
Scheduling arc maintenance jobs in a network to maximize

total flow over time∗

Natashia Boland Thomas Kalinowski Hamish Waterer Lanbo Zheng

Abstract

We consider the problem of scheduling a set of maintenance jobs on the arcs of a
network so that the total flow over the planning time horizon is maximized. A mainten-
ance job causes an arc outage for its duration, potentially reducing the capacity of the
network. The problem can be expected to have applications across a range of network
infrastructures critical to modern life. For example, utilities such as water, sewerage
and electricity all flow over networks. Products are manufactured and transported via
supply chain networks. Such networks need regular, planned maintenance in order to
continue to function. However the coordinated timing of maintenance jobs can have
a major impact on the network capacity lost to maintenance. Here we describe the
background to the problem, define it, prove it is strongly NP-hard, and derive four local
search-based heuristic methods. These methods integrate exact maximum flow solutions
within a local search framework. The availability of both primal and dual solvers, and
dual information from the maximum flow solver, is exploited to gain efficiency in the
algorithms. The performance of the heuristics is evaluated on both randomly generated
instances, and on instances derived from real-world data. These are compared with a
state-of-the-art integer programming solver.

1 Introduction

We consider a problem in which a network with arc capacities is given, together with, for
each arc of the network, a set of maintenance jobs that need to be carried out on the
arc. Each maintenance job has a duration, and a time window during which it must start.
A maintenance job cannot be pre-empted; once started it will continue for its duration.
This situation could arise in a range of network infrastructure settings, for example, when
considering maintenance on pipe sections in a water network, or track sections in a rail
network. Such maintenance causes network arc outages, leading to capacity reduction in
the network. Here we measure network capacity as the value of the maximum flow in the
network. This has the advantage of being the simplest way of measuring network capacity.
It is also the approach taken by our industry partner in the application that motivated this
research. The objective of the problem is to schedule all the maintenance jobs so that the
total flow over time is maximized.

∗Discrete Applied Mathematics 163, 34–52, doi:10.1016/j.dam.2012.05.027

91

http://dx.doi.org/10.1016/j.dam.2012.05.027

92 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

We were led to consider this problem through our collaboration with the Hunter Valley
Coal Chain Coordinator Limited (HVCCC). The Hunter Valley Coal Chain (HVCC) consti-
tutes mining companies, rail operators, rail track owners and terminal operators, together
forming the world’s largest coal export facility. In 2008, the throughput of the HVCC was
about 92 million tonnes, or more than 10% of the world’s total trade in coal for that year.
The coal export operation generates around $15 billion in annual export income for Aus-
tralia. As demand has increased significantly in recent years and is expected to increase
further in the future, efficient supply chain management is crucial. Our industry partner,
the HVCCC was founded to enable integrated planning and coordination of the interests of
all involved parties, so as to improve the efficiency of the system as a whole. More details
on the HVCC can be found in [1].

The problem discussed in this paper was motivated by the annual maintenance planning
process carried out by the HVCCC. Supply chain components such as railway track sec-
tions, terminal equipment and load points have to undergo regular preventive and corrective
maintenance, causing a significant loss in system capacity (up to 15%). The HVCCC had
observed that careful scheduling of the maintenance jobs – good alignment of them – could
reduce the impact of maintenance on the network capacity, and established a regular plan-
ning activity to carry it out, called “capacity alignment”. Currently capacity alignment for
the approximately 1500 maintenance jobs planned each year is a labour-intensive, largely
manual process, achieved by iterative negotiation between the HVCCC and the individual
operators.

The HVCCC currently uses an automated rule-based calculator to evaluate the quality
of candidate maintenance schedules. In-depth analysis of both the calculator and the HVCC
coal handling system revealed this to be well modelled as a maximum flow problem in a
network in which the coal flows from the mines to the ships. The arcs represent the relevant
pieces of infrastructure: load points, rail track and different machines at the terminals. A
maintenance job on a piece of the infrastructure simply means that the corresponding arc
cannot carry any flow for the duration of the job. The natural objective is to schedule
the maintenance tasks such that the total flow over the time horizon is maximized. This
corresponds to, e.g., annual throughput capacity of the HVCC.

The maintenance jobs themselves are scheduled initially according to standard equip-
ment requirements, which typically dictate particular types of maintenance jobs be per-
formed at particular time points. After discussions with the maintenance planners, it
emerged that they would be prepared to move the jobs, usually for intervals of plus or
minus 7 days, in order to achieve better overall throughput of the system. We initially
expected there would be some inter-maintenance constraints, for example, that a type of
job carried out at four-week intervals could not be carried out more than 5 weeks apart.
But the maintenance planners were not concerned about this issue, and preferred the simple
assumption that jobs could not deviate more than some fixed number of days around their
initial scheduled time. This gives rise to a simple release date and due date job scheduling
structure.

The problem of scheduling maintenance jobs in a network so as to maximize the total
flow over time has some aspects of dynamic maximum flow. The concept was introduced
by Ford and Fulkerson [5]: given a network with transit times on the arcs, determine the

Scheduling arc maintenance jobs in a network to maximize total flow over time 93

maximum flow that can be sent from a source to a sink in T time units. In the application
of interest to us, there are no transit times on arcs, but the capacities vary over time. This
leads to a different type of dynamic flow problem. Variations of the dynamic maximum flow
problem with zero transit times are discussed in [3, 8, 9], while piecewise constant capacities
are investigated by Ogier [14] and Fleischer [4]. For a comprehensive survey on dynamic
network flow problems we refer the reader to [11, 18], and for a recent, very general treatment
of maximum flows over time to [10]. For a given maintenance schedule, the capacities on
the arcs jump between zero and their natural capacity, and so are piecewise constant. Thus
the problem of evaluating a maintenance schedule could be viewed as a dynamic maximum
flow problem of this type. However, in our case the piecewise constant function is a function
of the maintenance schedule, and hence of the schedule decision variables. This makes our
problem quite different.

