x− y)dydx.

And by (2.16), we have, for t > 0,

(1− ε)
m0∑
i=1

µi

∫ 0

−h(t)

∫ ∞
0

Ji(x− y)[u∗i − φi(−x− 2h(t))]dydx

≤
m0∑
i=1

µi[u
∗
i − φi(−h(t))]

∫ 0

−h(t)

∫ ∞
0

Ji(x− y)dydx

≤
m0∑
i=1

µi
C

h(t)α

∫ 0

−∞

∫ ∞
0

Ji(x− y)dydx

=

m0∑
i=1

µi
C

h(t)α

∫ ∞
0

yJi(y)dy ≤
m0∑
i=1

µi
C2

(c0/2)α(t+ θ)α
≤ K2 − c0

(t+ θ)α

if

K2 ≥ c0 +
C2

(c0/2)α

m∑
i=1

µi.(2.22)

Hence, when θ,K1 and K2 are chosen such that (2.19) and (2.22) hold, then
m∑
i=1

µi

∫ h(t)

−h(t)

∫ ∞
h(t)

Ji(x− y)ui(t, x)dydx

≥ (1− ε)c0 − 2

m∑
i=1

µiu
∗
i

∫ − c0
2

(t+θ)

−∞

∫ ∞
0

Ji(x− y)φi(x)dydx− K2 − c0

(t+ θ)α

= c0 −K2ε(t)− 2

m∑
i=1

µiu
∗
i

∫ − c0
2

(t+θ)

−∞

∫ ∞
0

Ji(x− y)φi(x)dydx

= h′(t) for all t > 0,

which finishes the proof of (2.21).

Claim 2: With θ, K1, K2 chosen such that (2.19) and (2.22) hold, and K2 suitably further
enlarged (see (2.23) below), θ0 � 1 and 0 < ε0 � 1, we have, for all t > 0 and x ∈ (−h(t), h(t)),

U t(t, x) �D ◦
∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x)).

A simple calculation gives

U t =− ε′(t)[Φ(x− h(t)) + Φ(−x− h(t))− u∗]
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− (1− ε)h′(t)[Φ′(x− h(t)) + Φ′(−x− h(t))]

=α(t+ θ)−α−1[Φ(x− h(t)) + Φ(−x− h(t))− u∗]

− (1− ε)[c0 + δ′(t)][Φ′(x− h(t)) + Φ′(−x− h(t))],

and using the equation satisfied by Φ we deduce

− (1− ε)c0[Φ′(x− h(t)) + Φ′(−x− h(t))]

=(1− ε)
[
D ◦

∫ h(t)

−∞
J(x− y) ◦ Φ(y − h(t))dy −D ◦ Φ(x− h(t))

+D ◦
∫ ∞
−h(t)

J(−x− y) ◦ Φ(−y − h(t))dy −D ◦ Φ(−x− h(t))

]
+ (1− ε)

[
F (Φ(x− h(t))) + F (Φ(−x− h(t)))

]
=D ◦

[∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy − U(t, x)

]

+ (1− ε)
[
D ◦

∫ −h(t)

−∞
J(x− y) ◦ [Φ(y − h(t))− u∗]dy

+D ◦
∫ ∞
h(t)

J(−x− y) ◦ [Φ(−y − h(t))dy − u∗]dy

]
+ (1− ε)

[
F (Φ(x− h(t))) + F (Φ(−x− h(t)))

]
�D ◦

[∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy − U(t, x)

]

+ (1− ε)
[
F (Φ(x− h(t))) + F (Φ(−x− h(t)))

]
.

Hence

U t � D ◦
∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy − U(t, x) + F (U(t, x)) +A1(t, x) +A2(t, x),

where

A1(t, x) :=α(t+ θ)−α−1[Φ(x− h(t)) + Φ(−x− h(t))− u∗],

A2(t, x) :=− (1− ε)δ′(t)[Φ′(x− h(t)) + Φ′(−x− h(t))]

+ (1− ε)[F (Φ(x− h(t))) + F (Φ(−x− h(t)))]− F (U(t, x)).

To finish the proof of Claim 2, it remains to check that

A1(t, x) +A2(t, x) � 0 for t > 0, x ∈ (−h(t), h(t)).

We next prove this inequality for x in the following three intervals, separately:

I1(t) := [h(t)−K0, h(t)], I2(t) := [−h(t),−h(t) +K0], I3(t) := [−h(t) +K0, h(t)−K0].

For x ∈ I1(t), by (2.16),

0 � Φ(−x− h(t))− u∗ � Φ(K0 − 2h(t))− u∗ � Φ(−h(t))− u∗ � −C
h(t)α

1

Then by (f2), there exists L > 0 such that

F (Φ(−x− h(t))) = F (Φ(−x− h(t)))− F (u∗) � L C

h(t)α
1
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and

F (U(t, x)) �(1− ε)F
(

Φ(x− h(t)) + Φ(−x− h(t))− u∗
)

�(1− ε)
[
F (Φ(x− h(t)))− L C

h(t)α
1
]
.

Thus from the definition of δ(t), (2.18) and (2.20), we deduce

A2(t, x) �(1− ε)
[
δ′(t)[Φ′(x− h(t)) + Φ′(−x− h(t))] + F (Φ(x− h(t)))

+ F (Φ(−x− h(t)))− F
(

Φ(x− h(t)) + Φ(−x− h(t))− u∗
)]

�(1− ε)
[
−δ′(t)ε1 + 2L

C

h(t)α

]
1 � (1− ε)

[
−K2(t+ θ)−αε1 +

2LC

h(t)α

]
1

�(1− ε)(t+ θ)−α
[
−K2ε1 + 2LC(2/c0)α

]
1.

Moreover,
A1(t, x) � α(t+ θ)−α−1u∗ ≤ 2|u∗|(1− ε)α(t+ θ)−α−11,

where |u∗| := max1≤i≤m u
∗
i and by enlarging θ0 we have assumed that ε(t) ≤ θ−α0 < 1/2. Hence

A1(t, x) +A2(t, x) � (1− ε)(t+ θ)−α
[
−K2ε1 + 2LC(2/c0)α + 2|u∗|αθ−1

0

]
1 � 0

if additionally

K2 ≥ ε−1
1

[
2LC(2/c0)α + 2|u∗|αθ−1

0

]
.(2.23)

This proves the desired inequality for x ∈ I1(t).
Since A1(t, x)+A2(t, x) is even in x, the desired inequality is also valid for x ∈ I2(t) = −I1(t).

It remains to prove the desired inequality for x ∈ I3(t).
We apply Lemma 2.9 with u = Φ(x− h(t)) and v = Φ(−x− h(t)). Let

P (t, x) = (pi(t, x)) := u∗ − Φ(x− h(t)), Q(t, x) = (qi(t, x)) := u∗ − Φ(−x− h(t)).

Then by (2.17) we have

P (t, x), Q(t, x) ∈ [0, ε0u
∗] for x ∈ I3(t), t > 0.(2.24)

Moreover, since min{x − h(t),−x − h(t)} ≤ −h(t) always holds, by (2.16) and (2.18), if we
denote C3 := C(c0/2)−α, then

pj(t, x)qk(t, x) ≤ Cε0
h(t)α

≤ C3ε0ε(t) for x ∈ I3(t), t > 0, j, k ∈ {1, ...,m}.(2.25)

Let Ai2 denote the i-th component of A2. Now due to δ′(t) < 0 and Φ′≺≺0, we have, by (2.24),
(2.25) and Lemma 2.9, assuming ε0 > 0 is sufficiently small,

Ai2(t, x) ≤ gi(u∗ − P,u∗ −Q) ≤ ε

2
u∗ · ∇fi(u∗) for x ∈ I3(t), t > 0, i ∈ {1, ...,m} and all θ0 � 1.

Since
Ai1(t, x) ≤ α(t+ θ)−α−1u∗i ≤ α|u∗i |θ−1

0 ε(t),

we thus obtain

Ai1 +Ai2 ≤ ε
(
u∗ · ∇fi(u∗)/2 + αu∗i θ

−1
0

)
< 0 for x ∈ I3(t), t > 0, i ∈ {1, ...,m}, θ0 � 1,

provided that ε0 is sufficiently small. The proof of Claim 2 is now complete.

Claim 3: There exists t0 > 0 such that{
g(t+ t0) ≤ −h(t), h(t+ t0) ≥ h(t) for t ≥ 0,

U(t+ t0, x) � U(t, x) for t ≥ 0, x ∈ [−h(t), h(t)].
(2.26)
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It is clear that

U(t,±h(t)) = (1− ε(t))[Φ(−2h(t))− u∗] ≺ 0 for t ≥ 0.

Since spreading happens for (U, g, h), there exists a large constant t0 > 0 such that

g(t0) < −K1 = −h(0) and h(0) = K1 < h(t0),

U(t0, x) � (1− θ−α)u∗ � U(0, x) for x ∈ [−h(0), h(0)].

which together with the inequalities proved in Claims 1 and 2 allows us to apply the comparison
principle to conclude that (2.26) is valid.

Claim 4: There exists C > 0 such that

δ(t) ≥ −C

[
1 +

∫ t

0
(1 + x)−αdx+

∫ c0
2
t

0
x2Ĵ(x)dx+ t

∫ ∞
c0
2
t
xĴ(x)dx

]
.

Clearly ∫ t

0
ε(τ)dτ =

∫ t

0
(x+ θ)−αdx <

∫ t

0
(x+ 1)−αdx.

By changing order of integrations we have∫ t

0

∫ − c0
2

(τ+θ)

−∞

∫ ∞
0

Ji(x− y)dydxdτ ≤
∫ t

0

∫ − c0
2
τ

−∞

∫ ∞
0

Ji(x− y)dydxdτ

=

∫ t

0

∫ ∞
c0
2
τ

[
y − c0

2
τ
]
Ji(y)dydτ ≤

∫ t

0

∫ ∞
c0
2
τ
yJi(y)dydτ

=
c0

2

∫ c0
2
t

0
y2Ji(y)dy + t

∫ ∞
c0
2
t
yJi(y)dy.

The desired inequality now follows directly from the definition of δ(t). �

Next we prove an upper bound for h(t)− c0t. Let us note that we do not need the condition
(Jα) in the following result.

Lemma 2.10. Under the assumptions of Theorem B (i), if (J1) holds, and additionally F is
C2 and u∗[∇F (u∗)]T≺≺0, then there exits C > 0 such that

h(t)− c0t ≤ C for all t > 0.(2.27)

Proof. As in the proof of Lemma 2.8, (c0,Φ
c0) denotes the unique solution pair of (1.4)-(1.5) in

Theorem A, and to simplify notations we write Φc0(x) = Φ(x) = (φi(x)).
For fixed β > 1, and some large constants θ > 0 and K1 > 0 to be determined, define{

h̄(t) := c0t+ δ(t), t ≥ 0,

U(t, x) := (1 + ε(t))Φ(x− h̄(t)), t ≥ 0, x ≤ h̄(t),

where ε(t) := (t+ θ)−β and

δ(t) := K1 +
c0

1− β
[(t+ θ)1−β − θ1−β].

Clearly, there is a large constant t0 > 0 such that

U(t+ t0, x) � (1 +
1

2
ε(0))u∗ for t ≥ 0, x ∈ [g(t), h(t)].

Due to Φ(−∞) = u∗, we may choose sufficient large K1 > 0 such that h(0) = K1 > 2h(t0),
−h(0) = −K1 < 2g(t0), and also

U(0, x) = (1 + ε(0))Φ(−K1/2) � (1 +
1

2
ε(0))u∗ � U(t0, x) for x ∈ [g(t0), h(t0)].(2.28)
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Claim 1: We have, with U = (ūi),

h̄′(t) ≥
m∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dy for t > 0.

A direct calculation shows
m∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dy

≤
m∑
i=1

µi

∫ h̄(t)

−∞

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dy

=(1 + ε)
m∑
i=1

µi

∫ 0

−∞

∫ +∞

0
Ji(x− y)φi(x)dy

=(1 + ε)c0 = h̄′(t),

as desired.

Claim 2: If θ > 0 is sufficiently large, then for t > 0 and x ∈ (g(t+ t0), h(t)), we have

U t(t, x) �D ◦
∫ h̄(t)

g(t+t0)
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x)).(2.29)

By (1.4), we have

U t(t, x) =− (1 + ε)[c0 + δ′(t)]Φ′(x− h̄(t)) + ε′(t)Φ(x− h(t))

=− (1 + ε)c0Φ′(x− h̄(t))− (1 + ε)δ′(t)Φ′(x− h̄(t))− β(t+ θ)−β−1Φ(x− h(t))

�D ◦
∫ h̄(t)

g(t0+t)
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x)) +A(t, x)

with

A(t, x) :=(1 + ε)F (Φ(x− h̄(t)))− F ((1 + ε)Φ(x− h̄(t)))

− (1 + ε)δ′(t)Φ′(x− h̄(t))− β(t+ θ)−β−1Φ(x− h(t)).

To prove the claim, we need to show

A(t, x) � 0 for x ∈ [g(t0 + t), h̄(t)] and t > 0.

Let ε0, ε1 and K0 be given as in the proof of Lemma 2.8. For x ∈ [h̄(t)−K0, h̄(t)] and t > 0,
by (2.20), we have

A(t, x) �− (1 + ε)δ′(t)Φ′(x− h̄(t))− β(t+ θ)−β−1Φ(x− h(t))

=− (1 + ε)c0(t+ θ)−βΦ′(x− h̄(t))− β(t+ θ)−β−1Φ(x− h(t))

�c0(t+ θ)−βε11− β(t+ θ)−β−1u∗

�(t+ θ)−β−1
[
c0θε11− βu∗

]
� 0,

provided θ is large enough.
We next estimate A(t, x) for x ∈ [g(t+ t0), h(t)−K0]. Define

G(u) = (gi(u)) := (1 + ε)F (u)− F ((1 + ε)u), u, v ∈ Rm.

Then for u, v ∈ [0,u∗] and i ∈ {1, ...,m},

gi(u) =gi(u
∗) +∇gi(ũ) · (u− u∗)

=− fi((1 + ε)u∗) + (1 + ε)∇fi(ũ) · (u− u∗)− (1 + ε)∇fi((1 + ε)ũ) · (u− u∗)
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=− fi((1 + ε)u∗) + (1 + ε)

[
∇fi(ũ)−∇fi((1 + ε)ũ)

]
· (u− u∗)

for some ũ = ũi ∈ [u,u∗]. Since F ∈ C2, there exists C1 > 0 such that

|∂jkfi(u)| ≤ C1 for u ∈ [0, û], i, j, k ∈ {1, ...,m}.

Therefore

gi(u) ≥− fi((1 + ε)u∗)− (1 + ε)b1

m∑
j=1

(u∗j − uj)

with

b1 := C1|εũ| ≤ C1ε|u∗| := C2ε.

Thus

gi(u) ≥− ε∇fi(u∗) · u∗ + o(ε)− 2C2ε
m∑
j=1

(u∗j − uj).

By (2.17) we have

−ε0u∗ � Φ(x− h̄(t))− u∗≺≺0 for x ∈ [g(t0 + t), h(t)−K0], t > 0.(2.30)

Using (2.17), δ′ > 0, Φ′ � 0 and ε = (t+ θ)−β ≤ θ−β, we obtain

Ai(t, x) ≥(1 + ε)fi(Φ(x− h̄(t)))− fi((1 + ε)Φ(x− h̄(t)))− β(t+ θ)−β−1φi(x− h(t))

= gi(Φ(x− h̄(t))− β(t+ θ)−β−1φi(x− h(t))

≥ ε

[
− u∗ · ∇fi(u∗) + o(1)− 2ε0C2

m∑
j=1

u∗j − βθ−β−1u∗i

]
> 0 for x ∈ [g(t0 + t), h(t)−K0], t > 0, i ∈ {1, ...,m},

provided θ is large enough and ε0 > 0 is small enough, since u∗[∇F (u∗)]T≺≺0. We have now
proved (2.29).

Due to the inequalities proved in Claims 1 and 2, (2.28) and

U(t, g(t+ t0)) > 0, U(t, h̄(t)) = (1 + ε)Φ(h̄(t)− h̄(t)) = 0 for t ≥ 0,

we are now able to apply Lemma ?? to conclude that

h(t+ t0) ≤ h̄(t), t ≥ 0,

U(t+ t0, x) � U(t, x), t ≥ 0, x ∈ [g(t+ t0), h(t)].

The desired inequality (2.27) follows directly from δ(t) ≤ K1 + c0
β−1θ

1−β and h(t + t0) ≤ h̄(t).

The proof is complete. �

Proof of Theorem 1.1. Since α ≥ 2, from the proof of Lemmas 2.8 and 2.10, it is easily seen that

C0 := sup
t>0

[
|h̄(t)− c0t|+ |h(t)− c0t|

]
<∞.

Hence for large fixed θ > 0 and all large t, say t ≥ t0,

[g(t), h(t)] ⊃ [−h(t− t0), h(t− t0)] ⊃ [−c0t+ C, c0t− C] with C := C0 + c0t0,

and

U(t, x) � U(t, x) � (1− ε(t)]
[
Φc0(x− c0t+ C) + Φc0(−x− c0t+ C)− u∗

]
for x ∈ [−c0t + C, c0t − C], where ε(t) = (t + θ)−α. This inequality for U(t, x) also holds
for x ∈ [g(t), h(t)] if we assume that Φc0(x) = 0 for x > 0, since when x lies outside of
[−c0t+ C, c0t− C] the right side is ≺ 0.
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By considering (1.1) with initial function u0(−x), from the proof of Lemma 2.10 we see that
the following analogous inequalities hold:

g(t) ≥ −h̄(t− t0), U(t, x) � (1 + ε(t))Φc0(−x− h̄(t− t0))

for t > t0 and x ∈ [g(t), h(t)]. We thus have

[g(t), h(t)] ⊂ [−h̄(t− t0), h̄(t− t0)] ⊂ [−c0t− C, c0t+ C],

and

U(t, x) � U(t, x) � (1− ε(t)) min
{

Φc0(x− c0t− C),Φc0(−x− c0t− C)
}

for t > t0 and x ∈ [g(t), h(t)]. The proof is complete. �

3. Growth rate of c0t− h(t) and c0t+ g(t) for kernels of type (Ĵγ)

Recall that (U(t, x), g(t), h(t)) is the unique positive solution of (1.1), and we assume that
spreading happens. Under the assumptions of Theorem B (i), we have

− lim
t→∞

g(t)

t
= lim

t→∞

h(t)

t
= c0 > 0.

In this section we determine the growth order of c0t − h(t) and c0t + g(t) when the kernel
functions satisfy, for some γ ∈ (2, 3], ω ∈ (γ − 1, γ], C > 0 and all |x| ≥ 1,

(3.1)

Ji(x) ≈ |x|−γ if i ∈ {1, ...,m0} and µi 6= 0,

Ji(x) ≤ C|x|−ω if i ∈ {1, ...,m0} and µi = 0.

Clearly, (Ĵγ) implies (3.1).
The main result of this section is the following theorem.

Theorem 3.1. In Theorem B, if additionally (J1), (3.1) and (1.6) hold, then for t� 1,{
c0t+ g(t), c0t− h(t) ≈ t3−γ if γ ∈ (2, 3],
c0t+ g(t), c0t− h(t) ≈ ln t if γ = 3.

It is clear that the conclusion of Theorem 1.3 follows directly from Theorem 3.1. Note that if
ω > 2 in (3.1), then (J1) automatically holds.

By (f1) and the Perron-Frobenius theorem, we know that the matrix ∇F (0) − D̃ with

D̃ = diag(d1, ..., dm) has a principal eigenvalue λ̃1 with a corresponding eigenvector V ∗ =
(v∗1, · · · , v∗m)��0, namely

(3.2) V ∗
(

[∇F (0)]T − D̃
)

= λ̃1V
∗.

To prove Theorem 3.1, the difficult part is to find the lower bound for c0t− h(t), which will

be established according to the following two cases: (i) λ̃1 < 0, (ii) λ̃1 ≥ 0.
As before, we will only estimate c0t−h(t), since the estimate for c0t+ g(t) follows by making

the variable change x→ −x in the initial functions.