The problem does have a superficial resemblance to machine scheduling problems (see,
e.g., the book by Pinedo [15]), but there is no underlying machine, and the association of
jobs with network arcs and a maximum flow objective give it quite a different character.
Classical machine scheduling seeks to carry out jobs as quickly as possible (in some sense).
The maximum flow objective motivates quite different strategies. For example, if arcs are
“in sequence” in some sense, it is better to overlap the corresponding maintenance jobs in
time as much possible, whereas if they are “in parallel”, it is better to schedule them with
as little overlap as possible.

There is also some resemblance to network design problems (fixed charge network flows),
see e.g. Nemhauser and Wolsey [12] and references therein, but in such problems the arcs
are either designed in, or out, of the network in a single-period setting. Even a multi-period
variant (see for example the recent work of Toriello et al. [19]) would not capture the need
for consecutive period outages implied by a maintenance activity.

An emerging research area that also blends network flow and scheduling elements arises
in restoration of network services in the wake of a major disruption. For example, Nurre et
al. [2] schedule arc restoration tasks so as to maximize total weighted flow over time. They
consider dispatch rule based heuristics and integer programming approaches. The latter
performed well in sewerage, small power infrastructure, and emergency supply chain cases,
solving most instances to optimality in a matter of seconds, but the heuristic was competitive
in terms of more quickly finding good quality solutions. The heuristic was also especially
effective in a large power infrastructure case, finding nearly as good solutions as the exact
approach in far less time (see also [13]). We note that the scheduling part of the problem
considered in [2] is more similar to a classical scheduling setting than ours is: the restoration
activity for each arc needs to be scheduled on a machine, (work group), and one wants to
complete all jobs as quickly as possible.

Thus although there are connections of our problem to existing problems, we believe
that this is the first time that the problem has been considered. We believe it has a wide
range of natural applications, a very attractive structure, with tractable special cases (a few
of which we discuss), and some interesting extensions. We thus hope that this paper will
stimulate further research on the problem and its variants. Our contributions in this paper
are first to define and introduce the problem, prove it is strongly NP-hard, and discuss some
tractable special cases. We then propose four different local search heuristics. The heuristics

94 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

integrate exact maximum flow solutions within a local search framework, exploiting the max
flow objective function structure, the availability of both primal and dual solvers, and dual
information, to gain efficiency in the algorithms. The heuristics proved to be very effective
on both randomly generated and real-world instances, significantly out-performing a pure
integer programming approach, particularly on larger, harder problems.

The paper is organized as follows. In Section 2, the problem is formally defined, for-
mulated as an integer program, and proved to be NP-hard. We also outline some tractable
special cases. In Section 3, our local search algorithms for solving the problem are presented.
Section 4 contains computational results on randomly generated test instances, as well as
on two instance derived from real world data. Finally, we summarize the paper in Section 5
and point out some directions for further investigation.

2 Problem Definition and Complexity Results

Throughout we use the notation [k, l] = {k, k+ 1, . . . , l} and [k] = {1, 2, . . . , k} for k, l ∈ Z.
Let (N,A, s, s′, u) be a network with node set N , arc set A, source s and sink s′, and
capacities ua ∈ N for a ∈ A. Also, for a node v ∈ N let δ−(v) and δ+(v) denote the set of
arcs entering and leaving node v, respectively. We consider the network over a time horizon
[T]. A maintenance job j is specified by its associated arc aj ∈ A, its processing time
pj ∈ N, its release date rj ∈ [T], and its deadline dj ∈ [T]. Let J be a set of maintenance
jobs, and let let Ja denote the set of jobs j ∈ J with aj = a. For each job j ∈ J we have to
choose a start time Sj ∈ [rj , dj − pj + 1] within the time window for the job. In our model,
jobs cannot be preempted, i.e. scheduling a maintenance job to start at time Sj makes the
arc aj unavailable at times Sj , Sj + 1,. . . , Sj + pj − 1. Thus for a given maintenance job
schedule (Sj)j∈J , the arc a has capacity zero at time t if for some j ∈ Ja, t ∈ [Sj , Sj+pj−1],
and ua otherwise, for each time t ∈ [T]. The problem we consider is to schedule a set J of
maintenance jobs so as to maximize the total throughput over the interval [T], i.e. so as to
maximize the sum over t of the flows that can be sent from s to s′ in the network, given the
arc capacities at time t ∈ [T] implied by the maintenance schedule. In this paper we assume
unlimited resources in terms of workforce and machines, i.e. all jobs could be processed
at the same time as far as their time windows allow. It is in principle straightforward to
add constraints, for instance limiting the number of jobs requiring use of a given resource
processed at any given time. We did not do that because in the HVCCC context the input
for the optimization consists of initial maintenance schedules for the different parts of the
system (rail network and terminals) with relevant resource constraints already taken into
account.

For this paper we make the additional assumption that the different jobs associated
with an arc do not overlap, i.e. we assume that for any two jobs j and j′ on arc a,
[rj , dj] ∩ [rj′ , dj′] = ∅. This assumption can be made without loss of generality, as the
general case can be reduced to this case by replacing any arc violating the assumption by a
path, distributing the intersecting jobs among the arcs of the path. The reason for making
the assumption is to simplify the presentation of the heuristics below: the local effect of
moving a job j (i.e. the effect on the capacity of the arc associated with j) depends only

Scheduling arc maintenance jobs in a network to maximize total flow over time 95

on job j.

We formally define the problem via an integer programming formulation, which we also
use to provide a baseline for computational testing. We introduce the following variables.

• For a ∈ A and t ∈ [T]

– φat ∈ R+ is the flow on arc a over time interval t,

– xat ∈ {0, 1} indicates the availability of arc a at time t. These variables are not
strictly needed, but are included for convenience.