3.1. The case λ̃1 < 0.

Lemma 3.2. Suppose that the assumptions in Theorem 3.1 are satisfied. If λ̃1 < 0, then there
exists σ = σ(γ) > 0 such that for all large t > 0,

(3.3)

{
c0t− h(t) ≥ σ t3−γ if γ ∈ (2, 3),

c0t− h(t) ≥ σ ln t if γ = 3.
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Proof. Let β := γ − 2 ∈ (0, 1], and (c0,Φ) be the solution of (1.4)-(1.5). Define

ε(t) := K1(t+ θ)−β, δ(t) := K2 −K3

∫ t

0
ε(τ)dτ

and {
h̄(t) := c0t+ δ(t), t ≥ 0,

U(t, x) := (1 + ε(t))Φ(x− h̄(t)) + ρ(t, x), t ≥ 0, x ≤ h̄(t),

where

ρ(t, x) := K4ξ(x− h(t))ε(t)V ∗,

with ξ ∈ C2(R) satisfying

0 ≤ ξ(x) ≤ 1, ξ(x) = 1 for |x| < ε̃, ξ(x) = 0 for |x| > 2ε̃,(3.4)

and the positive constants θ, K1,K2,K3,K4, ε̃ are to be determined.
We are going to show that, it is possible to choose these constants and some t0 > 0 such that

U t(t, x) � D ◦
∫ h̄(t)

g(t+t0)
J(x− y) ◦ U(t, y)dy − U(t, x) + F (U(t, x))(3.5)

for t > 0, x ∈ (g(t+ t0), h(t)),

h̄′(t) ≥
m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dy for t > 0,(3.6)

U(t, g(t+ t0)) � 0, U(t, h̄(t)) � 0 for t ≥ 0,(3.7)

U(0, x) � U(t0, x), h(0) ≥ h(t0) for x ∈ [g(t0), h(t0)].(3.8)

If these inequalities are proved, then by the comparison principle, we obtain

h(t) ≥ h(t+ t0), U(t, x) � U(t+ t0, x) for t > 0, x ∈ [g(t+ t0), h(t+ t0)],

and the desired inequality for c0t− h(t) follows easily from the definition of h(t).
Therefore, to complete the proof, it suffices to prove the above inequalities. We divide the

arguments below into several steps.
Firstly, by Theorem B, there is C1 > 1 such that

−g(t), h(t) ≤ (c0 + 1)t+ C1 for t ≥ 0.(3.9)

Let us also note that (3.7) holds trivially.
Step 1. Choose t0 = t0(θ) and K2 = K2(θ) so that (3.8) holds.
For later analysis, we need to find t0 = t0(θ) and K2 = K2(θ) so that (3.8) holds and at the

same time they have less than linear growth in θ.
Let W ∗��0 be an eigenvector corresponding to the maximal eigenvalue λ̃ of ∇F (u∗). By our

assumptions on F , we have λ̃ < 0. Hence there exists small ε∗ > 0 such that for any k ∈ (0, ε∗],

F (u∗ + kW ∗) = kW ∗
(

[∇F (u∗)]T + o(1)Im

)
� k

2
λ̃W ∗≺≺0,

F (u∗ − kW ∗) = −kW ∗
(

[∇F (u∗)]T + o(1)Im

)
� −k

2
λ̃W ∗��0.

It follows that, for σ̃ = λ̃/2,

W (t) = u∗ + ε∗e
σ̃tW ∗, W (t) = u∗ − ε∗eσ̃tW ∗

are a pair of upper and lower solution of the ODE system W ′ = F (W ) with initial data W (0) ∈
[u∗ − ε∗W ∗,u∗ + ε∗W

∗].
By (f4), the unique solution of the ODE system

W ′ = F (W ), W (0) = (‖u10‖∞, · · · , ‖um0‖∞)



30 Y. DU AND W. NI

satisfies limt→∞W (t) = u∗. Hence there exists t∗ > 0 such that

W (t∗) ∈ [u∗ − ε∗W ∗,u∗ + ε∗W
∗].

Using the above defined upper solution W (t) we obtain

W (t+ t∗) � u∗ + ε∗e
σ̃tW ∗ � (1 + ε̃∗e

σ̃t)u∗ for t ≥ 0,

where ε̃∗ > 0 is chosen such that ε∗W
∗ ≤ ε̃∗u∗. By the comparison principle we deduce

U(t+ t∗, x) �W (t+ t∗) � (1 + ε̃∗e
σ̃t)u∗ for t ≥ 0, x ∈ [g(t+ t∗), h(t+ t∗)].

Hence

U(t0, x) � (1 +
ε(0)

2
)u∗ for x ∈ [g(t0), h(t0)]

provided that

t0 = t0(θ) :=
β

|σ̃|
ln θ +

ln(2ε̃∗/K1)

|σ̃|
+ t∗.

By (3.1), for any fixed ω∗ ∈ (β, ω − 1), we have∫
R
J(x)|x|ω∗dx <∞.

Then by Theorem 1.4, there is C2 such that

u∗ − Φ(x) ≤ C2

|x|ω∗
u∗ for x ≤ −1.

Hence, for K > 1 we have

(1 + ε(0))Φ(−K)− (1 + ε(0)/2)u∗

�(1 + ε(0))
[
1− C2K

−ω∗]u∗ − (1 + ε(0)/2)u∗

=
[
K1θ

−β/2− C2K
−ω∗(1 +K1θ

−β)
]
u∗

�0

provided that

Kω∗ ≥ 2C2 +
2C2

K1
θβ.

Therefore, for all K1 ∈ (0, 1], θ ≥ 1 and K ≥ (4C2/K1)1/ω∗θβ/ω∗ , we have

(1 + ε(0))Φ(−K)− (1 + ε(0)/2)u∗ � 0.

Now define

(3.10) K2(θ) := 2 max
{

(4C2/K1)1/ω∗θβ/ω∗ , (c0 + 1)t0(θ) + C1

}
.

Then for K2 = K2(θ) we have

h(0) = K2 > K2/2 ≥ (c0 + 1)t0 + C1 ≥ h(t0),

and for x ∈ [g(t0), h(t0)],

U(0, x) = (1 + ε(0))Φ(x−K2) � (1 + ε(0))Φ(−K2/2) � (1 + ε(0)/2)u∗.

Thus (3.8) holds if t0 and K2 are chosen as above, for any θ ≥ 1, K1 ∈ (0, 1].
Step 2. We verify that (3.6) holds if θ, K1,K3 and K4 are chosen suitably.
Denote

C3 :=

m0∑
i=1

µi

∫ 0

−∞

∫ +∞

0
Ji(x− y)dydx =

m0∑
i=1

µi

∫ +∞

0
Ji(y)ydy.(3.11)
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With ρ = (ρi), a direct calculation shows

m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dydx

=

m0∑
i=1

µi

∫ h̄(t)

−∞

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dydx−

m0∑
i=1

µi

∫ g(t+t0)

−∞

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dydx

=

m0∑
i=1

µi

∫ 0

−∞

∫ +∞

0
Ji(x− y)[(1 + ε)φi(x) + ρi(t, x+ h(t))]dydx

−
m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0
Ji(x− y)[(1 + ε)φi(x) + ρi(t, x+ h(t))]dydx

≤(1 + ε)c0 + C3K4ε|V ∗| −
m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0
Ji(x− y)(1 + ε)φi(x)dydx

≤(1 + ε)c0 + C3K4ε|V ∗| −
m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0
Ji(x− y)φi(x)dydx,

where

|V ∗| := max
1≤i≤m

v∗i .

By elementary calculus, for any k > 1,

(3.12)

∫ −k
−∞

∫ ∞
0

1

|x− y|2+β
dydx =

∫ −k
−∞

∫ ∞
−x

1

y2+β
dydx =

∫ ∞
k

∫ ∞
x

1

y2+β
dydx

=

∫ ∞
k

∫ y

k

1

y2+β
dxdy =

∫ ∞
k

y − k
y2+β

dy = β−1(1 + β)−1k−β.

From (3.1) and (3.9), there exists C4 > 0 such that

(3.13)

m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0
Ji(x− y)φi(x)dydx

≥C4

[
min

1≤i≤m
φi(g(t+ t0)− h̄(t))

] ∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0

1

|x− y|2+β
dydx

≥φ∗C4

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0

1

|x− y|2+β
dydx =

φ∗C4

β(1 + β)
(|g(t+ t0)|+ h̄(t))−β

≥ φ∗C4

β(1 + β)
[(c0 + 1)(t+ t0) + C1 + c0t+K2]−β

=
φ∗C4

β(1 + β)(2c0 + 1)β

[
t+

(c0 + 1)t0 + C1 +K2

(2c0 + 1)

]−β
,

where φ∗ = min
1≤i≤m

φi(−1) ≤ min
1≤i≤m

φi(−K2) ≤ min
1≤i≤m

φi(g(t+ t0)− h̄(t)). Therefore, for all large

θ > 0 so that

θ >
(c0 + 1)t0 + C1 +K2

(2c0 + 1)
,(3.14)

which is possible since t0(θ) and K2(θ) grow slower than linearly in θ, we have

m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dydx
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≤(1 + ε(t))c0 + C4K4ε(t)|V ∗| −
φ∗C4

β(1 + β)(2c0 + 1)β
(t+ θ)−β

=c0 + ε(t)

[
c0 + C4K4|V ∗| −

φ∗C4

K1β(1 + β)(2c0 + 1)β

]
≤c0 −K3ε(t) = h′(t)

provided that K1,K3 and K4 are small enough so that

K1(c0 + C4K4|V ∗|+K3) ≤ φ∗C4

β(1 + β)(2c0 + 1)β
.(3.15)

Therefore (3.6) holds if we first fix K1,K3,K4 small so that (3.15) holds, and then choose θ
large such that (3.14) is satisfied.

Step 3. We show that (3.5) holds when K3 and K4 are chosen suitably small and θ is large.
From (1.4), we deduce

U t(t, x) =− (1 + ε)[c0 + δ′(t)]Φ′(x− h̄(t)) + ε′(t)Φ(x− h(t)) + ρt(t, x),

and

− (1 + ε)c0Φ′(x− h̄(t))

=(1 + ε)

[
D ◦

∫ h̄(t)

−∞
J(x− y) ◦ Φ(y − h̄(t))dy −D ◦ Φ(x− h̄(t)) + F (Φ(x− h̄(t)))

]

=D ◦
∫ h̄(t)

−∞
J(x− y) ◦ [U(t, y)− ρ(t, y)]dy −D ◦ [U(t, x)− ρ(t, x)] + (1 + ε)F (Φ(x− h̄(t)))

=D ◦
∫ h̄(t)

g(t+t0)
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x))

+D ◦

[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ε)F (Φ(x− h̄(t)))− F (U(t, x)).

Hence

U t(t, x) =D ◦
∫ h̄(t)

g(t+t0)
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x))

+A(t, x)

with

A(t, x) :=D ◦

[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ε)F (Φ(x− h̄(t)))− F (U(t, x))

− (1 + ε)δ′(t)Φ′(x− h̄(t)) + ε′(t)Φ(x− h(t)) + ρt(t, x).

Therefore to complete this step, it suffices to show that we can choose K3,K4 and θ such that
A(t, x) � 0. We will do that for x ∈ [h̄(t)− ε̃, h̄(t)] and for x ∈ [g(t0 + t), h̄(t)− ε̃] separately.

Claim 1. If ε̃ > 0 in (3.4) is sufficiently small and θ is sufficiently large, then

(3.16)

D ◦

[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ε)F (Φ(x− h̄(t)))− F (U(t, x))

� |λ̃1|
4
ρ(t, x) � 0 for x ∈ [h̄(t)− ε̃, h̄(t)].
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Since λ̃1 < 0 and D ◦ V ∗ = V ∗D̃, using (3.2) we deduce, for x ∈ [h̄(t)− ε̃, h̄(t)],

D ◦

[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]

=K4ε(t)

[
D ◦ V ∗ −D ◦

∫ 0

−∞
J(x− h̄(t)− y) ◦ ξ(y)V ∗dy

]
�K4ε(t)

[
D ◦ V ∗ −D ◦

∫ 0

−2ε̃
J(x− h̄(t)− y) ◦ V ∗dy

]
=K4ε(t)

[
V ∗∇F (0)− λ̃1V

∗ −D ◦
∫ h̄(t)−x

h̄(t)−x−2ε̃
J(y) ◦ V ∗dy

]

�K4ε(t)

[
V ∗∇F (0)− λ̃1V

∗ −D ◦
∫ ε̃

−2ε̃
J(y) ◦ V ∗dy

]
�K4ε(t)

[
V ∗∇F (0)− λ̃1

2
V ∗

]
= ρ(t, x)∇F (0)− λ̃1

2
ρ(t, x),

provided ε̃ ∈ (0, ε1] for some small ε1 > 0.
On the other hand, for x ∈ [h̄(t)− ε̃, h̄(t)], by (f2) we obtain

(1 + ε)F (Φ(x− h̄(t)))− F (U(t, x))

�F ((1 + ε)Φ(x− h̄(t)))− F (U(t, x))

=F (U(t, x)− ρ(t, x))− F (U(t, x)),

and

0 � U(t, x) � (1 + ε)Φ(ε̃) +K4εV
∗ � 2Φ(ε̃) + θ−βV ∗,

So the components of U(t, x) and ρ(t, x) are small for small ε̃ and large θ. It follows that

F (U(t, x)− ρ(t, x))− F (U(t, x)) = −ρ(t, x)[∇F (U(t, x)) + o(1)Im]

= −ρ(t, x)[∇F (0) + o(1)Im] � −ρ(t, x)∇F (0) +
λ̃1

4
ρ(t, x)

for x ∈ [h̄(t)− ε̃, h̄(t)], provided that ε̃ is small and θ is large. Hence, (3.16) holds.

Denote

M := max
1≤i≤m

sup
x≤0
|φ′i(x)|.

For x ∈ [h̄− ε̃, h̄], by (3.16) we have

A(t, x) �|λ̃1|
4
ρ(t, x)− (1 + ε)δ′(t)Φ′(x− h̄(t)) + ε′(t)Φ(x− h(t)) + ρt(t, x)

�ε(t)
[
|λ̃1|
4
K4V

∗ − 2K3M1− β(t+ θ)−1u∗ −K4β(t+ θ)−1V ∗
]

�ε(t)
[
|λ̃1|
4
K4V

∗ − 2K3M1− θ−1β
(
u∗ +K4V

∗
)]

� 0

provided that we first fix K3 and K4 so that (3.15) holds and at the same time

(3.17)
|λ̃1|
4
K4V

∗ − 2K3M1��0,

and then choose θ sufficiently large.
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Next, for fixed small ε̃ > 0, we estimate A(t, x) for x ∈ [g(t+ t0), h̄(t)− ε̃].
Claim 2. For any given 1� η > 0, there is c1 = c1(η) such that

(1 + ε)F (v)− F ((1 + ε)v) � c1ε1 for v ∈ [η1,u∗] and 0 < ε� 1.(3.18)

Indeed, by (1.6) there exists c1 > 0 depending on η such that

F (v)− v[∇F (v)]T � 2c11 for v ∈ [η1,u∗].

Since

lim
ε→0

(1 + ε)F (v)− F ((1 + ε)v)

ε
= lim
ε→0

εF (v)− [F (v + εv)− F (v)]

ε

=F (v)− v[∇F (v)]T � 2c11

uniformly for v ∈ [η1,u∗], there exists ε0 > 0 small so that

(1 + ε)F (v)− F ((1 + ε)v)

ε
� c11

for v ∈ [η1,u∗] and ε ∈ (0, ε0]. This proves Claim 2.

By Claim 2 and the Lipschitz continuity of F , there exist positive constants Cl and Cf such
that, for v = Φ(x− h̄(t)) ∈ [Φ(−ε̃),u∗],

(1 + ε)F (v)− F ((1 + ε)v + ρ)

=(1 + ε)F (v)− F ((1 + ε)v) + F ((1 + ε)v)− F ((1 + ε)v + ρ)

�Clε1− CfK4ε1

when ε = ε(t) is small.
We also have

D ◦

[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, x)dy

]
� −D ◦

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, x)dy

�−K4ε(t)D ◦ V ∗ � −CdK4ε(t)1

for some Cd > 0, and

ρt(t, x) =− ξ′h̄′K4ε(t)V
∗ + ξK4ε

′(t)V ∗

�− ξ∗K4ε(t)V
∗ −K4β(t+ θ)−1ε(t)V ∗

�− (ξ∗ + βθ−1)K4ε(t)V
∗,

with ξ∗ := c0 maxx∈R |ξ′(x)|.
Using these we obtain, for x ∈ [g(t0 + t), h̄(t)− ε̃],

A(t, x) �− CdK4ε(t)1 + (1 + ε)F (Φ(x− h̄(t)))− F (Ū(t, x)) + 2Mδ′(t)1 + ε′(t)u∗ + ρt(t, x)

�Clε(t)1− (Cf + Cd)K4ε(t)1− 2MK3ε(t)1− β(t+ θ)−1ε(t)u∗ − (ξ∗ + βθ−1)K4ε(t)V
∗

=ε(t)

[
Cl1−K4(Cf + Cd)1− 2MK31− β(t+ θ)−1u∗ − (ξ∗ + βθ−1)K4V

∗
]

�ε(t)
[
Cl1−K4(Cf + Cd)1− 2MK31− ξ∗K4V

∗ − βθ−1
(
u∗ +K4V

∗)]
�0

provided that we first choose K3 and K4 small such that

Cl1−K4(Cf + Cd)1− 2MK31− ξ∗K4V
∗��0

while keeping both (3.15) and (3.17) hold, and then choose θ > 0 sufficiently large.
Therefore, (3.5) holds when K3,K4 and θ are chosen as above. The proof of the lemma is

now complete. �
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3.2. The case λ̃1 ≥ 0.

Lemma 3.3. Suppose that the assumptions in Theorem 3.1 are satisfied. If λ̃1 ≥ 0, then (3.3)
still holds.

Proof. This is a modification of the proof of Lemma 3.2. We will use similar notations. Let
β = γ − 2 ∈ (0, 1], and (c0,Φ) be the solution of (1.4)-(1.5). For fixed ε̃ > 0, let ξ ∈ C2(R)
satisfy

0 ≤ ξ(x) ≤ 1, ξ(x) = 1 for |x| < ε̃, ξ(x) = 0 for |x| > 2ε̃.

Define {
h̄(t) := c0t+ δ(t), t ≥ 0,

U(t, x) := (1 + ε(t))Φ
(
x− h̄(t)− λ(t)

)
− ρ(t, x), t ≥ 0, x ≤ h̄(t),

where

ε(t) := K1(t+ θ)−β, δ(t) := K2 −K3

∫ t

0
ε(τ)dτ,

ρ(t, x) := K4ξ(x− h̄(t))ε(t)V ∗, λ(t) := K5ε(t),

and the positive constants θ and K1,K2,K3,K4,K5 are to be determined.
Let

Cε̃ := min
1≤i≤m

min
x∈[−2ε̃,0]

|φ′i(x)|.

Then for x ∈ [h̄(t)− 2ε̃, h̄(t)] and i ∈ {1, ...,m}, with ρ(t, x) = (ρi(t, x)),

ūi(t, x) ≥φi
(
− λ(t)

)
− ρi(t, x) ≥ Cε̃λ(t)−K4ε(t)v

∗
i

≥ε(t)(Cε̃K5 −K4v
∗
i ) > 0

if

(3.19) K4 = Cε̃K5/(2 max
1≤i≤m

v∗i ),

which combined with ξ(x) = 0 for |x| ≥ 2ε̃ implies

U(t, x) � 0 for t ≥ 0, x ≤ h̄(t).(3.20)

Let t0 = t0(θ) and K2 = K2(θ) be given by Step 1 in the proof of Lemma 3.2. Then
[g(t0), h(t0)] ⊂ (−∞,K2/2), and due to ρ(0, x) = 0 for x ≤ h(t0) < K2/2 < K2 = h̄(0), we
have

(3.21)
U(0, x) =(1 + ε(0))Φ(x−K2 − λ) � (1 + ε(0))Φ(−K2/2)

�(1 + ε(0)/2)u∗ � U(t0, x) for x ∈ [g(t0), h(t0)].

Step 1. We verify that by choosing K1,K3 and K5 suitably small,

(3.22) h̄′(t) ≥
m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dydx for all t > 0.

By direct calculations we have
m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dydx

≤
m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)
Ji(x− y)(1 + ε)φi(x− h̄(t)− λ(t))dydx

=(1 + ε)

m0∑
i=1

µi

∫ 0

−∞

∫ +∞

0
Ji(x− y)φi(x− λ(t))dydx
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− (1 + ε)

m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0
Ji(x− y)φi(x− λ(t))dydx

≤(1 + ε)c0 + (1 + ε)

m0∑
i=1

µi

∫ 0

−∞

∫ +∞

0
Ji(x− y)[φi(x− λ)− φi(x)]dydx

− (1 + ε)

m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0
Ji(x− y)φi(x)dydx

Let M1 := max
1≤i≤m

sup
x≤0
|φ′i(x)| and C3 be given by (3.11). Then

(1 + ε)

m0∑
i=1

µi

∫ 0

−∞

∫ +∞

0
Ji(x− y)[φi(x− λ(t))− φi(x)]dydx ≤ 2C3M1λ(t).

By (3.13),

m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0
Ji(x− y)φi(x)dydx

≥ φ∗C4

β(1 + β)(2c0 + 1)β

[
t+

(c0 + 1)t0 + C1 +K2

(2c0 + 1)

]−β
.