• For j ∈ J and t ∈ [rj , dj − pj + 1], yjt ∈ {0, 1} indicates if job j starts at time t.

Now we can write down the problem maximum total flow with flexible arc outages (MaxTFFAO).

z = max
T∑
t=1

∑
a∈δ+(s)

φat (1)

s.t.
∑

a∈δ−(v)
φat −

∑
a∈δ+(v)

φat = 0
(
v ∈ N \ {s, s′}, t ∈ [T]

)
, (2)

φat 6 uaxat (a ∈ A, t ∈ [T]) , (3)

dj−pj+1∑
t=rj

yjt = 1 (j ∈ J) , (4)

xat +

min{t,dj}∑
t′=max{rj ,t−pj+1}

yjt′ 6 1 (a ∈ A, t ∈ [T], j ∈ Ja) . (5)

The objective (1) is to maximize the total throughput. Constraints (2) and (3) are flow
conservation and capacity constraints, respectively, (4) requires that every job j is scheduled
exactly once, and (5) ensures that an arc is not available while a job is being processed.

Example 1. Consider the network in Figure 1 over a time horizon T = 6 with the job list
given in Table 1. Figure 2 shows that the total throughput can vary significantly depending
on the scheduling of the jobs. Observation of this example shows that, all other things
being equal, it is better for jobs on arcs that are “in series” to overlap as much as possible,
and for jobs on arcs that are “in parallel” to overlap as little as possible. Thus the job on d
should overlap as little as possible with the jobs on e and f , which should overlap as much
as possible, and the job on a should overlap as much as possible with those on e and f .
This is achieved in the second schedule in Figure 2. Of course the situation is more complex
for general networks, but the insight can be useful.

96 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

s s′

b (2) c (2)

a (1)

e (2) f (2)

d (1)

Figure 1: An example network. Capacities
are indicated in brackets.

j arc pj rj dj

1 a 3 1 5

2 d 2 2 5

3 e 2 2 5

4 f 2 3 6

Table 1: Example job list.

a
b
c
d
e
f

2 2 0 0 1 1
a
b
c
d
e
f

3 2 2 1 1 3

Figure 2: Two schedules for the example problem. In the horizontal direction, we have the 6
unit time intervals, and in the vertical direction there are the 6 arcs. The shaded rectangles
indicate the jobs, and below the x-axis is the maximum flow for each time period. The left
schedule yields a total flow of 6, while for the right schedule we obtain a total flow of 12.

Next we observe that the problem MaxTFFAO is strongly NP-hard, suggesting that
in order to tackle instances of practical relevance efficient heuristics might be needed.

Proposition 1. The problem MaxTFFAO is strongly NP-hard.

Proof. Reduction from 3-partition (see [6]).

Instance. B ∈ N, u1, . . . , u3m ∈ N with B/4 < ui < B/2 for all i and
3m∑
i=1

ui = mB.

Problem. Is there a partition of [3m] into m triples (i, j, k) with ui + uj + uk = B?

The corresponding network has 3 nodes: s, v and s′. There are 3m arcs from s to v with
capacities ui (i = 1, . . . , 3m) and one arc from v to s′ with capacity (m− 1)B (see Fig. 3).

There is one job with unit processing time for each arc from s to v, with release dates
rj = 1 and deadlines dj = m for all j. It is easy to see that the 3-partition instance has a
positive answer if and only if there is a schedule allowing a total flow of m(m−1)B. If there
is a 3-partition then the i-th of the m triples corresponds to three jobs to be processed in
time period i.

We conclude this section with some remarks on certain special cases.

1. If the network is a directed path and all the jobs have release date rj = 1 and deadline
dj = T , it is optimal to start all jobs at the same time, say Sj = 1 for all j. This

Scheduling arc maintenance jobs in a network to maximize total flow over time 97

u1 u2

u3

u3m−1

u3m

(m− 1)Bb

b

b

Figure 3: The network for the NP-hardness proof.

follows since the max flow equals the minimum of the arc capacities if all arcs are
available, and 0 otherwise. So

min
a∈A

ua ·
(
T −max

j∈J
pj

)
is an upper bound for the objective z which is attained for the described solution. More
generally, if

⋂
j∈J [rj , dj − pj + 1] 6= ∅, any element t of this intersection determines

an optimal solution by putting Sj = t for all j ∈ J .

2. In general, if the network is a path and all jobs have unit processing time, the problem
is equivalent to the vertex cover problem on the hypergraph with vertex set [T] and
edge set {[rj , dj] : j ∈ J}. This is a 0-1 integer programming problem with an
interval matrix as coefficient matrix. So it is totally unimodular and can be solved
efficiently by linear programming. Another interpretation of this case is that we are
looking for a smallest set of time periods, such that all jobs can start at a time given
in the set.

3. Inspired by the construction in the hardness proof in Proposition 1, we can ask under
what conditions an instance of MaxTFFAO with unit processing times and jobs that
can move freely (rj = 1 and dj = T) is optimally solved by scheduling all jobs at the
same time. For a set A′ ⊆ A of arcs let zA′ denote the max flow in the network with
arc set A \A′. Then scheduling all jobs at the same time is always optimal iff

∀A1, A2 ⊆ A A1 ∩A2 = ∅ =⇒ z∅ + zA1∪A2 > zA1 + zA2 . (6)

The if part follows, since if the implication is true, and we are given a solution schedul-
ing jobs at times t1 6= t2, we can always shift all the jobs scheduled at t2 to t1 without
decreasing the objective function. Conversely, if there are disjoint arc sets A1 and
A2 with z∅ + zA1∪A2 < zA1 + zA2 , then for an instance with one job on every arc in
A1 ∪ A2, it is better to schedule the jobs on A1 at a different time than the jobs on
A2. Note that the first example of the directed path is a special case of this.