Therefore, as in the proof of Lemma 3.2, for sufficiently large θ so that

θ >
(c0 + 1)t0 + C1 +K2

(2c0 + 1)
(3.23)

holds, we have

m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dydx

≤(1 + ε)c0 + 2C3M1λ(t)− φ∗C4

β(1 + β)(2c0 + 1)β
(t+ θ)−β

=c0 + ε(t)

[
c0 + 2C3M1K5 −

φ∗C4

K1β(1 + β)(2c0 + 1)β

]
≤c0 −K3ε(t) = h̄′(t)

provided that K1,K3 and K5 are suitably small so that

K1(c0 + 2C3M1K5 +K3) ≤ φ∗C4

β(1 + β)(2c0 + 1)β
.(3.24)

Step 2. We show that by choosing K3,K5 suitably small and θ sufficiently large, for t > 0,
x ∈ [g(t+ t0), h̄(t)],

U t(t, x) �D ◦
∫ h̄(t)

g(t+t0)
J(x− y) ◦ U(t, y)dy − U(t, x) + F (U(t, x)).(3.25)

Using the definition of U , we have

U t(t, x) =− (1 + ε)(h̄′ + λ′)Φ′(x− h̄− λ) + ε′Φ(x− h̄− λ)− ρt
=− (1 + ε)[c0 + δ′ + λ′]Φ′(x− h̄− λ) + ε′Φ(x− h̄− λ)− ρt

and from (1.4), we obtain

− (1 + ε)c0Φ′(x− h̄− λ)
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=(1 + ε)

[
D ◦

∫ h̄+λ

−∞
J(x− y) ◦ Φ(y − h̄− λ)dy −D ◦ Φ(x− h̄− λ) + F (Φ(x− h̄− λ))

]

�(1 + ε)

[
D ◦

∫ h̄

−∞
J(x− y) ◦ Φ(y − h̄− λ)dy −D ◦ Φ(x− h̄− λ) + F (Φ(x− h̄− λ))

]

=D ◦
∫ h̄

−∞
J(x− y) ◦ [U(t, y) + ρ]dy −D ◦ [U(t, x) + ρ] + (1 + ε)F (Φ(x− h̄− λ))

=D ◦
∫ h̄(t)

−∞
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x)

−D ◦

[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ε)F (Φ(x− h̄− λ))

�D ◦
∫ h̄(t)

g(t+t0)
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x))

−D ◦

[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ε)F (Φ(x− h̄− λ))− F (U(t, x)).

Hence

U t(t, x) �D ◦
∫ h̄(t)

g(t+t0)
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x))

+B(t, x)

with

B(t, x) :=−D ◦

[
ρ(t, x)−

∫ h̄

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ε)F (Φ(x− h̄− λ))− F (U)

− (1 + ε)(δ′ + λ′)Φ′(x− h̄− λ) + ε′Φ(x− h− λ)− ρt.

To show (3.25), it remains to choose suitable K3,K5 and θ such that B(t, x) � 0 for t > 0 and
x ∈ [g(t+ t0), h̄(t)].

Claim: There exist small ε̃0 ∈ (0, ε̃/2) and some J̃0 > 0 depending on ε̃ but independent of
ε̃0, such that

(3.26)
−D ◦

[
ρ(t, x)−

∫ h̄

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ε)F (Φ(x− h̄− λ))− F (U(t, x))

� J̃0 ρ(t, x) for x ∈ [h̄(t)− ε̃0, h̄(t)].

Indeed, for x ∈ [h̄(t)− ε̃0, h̄(t)],

D ◦

[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]

=K4ε(t)

[
D ◦ V ∗ −D ◦

∫ h̄(t)

−∞
J(x− y) ◦ ξ(y − h̄(t))V ∗dy

]

�K4ε(t)

[
D ◦ V ∗ −D ◦

∫ h̄(t)

h̄(t)−ε̃
J(x− y) ◦ V ∗dy

]

=K4ε(t)

[
D ◦ V ∗ −D ◦

∫ h̄(t)−x

h̄(t)−ε̃−x
J(y) ◦ V ∗dy

]
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�D ◦ ρ
[
1−

∫ 0

−ε̃+ε̃0
J(y)dy

]
� D ◦ ρ

[
1−

∫ 0

−ε̃/2
J(y)dy

]
.

On the other hand, for x ∈ [h̄(t)− ε̃0, h̄(t)], we have

(1 + ε)F (Φ(x− h̄− λ)− F (U)

�F ((1 + ε)Φ(x− h̄− λ))− F (U)

=F (U + ρ)− F (U) = ρ
(

[∇F (U)]T + o(1)Im

)
=K4ε(t)V

∗
(

[∇F (0)]T + o(1)Im

)
=K4ε(t)[V

∗D̃ + λ̃1V
∗ + o(1)V ∗]

=K4ε(t)[D ◦ V ∗ + λ̃1V
∗ + o(1)V ∗]

=D ◦ ρ+ λ̃1ρ+ o(1)ρ.

since both U(t, x) and ρ(t, x) are close to 0 for x ∈ [h̄(t)− ε̃0, h̄(t)] with ε̃0 small.

Hence, for such x and ε̃0, since λ̃1 ≥ 0,

−D ◦

[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y)ρ(t, y)dy

]
+ (1 + ε)F (Φ(x− h̄(t)))− F (U(t, x))

�D ◦ ρ

[
−1 +

∫ 0

−ε̃/2
J(y)dy

]
+D ◦ ρ+ λ̃1ρ+ o(1)ρ

�J̃0 ρ(t, x), with J̃0 :=
1

2
min

1≤i≤m
di

∫ 0

−ε̃/2
Ji(y)dy if m0 = m.

This proves (3.26) when m0 = m.

If m0 < m, we need to modify V ∗ in the definition of ρ slightly. In this case, for δ̃ > 0 small
we define

Ṽ ∗ := V ∗ + δ̃D = (v∗i + δ̃di).

Since di = 0 for i = m0 + 1, ...,m and di > 0 for i = 1, ...,m0, by (f1) (iv) we see that

W = (wi) := D[∇F (0)]T

satisfies wi > 0 for i = m0 + 1, ...,m. Let us write

W = W 1 +W 2 = (w1
i ) + (w2

i ) with

{
w1
i = 0 for i = m0 + 1, ...,m,

w2
i = 0 for i = 1, ...,m0.

Then

Ṽ ∗
(

[∇F (0)]T − D̃
)

= λ̃1V
∗ + δ̃W̃ 1 + δ̃W 2 with W̃ 1 := W 1 −DD̃.

It is important to observe that the vector W̃ 1 = (w̃1
i ) has its last m−m0 components 0, namely

w̃1
i = 0 for i = m0 + 1, ...,m.

Replacing V ∗ by Ṽ ∗ in the definition of ρ, we see that the analysis above is not affected,
except that, for ε̃0 > 0 small and x ∈ [h̄(t)− ε̃0, h̄(t)],

(1 + ε)F (Φ(x− h̄− λ)− F (U)

�K4ε(t)Ṽ
∗
(

[∇F (0)]T + o(1)Im

)
=K4ε(t)

(
[Ṽ ∗D̃ + λ̃1V

∗ + o(1)V ∗] + δ̃W̃ 1 + δ̃W 2
)

=K4ε(t)
(
D ◦ Ṽ ∗ + λ̃1V

∗ + o(1)V ∗ + δ̃W̃ 1 + δ̃W 2
)
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�D ◦ ρ+K4ε(t)
(
o(1)V ∗ + δ̃W̃ 1 + δ̃W 2

)
.

Hence, for such x and ε̃0, we now have

−D ◦

[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y)ρ(t, y)dy

]
+ (1 + ε)F (Φ(x− h̄(t)))− F (U(t, x))

�D ◦ ρ

[
−1 +

∫ 0

−ε̃/2
J(y)dy

]
+D ◦ ρ+K4ε(t)

(
o(1)V ∗ + δ̃W̃ 1 + δ̃W 2

)
�K4ε(t)

(
min

1≤i≤m0

v∗i

∫ 0

−ε̃/2
Ji(y)dyD + o(1)V ∗ + δ̃W̃ 1 + δ̃W 2

)
.

We now fix δ̃ > 0 small enough such that

−δ̃W̃ 1 � 1

2
min

1≤i≤m0

v∗i di

∫ 0

−ε̃/2
Ji(y)dy,

and notice that

Ŵ :=
1

2
min

1≤i≤m0

v∗i di

∫ 0

−ε̃/2
Ji(y)dy + δ̃W 2��0.

Therefore there exists J̃0 > 0 such that

1

2
Ŵ � J̃0Ṽ

∗.

Then

K4ε(t)
(

min
1≤i≤m0

v∗i di

∫ 0

−ε̃/2
Ji(y)dy + o(1)V ∗ + δ̃W̃ 1 + δ̃W 2

)
�K4ε(t)

(
Ŵ + o(1)V ∗

)
� K4ε(t)

1

2
Ŵ � K4ε(t)J̃0Ṽ

∗ = J̃0ρ,

provided that ε̃0 > 0 is chosen sufficiently small.
Therefore for ε̃0 > 0 small and x ∈ [h̄(t)− ε̃0, h̄(t)], we finally have

−D ◦

[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y)ρ(t, y)dy

]
+ (1 + ε)F (Φ(x− h̄(t)))− F (U(t, x))

� J̃0 ρ(t, x), as desired.

With δ̃ > 0 chosen as above, we will from now on denote

V̂ ∗ :=

{
V ∗ if m0 = m,

Ṽ ∗ if m0 < m,

but keep the notation for ρ unchanged.
Clearly

−ρt(t, x) = βK4K1(t+ θ)−β−1V̂ ∗ � 0.

Recalling M1 := max
1≤i≤m

sup
x≤0
|φ′i(x)|, we obtain, for x ∈ [h̄(t)− ε̃0, h̄(t)] and small ε̃0,

B(t, x) � J̃0K4ε(t)V̂
∗ + 2(δ′(t) + λ′(t))M11 + ε′(t)u∗

= J̃0K4ε(t)V̂
∗ + 2ε(t)(−K3 −K5β(t+ θ)−1)M11− β(t+ θ)−1ε(t)u∗

� ε(t)

[
J̃0K4V̂

∗ − 2(K3 +K5βθ
−1)M11− βθ−1u∗

]
= ε(t)

[
J̃0K4V̂

∗ − 2K3M11− θ−1
(
K5βM11 + βu∗

)]
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� 0

provided that K3 is chosen small so that (3.24) holds,

(3.27) J̃0K4V̂
∗ − 2K3M11��0,

and θ is chosen sufficiently large.

We next estimate B(t, x) for x ∈ [g(t + t0), h̄(t) − ε̃0]. From Claim 2 in the proof of Lemma
3.2, and the Lipschitz continuity of F , there exist positive constants Cl = Cl(ε̃0) and Cf such
that, for v = Φ(x− h̄(t− λ(t))) ∈ [Φ(−ε̃0),u∗],

(1 + ε)F (v)− F ((1 + ε)v − ρ)

=(1 + ε)F (v)− F ((1 + ε)v) + F ((1 + ε)v)− F ((1 + ε)v − ρ)

�Clε1− Cfρ � Clε1− CfK4εV̂
∗

when ε = ε(t) is small. Hence

(1 + ε)F (Φ(x− h̄− λ))− F (Ū)

�Clε1− CfK4εV̂
∗ for x ∈ [g(t+ t0), h̄(t)− ε̃0], 0 < ε̃0 � 1.

Clearly,

−D ◦

[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, x)dy

]
� −K4ε(t)D ◦ V̂ ∗,

and

ρt(t, x) = −K4ξ
′h̄′(t)ε(t)V̂ ∗ +K4ξε

′(t)V̂ ∗ � ξ∗K4ε(t)V̂
∗

with ξ∗ := c0 maxx∈R |ξ′(x)|.
We thus obtain, for x ∈ [g(t+ t0), h̄(t)− ε̃0] and 0 < ε̃0 � 1,

B(t, x) �−K4ε(t)D ◦ V̂ ∗ + (1 + ε)F (φ(x− h̄))− F (U) + 2M1(δ′ + λ′)1 + ε′u∗ − ρt
�Clε(t)1−K4ε(t)(D ◦ V̂ ∗ + Cf V̂

∗ + ξ∗V̂
∗) + 2M1(−K3ε(t) +K5ε

′(t))1 + ε′(t)u∗

�ε(t)
[
Cl1−K4(D ◦ V̂ ∗ + Cf V̂

∗ + ξ∗V̂
∗)− 2M1(K3 +K5β(t+ θ)−1)1− β(t+ θ)−1u∗

]
�ε(t)

[
Cl1−K4

(
D ◦ V̂ ∗ + Cf V̂

∗ + ξ∗V̂
∗
)
− 2M1K31− θ−1β

(
2M1K51 + u∗

)]
�0

if we choose K3 and K5 small so that (3.24) and (3.27) hold and at the same time, due to (3.19)

Cl1−K4

(
D ◦ V̂ ∗ + Cf V̂

∗ + ξ∗V̂
∗
)
− 2M1K31��0,

and then choose θ sufficiently large. Hence, (3.25) is satisfied if K3 and K5 are chosen small as
above, and θ is sufficiently large.

From (3.20), we have

U(t, g(t+ t0)) � 0, U(t, h̄(t)) � 0 for t ≥ 0.

Together with (3.21), (3.22) and (3.25), this enables us to use the comparison principle to
conclude that

h(t+ t0) ≤ h̄(t), U(t+ t0, x) � U(t, x) for t ≥ 0, x ∈ [g(t+ t0), h(t)],

which implies (3.3). The proof of the lemma is now complete. �
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3.3. Proof of Theorem 3.1. Since (J1) holds, by Lemma 2.8 and then by (3.1), there exists
C0 > 0 such that

h(t)− c0t ≥− C

[
1 +

∫ t

0
(1 + x)−1dx+

∫ c0
2
t

0
x2Ĵ(x)dx+ t

∫ ∞
c0
2
t
xĴ(x)dx

]

≥− C

[
1 +

∫ 1

0
Ĵ(x)dx+ ln(t+ 1) + C0

∫ c0
2
t

1
x2−γdx+ C0t

∫ ∞
c0
2
t
x1−γdx

]
.

Therefore when γ ∈ (2, 3) we have, for t ≥ 1,

h(t)− c0t ≥− C
[
C̃ + ln(t+ 1) + C̃1t

3−γ
]
≥ −Ĉ1t

3−γ

for some Ĉ1, C̃, C̃1 > 0, and when γ = 3, for t ≥ 1,

h(t)− c0t ≥− Ĉ2 ln t

for some Ĉ2 > 0. This combined with Lemmas 3.2 and 3.3 gives the desired conclusion of
Theorem 3.1. The proof is completed. �

4. Growth rates of accelerated spreading for kernels of type (Ĵγ)

Let (U, g, h) be the unique positive solution of (1.1), and assume that spreading happens.
Under the assumptions of Theorem B (ii), we have

− lim
t→∞

g(t)

t
= lim

t→∞

h(t)

t
=∞.

Suppose (Ĵγ) holds for some γ ∈ (1, 2], namely, for |x| � 1 we have

(4.1) Ji(x) ≈ |x|−γ for i ∈ {1, ...,m0} and some γ ∈ (1, 2].

Then ∫
R
Ji(x)dx <∞,

∫
R
|x|Ji(x)dx =∞ for i ∈ {1, ...,m0}.

So (J1) is not satisfied.

The purpose of this section is to prove Theorem 1.2, which we restate as

Theorem 4.1. Assume that (J) and (f1)− (f4) are satisfied. If spreading happens, and addi-
tionally (4.1) holds, then for large t > 0,{

−g(t), h(t) ≈ t1/(γ−1) if γ ∈ (1, 2),

−g(t), h(t) ≈ t ln t if γ = 2.

We will only prove the estimate for h(t), since that for g(t) follows by the change of variable
x→ −x. Theorem 4.1 will follow directly from the lemmas in Subsections 6.1 and 6.2 below.

4.1. Upper bound. To prove the upper bound a slightly weaker condition than (4.1) is enough.
We assume that there exist positive constants C1 and C2 such that

C1

|x|γ + 1
≤

m0∑
i=1

µiJi(x) ≤ C2

|x|γ + 1
for x ∈ R and some γ ∈ (1, 2].(4.2)

Obviously, (4.2) has no restriction for the kernel function Ji0 whenever µi0 = 0, and (4.1) implies
(4.2) for the same γ.
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Lemma 4.2. Assume that (J) and (f1)− (f4) hold. If spreading happens, and (4.2) is satisfied,
then there exits C = C(γ) > 0 such that

(4.3)

{
h(t) ≤ Ct1/(γ−1) if γ ∈ (1, 2),

h(t) ≤ Ct ln t if γ = 2.

Proof. Define, for t ≥ 0,

h̄(t) :=

{
(Kt+ θ)1/(γ−1) if γ ∈ (1, 2],

(Kt+ θ) ln(Kt+ θ) if γ = 2,

and

U(t, x) := ū1, ū := max
1≤i≤m

{‖ui0‖∞, u∗i } , x ∈ [−h̄(t), h̄(t)],

with positive constants θ and K to be determined.
We start by showing

h̄′(t) ≥
m0∑
i=1

µi

∫ h̄(t)

−h̄(t)

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dydx for t > 0,(4.4)

and

− h̄′(t) ≤ −
m0∑
i=1

µi

∫ h̄(t)

−h̄(t)

∫ −h̄(t)

−∞
Ji(x− y)ūi(t, x)dydx for t > 0.

Since U(t, x) = U(t,−x) and Ji(x) = Ji(−x), it suffices to prove (4.4).
By simple calculations and (4.2), for any k > 1,

m0∑
i=1

µi

∫ 0

−k

∫ ∞
0

Ji(x− y)dydx =

m0∑
i=1

µi

∫ k

0

∫ ∞
x

Ji(y)dydx

=

m0∑
i=1

µi

∫ k

0
Ji(y)ydy +

m0∑
i=1

µik

∫ ∞
k

Ji(y)dy

≤
∫ k

0

C2y

yγ + 1
dy + k

∫ ∞
k

C2

yγ + 1
dy ≤

∫ 1

0
C2dy +

∫ k

1

C2y

yγ
dy + k

∫ ∞
k

C2

yγ
dy,

and so

(4.5)



m0∑
i=1

µi

∫ 0

−k

∫ ∞
0

Ji(x− y)dydx ≤ C2 +
C2

2− γ
(k2−γ − 1) +

C2k
2−γ

γ − 1
if γ ∈ (1, 2),

m0∑
i=1

µi

∫ 0

−k

∫ ∞
0

Ji(x− y)dydx ≤ 2C2 + C2 ln k if γ = 2.

A direct calculation gives∫ h̄(t)

−h̄(t)

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dydx = ū

∫ 0

−2h̄(t)

∫ +∞

0
Ji(x− y)dydx.

Hence for 1 < γ < 2, by (4.5),
m0∑
i=1

µi

∫ h̄(t)

−h̄(t)

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dydx

≤ū
[
C2 + 22−γ

(
C2

2− γ
+

C2

γ − 1

)
(Kt+ θ)(2−γ)/(γ−1)

]
≤ K

γ − 1
(Kt+ θ)(2−γ)/(1−γ) = h̄′(t)
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provided that K > 0 is large enough. And for γ = 2,
m0∑
i=1

µi

∫ h̄(t)

−h̄(t)

∫ +∞

h̄(t)
Ji(x− y)ūi(t, x)dydx

≤ū
(
2C2 + C2 ln[2(Kt+ θ) ln(Kt+ θ)]

)
≤ū
(
2C2 + C2 ln 2(Kt+ θ) + C2 ln[ln(Kt+ θ)]

)
≤K ln(Kt+ θ) +K = h̄′(t)

if K � 1. This finishes the proof of (4.4).
Since U ≥ u∗ is a constant vector, we have, for t > 0, x ∈ [−h̄(t), h̄(t)],

U t(t, x) ≡ 0 � D ◦
∫ h̄(t)

−h̄(t)
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x)).(4.6)

Moreover, h̄(0) ≥ h0 for large θ, and obviously

U(t,±h̄(t)) � 0 for t ≥ 0,

U(0, x) � U(0, x) for x ∈ [−h0, h0].

Hence we can apply the comparison principle to conclude that

[g(t), h(t)] ⊂ [−h̄(t), h̄(t)], t ≥ 0,

U(t, x) � U(t, x), t ≥ 0, x ∈ [g(t), h(t)].

Thus (4.3) holds. �

4.2. Lower bound. The lower bound is more difficult to obtain, and we will consider the cases
γ ∈ (1, 2) and γ = 2 separately.

4.2.1. The case γ ∈ (1, 2). We start with a result from [10].

Lemma 4.3. [10, (2.11)] If J̃ satisfies (J), then for any ε > 0, there is Lε > 0 such that for
all l > Lε and ψl(x) := l − |x|,∫ l

−l
J̃(x− y)ψl(y)dy ≥ (1− ε)ψl(x) in [−l, l].(4.7)

Lemma 4.4. Assume that the conditions in Theorem 4.1 are satisfied and γ ∈ (1, 2). Then
there exits C = C(γ) > 0 such that

h(t) ≥ Ct1/(γ−1) for t� 1.(4.8)

Proof. Define

h(t) := (K1t+ θ)1/(γ−1), t ≥ 0,

U(t, x) := K2
h(t)− |x|
h(t)

Θ, t ≥ 0, x ∈ [−h(t), h(t)],

with positive constants θ and K1,K2 to be determined, where the vector Θ = (θi) is given by
Lemma ??.