4. Using the characterization (6), we can generalize the path example. Suppose the
network N − s′ (i.e. the original network without the sink) is a tree, all arcs pointing

98 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

away from the source, and in the full network precisely the leaves of this tree are
connected to the sink. Assume also that there are no bottlenecks, i.e. for every node
v 6= s the capacity of the arc entering v is at least as large as the sum of the capacities
of the arcs leaving v. Under these conditions (6) is satisfied, so freely movable jobs
with unit processing times should be scheduled at the same time.

3 Local search for MaxTFFAO

3.1 Evaluating the objective function

We consider a solution of MaxTFFAO to be specified by the start time indicator variables
yjt for all jobs j ∈ J . For given y, the values xat can be fixed by

xat = 1−max
j∈Ja

min{t,dj−pj+1}∑
t′=max{rj ,t−pj+1}

yjt′ ,

and then the best solution for the given y can be determined by solving T max flow problems.
As a local search framework requires the frequent evaluation of the objective function, we
try to make use of the problem structure to design a more efficient method. The following
four simple observations indicate potential for such an improvement.

1. A time interval with constant network structure requires only a single max flow com-
putation.

2. If there is a change in the network between time t and time t + 1, the solution for t
can be used as a warm start for t+1. As a consequence, the objective function can be
evaluated by solving at most 2|J |+ 1 max flow problems, and if this number is really
necessary, consecutive networks differ in exactly one arc.

3. To update the flows after a change of the schedule we can restrict our attention to the
time intervals where the network structure actually changed due to the modification.
That means the effect of local changes in the schedule can be determined by solving
a short sequence of max flow problems on very similar networks.

4. How the similarity of the networks for different time periods can be used depends
on the way the max flow problems are solved. In our LP based implementation
(see discussion in Section 3.2 for details) it is natural to reoptimize from the current
solution using the primal simplex method if an arc is added and the dual simplex
method if an arc is removed.

To make this more precise we introduce more notation for the start times associated with
a solution vector y: Let Sj(y) be the start time of job j, i.e. Sj(y) is the unique t with
yjt = 1. If there is no danger of confusion we will omit the argument y in the notation and
just write Sj . Now we can associate with each solution a set of times

R = {Sj , Sj + pj : j ∈ J} ∪ {1, T + 1}

Scheduling arc maintenance jobs in a network to maximize total flow over time 99

containing exactly the set of times t such that there is a change of capacity on at least one
arc between time t− 1 and time t. The times t = 1 and t′ = T + 1 can be interpreted this
way by adding virtual networks at times 0 and T + 1 with zero capacities. We denote the
elements of R by

1 = t0 < t1 < · · · < tM−1 < tM = T + 1.

The set [ti−1, ti − 1] is called time slice i and its length is denoted by li = ti − ti−1. The
time slicing is illustrated in Figure 4. In this setup the above observations imply that the

time slice 1 time slice i time slice M

t0 = 1 t1 ti−1 ti tM−1 tM = T + 1

Figure 4: Time slicing.

objective function can be evaluated as described in Algorithm 1.

Algorithm 1 Objective evaluation.

Input: Schedule given by Sj for j ∈ J
R = {Sj , Sj + pj : j ∈ J} ∪ {1, T + 1} = {1 = t0 < t1 < · · · < tM−1 < tM = T + 1}
Construct the network (N,A, s, s′, u)
for i = 1 to M do

Update upper bounds of the flow variables according to the outages in time slice i
(Re)solve the network flow problem and store the max flow zi

Output: z =
M∑
i=1

zi · li

3.2 Moving single jobs

The feasible region is the set of all binary vectors y = (yjt)j∈J,rj6t6dj satisfying (4). Note
that the generation of an initial solution is easy, as we can choose arbitrary start times in
the corresponding time windows. A simple neighbourhood is one that is induced by single
job movements:

N1(y) =
{
y′ : Sj(y

′) 6= Sj(y) for at most one job j
}
.

The size of this neigbourhood is

|N1(y)| = 1 +
∑
j∈J

(dj − pj − rj + 1) .

In the following we give a characterization of the optimal neighbours, implying an exact
method to determine an optimal neighbour.

100 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

3.2.1 Preliminary considerations

Moving a job from its current start time Sj to another start time S′j has two different effects:

1. For any time t ∈ [Sj , Sj + pj − 1] \ [S′j , S
′
j + pj − 1] the arc aj is released and we gain

capacity on this arc which could lead to an increase in the max flow for time t.

2. For any time t ∈ [S′j , S
′
j +pj−1]\ [Sj , Sj +pj−1] we lose the arc, and if it has positive

flow in the current max flow, the max flow for time t might decrease.

In order to characterize the impact of a job movement on the objective value we introduce
the following parameters measuring the effect of changing the availability status of arc a in
time slice i for all a ∈ A and i ∈ [M]:

• z+ai is the max flow in the network of time slice i, with arc a added (with capacity ua)
if it is missing in the current solution.

• z−ai is the max flow in the network of time slice i, with arc a removed if it is present
in the current solution.

We start with some simple observations.

• z−ai 6 zi 6 z+ai for all a ∈ A and i ∈ [M].

• xat = 1 for t ∈ [ti−1, ti − 1] =⇒ z+ai = zi.

• xat = 0 for t ∈ [ti−1, ti − 1] =⇒ z−ai = zi.

• For an unavailable arc a (i.e. xat = 0 for t ∈ [ti−1, ti − 1]), releasing arc a increases
the max flow by ∆+

ai := z+ai − zi.

• For an available arc a (i.e. xat = 1 for t ∈ [ti−1, ti − 1]), removing arc a decreases the
max flow by ∆−ai := zi − z−ai.