Step 1. We show that, for large K1,

h′(t) ≤ µi
∫ h(t)

−h(t)

∫ +∞

h(t)
J(x− y)ui(t, x)dydx for t > 0.(4.9)

By simple calculations and (4.2), we obtain
m0∑
i=1

µi

∫ h(t)

−h(t)

∫ +∞

h(t)
Ji(x− y)ui(t, x)dydx
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≥
m0∑
i=1

µiK2θi

∫ h(t)

0

∫ +∞

h(t)
Ji(x− y)

h(t)− x
h(t)

dydx

=

m0∑
i=1

µiK2θi
h(t)

∫ 0

−h(t)

∫ +∞

0
Ji(x− y)(−x)dydx

=

m0∑
i=1

µiK2θi
h(t)

∫ h(t)

0

∫ +∞

x
Ji(y)xdydx

=

m0∑
i=1

µiK2θi
h(t)

(∫ h(t)

0

∫ y

0
+

∫ ∞
h(t)

∫ h

0

)
Ji(y)xdxdy

≥
m0∑
i=1

µiθi
K2

2h(t)

∫ h(t)

0
Ji(y)y2dy ≥

m0∑
i=1

µiθi
K2C1

2h(t)

∫ h(t)

0

y2

yγ + 1
dy

≥
m0∑
i=1

µiθi
K2C1

4h(t)

∫ h(t)

1
y2−γdy ≥

m0∑
i=1

µiθi
K2C1

4h(t)

h(t)3−γ

3− γ

=Ĉ0(K1t+ θ)(2−γ)/(γ−1) ≥ K1

γ − 1
(K1t+ θ)(2−γ)/(γ−1) = h′(t)

provided that K1 ≥ Ĉ0(γ − 1). This finishes the proof of Step 1.
Step 2. We show that , by choosing K1,K2 and θ properly, for t > 0, x ∈ (−h(t), h(t)),

U t(t, x) �D ◦
∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x)).(4.10)

From the definition of U , for t > 0, x ∈ (−h(t), h(t)),

U t(t, x) =K2Θ
|x|h′(t)
h2(t)

� K2Θ
h′(t)

h(t)
=
K1K2Θ

γ − 1
h(t)1−γ .

Claim 1. For x ∈ [−h(t), h(t)], there exists a positive constant Ĉ1 depending only on γ such
that ∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy � Ĉ1K2Θh(t)1−γ .(4.11)

By (4.1), there exists C̃1 > 0 such that

(4.12) Ji(x) ≥ C̃1

|x|γ + 1
for x ∈ R, i = 1, ...,m0.

Hence ∫ h

−h
J(x− y) ◦ U(t, y)dy =

∫ h−x

−h−x
J(y) ◦ U(t, y + x)dy

�K2Θ

∫ h−x

−h−x

C̃1

|y|γ + 1

h− |y + x|
h

dy.

Thus, for x ∈ [h/4, h],∫ h

−h
J(x− y) ◦ U(t, y)dy � K2Θ

∫ 0

−h/4

C̃1

|y|γ + 1

h− |y + x|
h

dy

=K2Θ

∫ 0

−h/4

C̃1

|y|γ + 1

h− (y + x)

h
dy � K2Θ

∫ 0

−h/4

C̃1

|y|γ + 1

−y
h

dy

=
K2Θ

h

∫ h/4

0

C̃1y

yγ + 1
dy � C̃1K2Θ

2h

∫ h/4

1
y1−γdy
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� C̃1K2Θ

2(2− γ)h
(h/4)2−γ = Ĉ1K2Θh1−γ .

And for x ∈ [0, h/4],∫ h

−h
J(x− y) ◦ U(t, y)dy � K2Θ

∫ h/4

0

C̃1

|y|γ + 1

h− |y + x|
h

dy

�K2Θ

∫ h/4

0

C̃1

yγ + 1

y

h
dy � Ĉ1K2Θh1−γ

by repeating the last a few steps in the previous calculations.
This proves (4.11) for x ∈ [0, h]. (4.11) also holds for x ∈ [−h, 0] since both J(x) and U(t, x)

are even in x.
Claim 2. We can choose small K2 and large θ such that, for x ∈ [−h(t), h(t)] and t ≥ 0,

D ◦
∫ h

−h
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x)) � F∗

∫ h

−h
J(x− y) ◦ U(t, y)dy

for some positive constant F∗. Let Θ be defined as in Lemma 2.1 of [11]. It is clear that
U ≤ K2Θ, and thus for small K2 > 0 from the definition of Θ,

F (U(t, x)) = K2
h(t)− |x|
h(t)

Θ
(

[∇F (0)]T + o(1)Im

)
� K2

h(t)− |x|
h(t)

3

4
λ1Θ =

3

4
λ1U(t, x),

where λ1 > 0 is given in Lemma 2.1 of [11]. Moreover, by (4.7), there is L1 > 0 such that for

θ1/(γ−1) ≥ L1,

D ◦
∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy +

λ1

4
U(t, x) � D ◦ U(t, x) for x ∈ [−h(t), h(t)].

Therefore Claim 2 is valid with F∗ = λ1/2.
Combining Claim 1 and Claim 2, we obtain

D ◦
∫ h

−h
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x))

� F∗Ĉ1K2Θh(t)1−γ � K1K2Θ

γ − 1
h(t)1−γ � U t(t, x)

provided that

K1 ≤ F∗Ĉ1(γ − 1).

This proves (4.10).
Step 3. We prove (4.8) by the comparison principle.
It is clear that

U(t,±h(t)) = 0 for t ≥ 0.

Since spreading happens for (U, g, h), for fixed θ and small K1,K2 as chosen above, there exists
a large t0 > 0 such that

[−h(0), h(0)] ⊂ [g(t0)/2, h(t0)/2],

U(t0, x) � K2Θ � U(0, x) for x ∈ [−h(0), h(0)].

Moreover, since J(x) and U(t, x) are both even in x, (4.9) implies

− h′(t) ≥ −µi
∫ h(t)

−h(t)

∫ −h(t)

−∞
J(x− y)ui(t, x)dydx for t > 0.
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These combined with the estimates in Step 1 and Step 2 allow us to apply Lemma ?? to conclude
that

[−h(t), h(t)] ⊂ [g(t+ t0), h(t+ t0)], t ≥ 0,

U(t, x) � U(t+ t0, x), t ≥ 0, x ∈ [−h(t), h(t)].

Hence (4.8) holds. �

4.2.2. The case γ = 2. The following simple result will play an important role in our analysis
later.

Lemma 4.5. Let l1 and l2 with 0 < l1 < l2 be two constants, and define

ψ(x) = ψ(x; l1, l2) := min

{
1,
l2 − |x|
l1

}
, x ∈ R.

If J̃ satisfies (J), then for any ε > 0, there is Lε > 0 such that for all l1 > Lε and l2 − l1 > Lε,∫ l2

−l2
J̃(x− y)ψ(y)dy ≥ (1− ε)ψ(x) in [−l2, l2].(4.13)

Proof. Since
∫
R J̃(x)dx = 1, there exits B > 0 such that∫ B

−B
J̃(x)dx > 1− ε/2.(4.14)

In the following discussion we always assume that l1 � B and l2 − l1 � B. Clearly, for
x ∈ [−(l2 − l1) +B, (l2 − l1)−B], due to

ψ(x) = 1 in [−(l2 − l1), l2 − l1],

we have ∫ l2

−l2
J̃(x− y)ψ(y)dy ≥

∫ l2−l1

−(l2−l1)
J̃(x− y)ψ(y)dy =

∫ l2−l1

−(l2−l1)
J̃(x− y)dy

=

∫ l2−l1−x

−(l2−l1)−x
J̃(y)dy ≥

∫ B

−B
J̃(y)dy ≥ 1− ε/2 > (1− ε)ψ(x).

It remain to prove (4.13) for x ∈ [−l2,−(l2 − l1) + B] ∪ [(l2 − l1)− B, l2]. By the symmetric

property of ψ(x) and J̃(x) with respect to x, we just need to verify (4.13) for x ∈ [(l2−l1)−B, l2],
which will be carried out according to the following three cases:

(i) x ∈ [l2 − l1 −B, l2 − l1 +B], (ii) x ∈ [l2 − l1 +B, l2 −B], (iii) x ∈ [l2 −B, l2].

(i) For x ∈ [l2 − l1 −B, l2 − l1 +B], since ψ(z) is nonincreasing for z ≥ 0, we have∫ l2

−l2
J̃(x− y)ψ(y)dy =

∫ l2−x

−l2−x
J̃(y)ψ(y + x)dy

≥
∫ B

−2l2+l1+B
J̃(y)ψ(y + x)dy ≥

∫ B

−B
J̃(y)ψ(y + x)dy

≥
∫ B

−B
J̃(y)ψ(y + l2 − l1 +B)dy.

By the definition of ψ,

ψ(y + l2 − l1 +B) =
l2 − (y + l2 − l1 +B)

l1
= 1− y +B

l1
, y ∈ [−B,B].

Hence, ∫ B

−B
J̃(y)ψ(y + l2 − l1 +B)dy =

∫ B

−B
J̃(y)dy −

∫ B

−B
J̃(y)

y +B

l1
dy
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≥1− ε/2− ‖J̃‖L∞(R)
2B2

l1
≥ 1− ε ≥ (1− ε)ψ(x)

provided

l1 ≥
4‖J̃‖L∞(R)B

2

ε
,

which then gives∫ l2

−l2
J̃(x− y)ψ(y)dy ≥ (1− ε)ψ(x) for x ∈ [l2 − l1 −B, l2 − l1 +B].

(ii) For x ∈ [l2 − l1 +B, l2 −B],∫ l2

−l2
J̃(x− y)ψ(y)dy =

∫ l2−x

−l2−x
J̃(y)ψ(y + x)dy

≥
∫ B

−2l2−B+l1

J̃(y)ψ(y + x)dy ≥
∫ B

−B
J̃(y)ψ(y + x)dy.

From the definition of ψ, for x ∈ [l2 − l1 +B, l2 −B] and y ∈ [−B,B],

ψ(y + x) =
l2 − (y + x)

l1
=
l2 − x
l1
− y

l1
= ψ(x)− y

l1
.