To efficiently calculate the net effect on the objective, ∆j(S
′
j), of moving a job j from start

time Sj to start time S′j , one need only consider the set of time slices τ+j (S′j), defined to be
those which are covered by [Sj , Sj + pj − 1] and that will be (at least partially) uncovered
by the move, and the set of time slices τ−j (S′j), defined to be those which are not covered
by [Sj , Sj + pj − 1] but that will be (at least partially) covered by [S′j , S

′
j + pj − 1]. We also

need for each i ∈ τ+j (S′j) ∪ τ−j (S′j), the length of the time slice covered by [S′j , S
′
j + pj − 1],

denoted by l−ij(S
′
j). Then

∆j(S
′
j) =

∑
i∈τ+j (S′j)

∆+
ai · (li − l−ij(S′j))−

∑
i∈τ−j (S′j)

∆−ai · l−ij(S′j). (7)

Provided ∆+
ai and ∆−ai have been calculated for the appropriate time slices, it is thus straight-

forward to calculate ∆j(S
′
j) for any j and S′j , and hence to determine an optimal neighbour.

Scheduling arc maintenance jobs in a network to maximize total flow over time 101

Proposition 2. Finding an optimal neighbour of the given schedule (Sj)j∈J is equivalent
to

max
{

∆j(S
′
j) : j ∈ J, S′j ∈ [rj , dj − pj + 1]

}
.

If ∆j(S
′
j) 6 0 for all pairs (j, S′j), there is no improving solution in the neighbourhood of

the current schedule.

3.2.2 The basic method

Proposition 2 immediately suggests a local search strategy: compute ∆j(S
′
j) for (a subset

of) all pairs (j, S′j), choose one or more pairs with a high value of this bound, perform the
corresponding changes of the schedule, and iterate. This could be done naively by first
calculating ∆+

ai and ∆−ai for each time slice i and arc a. The formula (7) shows that we can
then easily calculate ∆j(S

′
j) as required. This approach would appear at first sight to be

computationally prohibitive, requiring the solution of two max flow problems to calculate
z+ai and z−ai for each arc a and time slice i. A number of mitigating factors make this
approach more attractive than appearances suggest. First, each arc in a given time slice is
either missing or present in the current solution, and so from observations in the previous
section, one of z+ai and z−ai is given by zi; it is only for the other that a max flow problem
needs to be solved. More importantly,

1. if an arc is added in a time slice where it was previously blocked, the flow stays primal
feasible but might no longer be optimal, and

2. similarly, if an arc with nonzero flow is taken out, the dual stays feasible.

Thus the maximum flow problems to be solved in calculating z+ai and z−ai can use a primal
(dual) method respectively “hot started” from the existing solution for the time slice i.
We also observe from (7) that only jobs j with ∆+

aji
> 0 for some time slices i covered by

[Sj , Sj + pj − 1] can be moved to give a better solution: these are the promising jobs. So
we should first determine ∆+

ai to discover the promising jobs, and then only calculate ∆−ai
values as needed for these jobs. Furthermore, ∆+

ai can only be positive if the reduced cost of
arc a in the maximum flow problem is positive; otherwise it must be zero. Thus even if the
arc is missing from the network, as long as it is included in the original max flow calculation
(with zero capacity), and we use a max flow method which makes reduced costs available,
we can avoid further max flow calculations (z+ai can simply be set to zi if the reduced cost
of a in time slice i is not positive).

Algorithm 2 describes how the effects ∆+
ai (adding an arc) and ∆−ai (blocking an arc)

are determined. We do not make explicit here how z+ai and z−ai are calculated, since these
depend on the specific max flow method used; these implementation issues are discussed
in Section 4.1.2. Finally, Algorithm 3 describes the complete procedure of the greedy
rescheduling algorithm which will be denoted by GreedyResched. In our implementation
we use the following three stopping criteria:

1. a time limit,

2. 100 iterations without improvement, and

102 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Algorithm 2 Effects of change.

PromisingJobs= ∅
for i = 1 to M do

Aout
i = {a ∈ A : xat = 0 for t ∈ [ti−1, ti − 1]}

for a ∈ Aout
i do

∆+
ai = z+ai − zi

if ∆+
ai > 0 then

Add the job j with aj = a and time window containing slice i to PromisingJobs

for j ∈ PromisingJobs do
Put i0 = min{i : ti > rj} and i1 = max{i : ti 6 dj + 1} − 1
for i = i0 to i1 do ∆−aji = zi − z−ai

Output:∆+
ai – benefit (per time unit) of releasing arc a in time slice i

∆−ai – loss (per time unit) of removing arc a in time slice i
PromisingJobs – set of jobs whose movement could give an improvement

Algorithm 3 GreedyResched.

Initialize time slicing and flow problems (Algorithm 1)
while not STOP do

Determine PromisingJobs and the values ∆+
ai and ∆−ai (Algorithm 2)

for j ∈ PromisingJobs and S′j ∈ [rj , dj − pj + 1] do calculate ∆j(S
′
j)

if maxj,S′j ∆j(S
′
j) < 0 then STOP

else
Choose (j, S′j) with maximal ∆j(S

′
j)

Update time slicing and and resolve the max flow problems with changed input data

3. 2 consecutive iterations without improvement and only a single pair (j, S′j) with
∆j(S

′
j) = 0.

The reason for the last criterion is that in this situation the algorithm just alternates between
two solutions having the same objective value.

3.2.3 Variations

Here we present some natural modifications of the algorithm GreedyResched.