Thus, by (4.14),∫ l2

−l2
J̃(x− y)ψ(y)dy ≥

∫ B

−B
J̃(y)ψ(y + x)dy

=ψ(x)

∫ B

−B
J̃(y)dy −

∫ B

−B
J̃(y)

y

l1
dy = ψ(x)

∫ B

−B
J̃(y)dy ≥ (1− ε)ψ(x).

(iii) For x ∈ [l2 −B, l2],∫ l2

−l2
J̃(x− y)ψ(y)dy =

∫ l2−x

−l2−x
J̃(y)ψ(y + x)dy

≥
∫ l2−x

−2l2−B
J̃(y)ψ(y + x)dy ≥

∫ l2−x

−B
J̃(y)ψ(y + x)dy

=

∫ B

−B
J̃(y)ψ(y + x)dy −

∫ B

l2−x
J̃(y)ψ(y + x)dy

As in (ii), we see that∫ B

−B
J̃(y)ψ(y + x)dy = ψ(x)

∫ B

−B
J̃(y)dy ≥ (1− ε)ψ(x).

By the definition of ψ,

ψ(y + x) ≤ 0 for x ∈ [l2 −B, l2], y ∈ [l2 − x,B],

which indicates ∫ l2

−l2
J̃(x− y)ψ(y)dy ≥

∫ B

−B
J̃(y)ψ(y + x)dy ≥ (1− ε)ψ(x).

The proof is now complete. �

Lemma 4.6. If the conditions in Theorem 4.1 are satisfied and γ = 2, then there exits C > 0
such that

h(t) ≥ Ct ln t for t� 1.(4.15)
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Proof. For fixed β ∈ (0, 1), defineh(t) := K1(t+ θ) ln(t+ θ), t ≥ 0,

U(t, x) := K2 min

{
1,
h(t)− |x|
(t+ θ)β

}
Θ, t ≥ 0, x ∈ [−h(t), h(t)],

for constants θ � 1 and 1� K1 > 0, 1� K2 > 0 to be determined, where Θ is given in Lemma
??. Obviously, for any t > 0, the function ∂tU(t, x) exists for x ∈ [−h(t), h(t)] except when
|x| = h(t)− (t+ θ)β. However, the one-sided partial derivates ∂tU(t± 0, x) always exist.

Step 1. We show that by choosing θ and K1,K2 suitably,

h′(t) ≤
m0∑
i=1

µi

∫ h(t)

−h(t)

∫ +∞

h(t)
Ji(x− y)ui(t, x)dydx for t > 0,(4.16)

− h′(t) ≥ −
m0∑
i=1

µi

∫ h(t)

−h(t)

∫ −h(t)

−∞
Ji(x− y)ui(t, x)dydx for t > 0.(4.17)

Since U(t, x) = U(t,−x) and J(x) = J(−x), we see that (4.17) follows from (4.16).
By elementary calculations and (4.2), we have

m0∑
i=1

µi

∫ h(t)

−h(t)

∫ +∞

h(t)
Ji(x− y)ui(t, x)dydx

≥
m0∑
i=1

µi

∫ h(t)−(t+θ)β

0

∫ +∞

h(t)
Ji(x− y)ui(t, x)dydx

=

m0∑
i=1

µiK2θi

∫ −(t+θ)β

−h(t)

∫ +∞

0
Ji(x− y)dydx =

m0∑
i=1

µiK2θi

∫ h(t)

(t+θ)β

∫ +∞

x
Ji(y)dydx

=

m0∑
i=1

µiK2θi

(∫ h(t)

(t+θ)β

∫ y

(t+θ)β
+

∫ ∞
h(t)

∫ h

(t+θ)β

)
Ji(y)dxdy

≥
m0∑
i=1

µiK2θi

∫ h(t)

(t+θ)β

∫ y

(t+θ)β
Ji(y)dxdy ≥

m0∑
i=1

µiC1K2θi

∫ h(t)

(t+θ)β

y − (t+ θ)β

y2 + 1
dy

≥
m0∑
i=1

µiC1K2θi

∫ h(t)

(t+θ)β

y − (t+ θ)β

2y2
dy

=

m0∑
i=1

µiC1K2θi
1

2

(
lnh(t)− β ln(t+ θ) +

(t+ θ)β

h(t)
− 1

)

≥
m0∑
i=1

µiC1K2θi
1

2
(lnh(t)− β ln(t+ θ)− 1)

=

m0∑
i=1

µiC1K2θi
1

2
(lnK1 + ln(t+ θ) + ln(ln(t+ θ))− β ln(t+ θ)− 1)

≥
m0∑
i=1

µiC1K2θi(1− β)

2
[ln(t+ θ) + 1] ≥ K1 ln(t+ θ) +K1 = h′(t)

if

(4.18)


ln(ln θ) ≥ − lnK1 + 2,

K1 ≤ K2

m0∑
i=1

µiC1θi(1− β)

2
,
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which then finishes the proof of Step 1.
Step 2. We show that by choosing K1,K2 and θ suitably, for t > 0 and x ∈ (−h(t), h(t)),

U t(t, x) �D ◦
∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x)).(4.19)

From the definition of U , for t > 0,

U t(t, x) = K1K2
(1− β) ln(t+ θ) + 1

(t+ θ)β
Θ +

K2β|x|
(t+ θ)1+β

Θ, h(t)− (t+ θ)β < |x| ≤ h(t),

U t(t, x) = 0, |x| < h(t)− (t+ θ)β.

Claim 1. For x ∈ [−h(t),−h(t) + (t+ θ)β] ∪ [h(t)− (t+ θ)β, h(t)] and large θ,∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy � C̃1K2β ln(t+ θ)

4(t+ θ)β
Θ,(4.20)

where C̃1 > 0 is given by (4.12).
A simple calculation yields, for x ∈ [h(t)− (t+ θ)β, h(t)],∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy � K2Θ ◦

∫ h(t)

h(t)−(t+θ)β
J(x− y)

h− y
(t+ θ)β

dy

=
K2Θ

(t+ θ)β
◦
∫ h(t)−x

h(t)−(t+θ)β−x
J(y)[h(t)− (y + x)]dy.

Hence, for x ∈ [h(t)− 3
4(t+ θ)β, h(t)], by simple calculations and (4.12),∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy � K2Θ

(t+ θ)β
◦
∫ 0

−(t+θ)β/4
J(y)(−y)dy

=
K2Θ

(t+ θ)β
◦
∫ (t+θ)β/4

0
J(y)ydy � C̃1K2Θ

(t+ θ)β

∫ (t+θ)β/4

0

y

y2 + 1
dy

� C̃1K2Θ

2(t+ θ)β

∫ (t+θ)β/4

1
y−1dy =

C̃1K2Θ

2(t+ θ)β
[β ln(t+ θ)− ln 4]

� C̃1K2β ln(t+ θ)

4(t+ θ)β
Θ

if
β

2
ln θ ≥ ln 4.(4.21)

And for x ∈ [h(t)− (t+ θ)β, h(t)− 3
4(t+ θ)β],∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy � K2Θ

(t+ θ)β
◦
∫ 3(t+θ)β/4

0
J(y)[h(t)− (y + x)]dy

� K2Θ

(t+ θ)β
◦
∫ (t+θ)β/4

0
J(y)ydy � C̃1K2β ln(t+ θ)

4(t+ θ)β
Θ.

This proves (4.20) for x ∈ [h(t)− (t+ θ)β, h(t)].
For x ∈ [−h(t),−h(t) + (t+ θ)β], (4.11) also holds since both J(x) and U(t, x) are even in x.

Claim 1 is thus proved.

Claim 2. We can choose small K2 and large θ such that, for x ∈ [−h(t), h(t)],

D ◦
∫ h(t)

−h(t)
J(x− y)◦U(t, y)dy−D◦U(t, x)+F (U(t, x))�F∗

∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy(4.22)

for some F∗ > 0.
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For small K2 > 0, from 0 � U � K2Θ and the definition of Θ in Lemma ??, we have

F (U(t, x)) =U(t, x)
(

[∇F (0)]T + o(1)Im

)
=K2 min

{
1,
h(t)− |x|
(t+ θ)β

}
Θ
(

[∇F (0)]T + o(1)Im

)
�K2 min

{
1,
h(t)− |x|
(t+ θ)β

}
3

4
λ1Θ =

3

4
λ1U(t, x),

where λ1 > 0 is given by Lemma 2.1 of [11].
For large θ and t ≥ 0, we have

h(t)− (t+ θ)β ≥ θβ(K1θ
1−β ln θ − 1) ≥ θβ, (t+ θ)β ≥ θβ.(4.23)

Hence, by (4.13), there is large L1 > 0 such that, for θβ > L1 we have

D ◦
∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy +

λ1

4
U(t, x) � D ◦ U(t, x) for x ∈ [−h(t), h(t)].

Therefore (4.22) holds with F∗ = λ1/2.
Applying (4.20) and (4.22), we have, for x ∈ [−h(t),−h(t) + (t+ θ)β] ∪ [h(t)− (t+ θ)β, h(t)],

D

∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy − U(t, x) + F (U(t, x))

�F∗C̃1K2β ln(t+ θ)

4(t+ θ)β
Θ � K1K2

ln(t+ θ) + 1

(t+ θ)β
Θ

=

[
K1K2

(1− β) ln(t+ θ) + 1

(t+ θ)β
+

K2βh(t)

(t+ θ)1+β

]
Θ

�
[
K1K2(1− β) ln(t+ θ) +K1K2

(t+ θ)β
+

K2β|x|
(t+ θ)1+β

]
Θ

= U t(t, x)

if apart from the earlier requirements, we further have

ln θ > 2 and K1 ≤
F∗C̃1β

2
.(4.24)

For |x| < h(t)− (t+ θ)β,

D ◦
∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x))

� F∗
∫ h(t)

−h(t)
J(x− y) ◦ U(t, y)dy � 0 = U t(t, x).

Thus (4.19) holds. (Let us stress that it is possible to find K1, K2 and large θ such that (4.18),
(4.21), (4.23) and (4.24) hold simultaneously.)

Step 3. We finally prove (4.15).
Clearly, U(t,±h(t)) = 0 for t ≥ 0. Since spreading happens for (U, g, h) and K2 > 0 is small,

there is a large constant t0 > 0 such that

[−h(0), h(0)] ⊂ [g(t0)/2, h(t0)/2],

U(0, x) � K2Θ � U(t0, x) for x ∈ [−h(0), h(0)].

By Remark 2.4 and Lemma 2.5 of [11], we obtain

[−h(t), h(t)] ⊂ [g(t+ t0), h(t+ t0)], t ≥ 0,

U(t, x) � U(t+ t0, x), t ≥ 0, x ∈ [−h(t), h(t)].
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Thus (4.15) holds. This completes the proof of the lemma. �
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