Randomization. Instead of choosing the best neighbour in each iteration one can choose
randomly from a set of candidates, similar to the strategy applied in the construction phase
of greedy randomized adaptive search procedures [16]. More precisely, we order the pairs
(j, S′j) by nonincreasing value of ∆j(S

′
j) and choose randomly from the first k of this list

Scheduling arc maintenance jobs in a network to maximize total flow over time 103

(uniformly distributed), where k depends on the total number of possibilities, for instance
with K = #{(j, S′j) : ∆j(S

′
j) > 0} denoting the number of moves with nondecreasing

objective value we can take

k = max {min {κ1,K} , dκ2Ke} ,
where κ1 ∈ N and κ2 ∈ {κ ∈ R : 0 6 κ 6 1} are parameters of the algorithm. After satisfy-
ing the stopping criterion, we can restart the algorithm from the initial solution, iterate this,
and finally choose the best solution from all runs. We denote this randomized variant by
GreedyRandResched(κ1, κ2). In Figure 5 we plot the behaviour of K in GreedyResched for
the randomly generated instances we used in our computational experiments (see Section 4).
For these experiments we choose (κ1, κ2) = (5, 0.15). Some further possible modifications

Figure 5: Number of possible moves, i.e. pairs (j, S′j) with ∆j(S
′
j) > 0.

to randomization are as follows.

1. Instead of going back to the initial solution each time the stopping criterion is met,
we can collect the intermediate solutions with a large value of K (indicating many
improving directions) in a solution pool, and choose the starting point for each run
from the solution pool (randomly or deterministically).

2. If the computation time until reaching the stopping criterion is large the following
combination of the ideas underlying GreedyResched and GreedyRandResched might
be beneficial.

(a) Do a small number, say k1, improvements randomly choosing from the improving
moves (as in GreedyRandResched).

(b) Repeat the step (a) a small number, say k2, times.

(c) Choose the best of the k2 solutions obtained and continue with step (a).

Testing the effectiveness of these further ideas will be the subject of future research.

104 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Making several moves at a time. In order to speed up the progress of the method
we can do several moves corresponding to pairs (j, S′j) with nonnegative value of ∆j(S

′
j)

simultaneously, if they do not affect the same time slices. This can be implemented by
looping over the list of pairs (j, S′j), ordered by nonincreasing ∆j(S

′
j), and choosing a pair

if its affected time slices do not overlap with those of the pairs already chosen. The benefit
of this approach is that it saves recalculations of the values ∆j(S

′
j), which may be relatively

expensive. An iteration of this algorithm can be considered as a greedy accumulation of
GreedyResched steps, and so we denote the algorithm by GreedyAccResched. We also
consider a randomized version of this approach. While the list of pairs (j, S′j), ordered by
nonincreasing ∆j(S

′
j), is non-empty, we choose at random a pair from the first k in the list,

and then remove from the list all pairs with affected time slices overlapping those of the
chosen pair, before looping again to choose a random pair from the first k. We call this the
GreedyRandAccResched algorithm.

3.3 Moving multiple jobs

Clearly, there are some limitations in the approach to consider only movements of single jobs.
It is easy to construct examples where no single job movement yields an improvement, but
moving two jobs at the same time does. However, the benefit of moving jobs simultaneously
is only of interest if the jobs interact, in the sense of overlapping in time. We thus propose
to search neighbourhoods of the form:

Ñj0(y) =
{
y′ : Sj(y

′) 6= Sj(y) only for jobs j ∈ J(j0)
}
,

for some j0 ∈ J , where J(j0) is the set of jobs whose time window (plus processing time)
overlaps with that of j0, i.e.

J(j0) = {j ∈ J : [rj , dj] ∩ [rj0 , dj0] 6= ∅}.

The size of Ñj0(y) is
∏
j∈J(j0)(dj − pj − rj + 2). This is exponential in the number of jobs

that have at least two possible start times and overlap with j0. In particular, the instance
used in the proof of Proposition 1 has the property that all job pairs overlap. Thus in
general it is NP-hard to optimize over this neighbourhood, and we propose to explore it via
a randomized approach as follows.

We consider each job in turn as the base job, j0, and systematically search a selection
C(j0) ⊆ [rj0 , dj0] of its possible start times. Our idea is that C(j0) should start small,
allowing a “rough” exploration of the alternatives, and increase as the algorithm progresses,
thus refining the search. We explain this more precisely later. For each possible start time
S′j0 ∈ C(j0), we would like to know how “good” that choice of start time is, taking into
account interactions of j0 with other jobs, i.e. we would like to find the best y′ such that
Sj(y

′) 6= Sj(y) only for jobs j ∈ J(j0). Equivalently, we would like to simultaneously
optimize the start times of all jobs in J(j0), finding a local optimum with respect to j0.
However we expect that doing so would be prohibitive in terms of computational time. Thus
we sample from a restricted neighbourhood, restricting the possible start times of jobs in
J(j0) \ {j0} heuristically, using the intuition that jobs should either overlap as little, or as

Scheduling arc maintenance jobs in a network to maximize total flow over time 105

much, as possible to get best results. To see where this intuition comes from consider two
arcs a and a′ with the property that every source-sink path through a also contains a′. If
these are the only two arcs with maintenance jobs it is clearly best possible to maximize the
overlap between jobs on these arcs. On the other hand, if there is no path containing both
arcs a and a′, then the total throughput is maximized when the jobs overlap is minimized.
Each j ∈ J(j0) \ {j0} has a set of (up to four) possible start times C(j), so that either the
job’s start or end aligns with the start or end of job j0, (assuming j0 starts at S′j0). This
choice of C(j) is motivated by the fact that in general, there is always an optimal solution
such that for every job j one of the following is true.

• Job j starts at its earliest possible start time rj , or

• job j starts at its latest possible start time dj − pj + 1, or

• there is a job j′ that starts at the same time Sj = Sj′ , or

• there is a job j′ that ends at the same time Sj + pj − 1 = Sj′ + pj′ − 1, or

• there is a job j′ such that the start of job j aligns with the end of job j′, i.e. Sj =
Sj′ + pj′ , or

• there is a job j′ such that the end of job j aligns with the start of job j′, i.e. Sj +pj =
Sj′ .

We simply sample randomly from the neighbourhood σ times, choosing the best, for σ
an algorithm parameter. This randomized method for moving multiple jobs, denoted by
RandMultiJob, is described more formally in Algorithm 4.

To implement the method the choice of the candidate start sets C(j0) has to be specified.
For our experiments, C(j0) consists of k evenly spaced elements in the interval [rj , dj], where
k ∈ N. k starts small (at k = 1), and increases by one whenever no improvement has been
found for a number of consecutive iterations. In our experiments, we use |J | iterations for
the increment criterion. Since each job may be the base job multiple times for the same
value of k, we want to avoid choosing the same subset of start times every time. Thus we
include a mechanism for cycling through sets of k evenly spaced points, modulo the time
window width. More precisely, in the m-th run through the outer loop of Algorithm 4, we
put

• W = dj0 − pj0 − rj0 + 2 (width of the time window of job j0),

• θ = b(W − 1)/kc, and

• C(j0) =

{
{rj0 + (m+ iθ) (mod W) : i = 0, . . . , k − 1} if θ > 1,

[rj0 , dj0 + pj0 + 1] if θ = 1.

Note that W and θ vary with j0, but we forgo using a j0 subscript to improve readability.
To illustrate how this works, consider the case that W = 7, k = 3 and take rj0 = 1. Then
θ = 2 and when m ≡ 0 (mod W) we get C(j0) = {1, 3, 5}, when m ≡ 1 (mod W) we get

106 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Algorithm 4 RandMultiJob.

Input: A feasible solution (Sj)j∈J with objective value z and parameter σ

while not Stop do
for j0 ∈ J do

choose a subset C(j0) ⊆ [rj0 , dj0 − pj0 + 1]
J(j0) = {j ∈ J : [rj , dj] ∩ [rj0 , dj0] 6= ∅}
Put S = (Sj)j∈J(j0)
for S′j0 ∈ C(j0)

for j ∈ J(j0) \ {j0} do
set C(j) = [rj , dj − pj + 1] ∩

{
S′j0 , S

′
j0
− pj , S′j0 + pj0 , S

′
j0

+ pj0 − pj + 1
}

repeat
for j ∈ J(j0) \ {j0} do

if C(j) 6= ∅ do choose random S′j from C(j) else S′j = Sj
compute the objective z′ for starting job j at time S′j for all j ∈ J(j0)

if z′ > z then replace S by (S′j)j∈J(j0) and z by z′

until done σ times

if enough consecutive iterations with no improvement have passed then increase k

Output: An improved solution (Sj)j∈J

C(j0) = {2, 4, 6}, when m ≡ 2 (mod W) we get C(j0) = {3, 5, 7}, when m ≡ 3 (mod W)
we get C(j0) = {1, 4, 6}, etc.

In future work, we will consider allowing σ to vary during the course of the algorithm,
by making it dependent on the size of the neighbourhood Ñj0(y) at the current solution y,
so that more samples are taken from larger neighbourhoods.

4 Computational Experiments

In this section we report on the results of computational tests of our proposed algorithm
variants. The first subsection is concerned with randomly generated instances, while the
second subsection contains results for two instances coming from real world data.

4.1 Randomly generated instances

We first describe how our random test instances have been generated, then we present the
details of the experiments that have been run, and finally, we compare the performance of
the considered algorithms.

Scheduling arc maintenance jobs in a network to maximize total flow over time 107

4.1.1 Instance generation

Our tests are carried out for a time horizon with T = 1, 000. We need to generate net-
works and job lists. We generate eight different networks using the RMFGEN generator of
Goldfarb and Grigoriadis [7]. For parameters a, b, c1 and c2 the generated network has a2b
nodes arranged in b frames of a2 nodes each. The capacities between frames are randomly
chosen from [c1, c2], while all capacities inside frames are c2a

2. We generated 8 different
networks for the parameter pairs

(a, b) ∈
{

(2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
}

with c1 = 10 and c2 = 20.

In order to generate a job list for a given network, for each arc we first choose α, the
number of jobs. Then we divide the time horizon into α equal subintervals, each of them
associated with one of the jobs to be created. For each job we choose a processing time
and a number of start time candidates randomly. Finally, we choose a random release date,
making sure that it is compatible with the job being completed in its subinterval. This is
made more precise in Algorithm 5 where the input parameters are

• X — set of possible number of jobs per arc,

• Y — set of possible processing times, and

• Z — set of possible sizes for start time windows.

Algorithm 5 Generate JobList (X,Y, Z) (X,Y, Z ⊆ N)

for a ∈ A do
Initialize Ja = ∅
choose random α ∈ X and put µ = bT/αc
for η = 1 to α do

choose random β ∈ Y and γ ∈ Z
choose random r ∈ {1, 2, . . . , µ− β − γ + 2}
add job with processing time β, release date rj = (η − 1)µ+ r
and deadline rj + β + γ − 2 to Ja

Let α, β and γ be the maximum elements of X, Y and Z, respectively. In order to
guarantee feasible job lists we must have

(γ + β − 1)α 6 T.

As the number of binary variables in the MIP model (1)–(5) is determined by the sizes of
the time windows we decided to focus on studying the influence of the set Z. So we fix
X = [5, 15], Y = [10, 30] and test two variants for Z.

108 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

1. There are a variety of time window sizes: Z1 = [1, 35] (the first instance set).

2. All time windows are large: Z2 = [25, 35] (the second instance set).

For each network and each triple (X,Y, Zi) we generated 10 instances, giving a total of
160 instances. The network sizes and the average numbers of jobs obtained in this way
are shown in Table 2. In Tables 3 and 4 we report the average problem sizes for the MIP

Small networks Large networks

Network Nodes Arcs Jobs Network Nodes Arcs jobs

1 12 32 303.2 5 36 123 1159.8

2 16 44 421.0 6 32 92 870.7

3 18 57 542.4 7 48 176 1674.2

4 27 90 847.5 8 64 240 2278.0

Table 2: The sizes of the random networks.

formulation (1)–(5).

Network # Rows # Columns # Nonzeros # Binaries Root relaxation solution time (s)

1 50,810 69,925 226,402 36,925 0.5

2 69,714 95,381 312,255 50,381 1.4

3 87,589 122,784 404,722 64,784 1.6

4 137,141 192,544 638,215 101,544 7.0

5 187,607 262,799 886,817 138,799 21.4

6 145,025 197,037 658,174 104,037 5.5

7 265,983 375,552 1,278,099 198,552 37.8

8 361,293 511,157 1,746,054 270,157 92.1

Table 3: Average problem sizes for the first instance set (Z = [1, 35]).

4.1.2 Experimental setup

Each of the generated instances is solved by the following methods:

Algorithm CPX. CPLEX with default settings applied to the formulation (1)–(5),

Algorithm GR. GreedyResched using CPLEX to solve the max flow subproblems,

Algorithm GRR. GreedyRandResched (Section 3.2.3) with parameters (κ1, κ2) = (5, 0.15),

Algorithm GAR. GreedyAccResched (Section 3.2.3),

Algorithm GRAR. GreedyRandAccResched (Section 3.2.3) with the same parameter val-
ues as for GRR, and

Algorithm RMJ σ. RandMultiJob with parameter σ.

Scheduling arc maintenance jobs in a network to maximize total flow over time 109

Network # Rows # Columns # Nonzeros # Binaries Root relaxation solution time (s)

1 57,763 75,215 322,204 42,215 1.1

2 79,481 102,783 448,435 57,783 5.8

3 100,483 132,480 583,899 74,480 1.4

4 157,521 207,922 920,092 116,922 33.6

5 214,415 283,148 1,257,642 159,148 427.8

6 165,634 212,561 944,456 119,561 204.6

7 303,721 404,331 1,800,871 227,331 207.5

8 413,640 550,940 2,469,028 309,940 828.7

Table 4: Average problem sizes for the second instance set (Z = [25, 35]).

For ease of implementation, and so as to more readily exploit reduced cost information,
and access primal and dual algorithm variants, we decided to solve the max flow sub-
problems in the algorithms GreedyResched, GreedyRandResched, GreedyAccResched and
GreedyRandAccResched using CPLEX as LP solver instead of implementing combinator-
ial algorithms. The following three remarks on the implementation of Algorithm 2, which
underlies the three greedy approaches, are based on the observations in Section 3.2.2.

1. The value ∆+
ai is computed only if the reduced cost of the arc a is positive in the

current solution for time slice i as otherwise there is no potential for improvement.

2. For calculating the values z+ai, i.e. the gain obtained by adding in arc a, we use the
primal simplex method starting from the current max flow for time slice i.

3. For calculating the values z−ai, i.e. the loss due to taking out arc a, we use the dual
simplex method starting from the current max flow for time slice i.

For GreedyResched, we also note that among the pairs (j, S′j) with maximal value of ∆j(S
′
j)

it is always possible to choose one causing at most one time slice split. A simple way to
achieve this is to choose the pair with the smallest S′j : This ensures that S′j or S′j+pj is one of
the breakpoints ti in the current time slicing. We use this approach in our implementation.
For RandMultiJob we solve the max flow problems using the implementation of the push-
relabel algorithm in the Boost library [17]. Here we don’t take advantage of the similarities
between the networks of different time slices, but we still use the third observation in Section
3.1 that after changing the schedule we only have to reevaluate the flow for time slices that
are actually affected by the change. We experimented with σ = 1, 2, 4 and 8. We found that
results for σ = 8 were dominated by the other values, and that whilst σ = 4 did give better
values than σ = 1 or 2 on a very small proportion of instances, it did not give the best value
over all algorithms for any instance (random or real world). Thus we only present detailed
results for σ = 1 and 2.

For all algorithms, we impose a time limit of 30 minutes, and all of them start with an
initial solution given by

Sj =

⌊
rj + dj

2

⌋
.

110 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

All computations are done on a Dell PowerEdge 2950 with dual quad core 3.16GHz Intel
Xeon X5460 processors and 64GB of RAM running Red Hat Enterprise Linux 5. CPLEX
v12.1 was running in deterministic mode using a single thread.

4.1.3 Results

As a performance measure to compare algorithms we use the relative gap between the
algorithm’s solution value and the best known solution value over all algorithms. If the
best known solution value for an instance I is zbest and the current algorithm returns z, its
performance measure on that instance is given by

P(I) =
zbest − z
zbest

.

In Figures 6 to 9, we plot for CPLEX and the Greedy algorithms the proportion of instances
for which the solution found by the algorithm is within a factor of 1 − τ of the best, for
increasing values of τ , i.e. we plot

1

n
·# {I : I instance with P(I) 6 τ}

as a function of τ , where n is the total number of instances (in our case 80 for each instance
set). Note that for the 5 minute plots (Figures 6 and 8) we take zbest to be the best known
solution over all algorithms after 30 minutes. Tables 5 and 6 contain the average number

Figure 6: Performance profiles for the first
instance set (Z = [1, 35]) with computation
time limited to 5 minutes.

Figure 7: Performance profiles for the first
instance set (Z = [1, 35]) with computation
time limited to 30 minutes.

of max flow problems solved for each of the local search algorithms and every network. For
algorithms GR and GAR we also report the run times, GRR, GRAR and RMJ 2 ran for
the whole 30 minutes. Tables 7 to 10 provide information about the relative gaps (average
and maximal) and the numbers of instances where each algorithm found the best solution,
for all algorithms. Here the relative gap is computed as (z′ − z)/z′ where z′ is the best

Scheduling arc maintenance jobs in a network to maximize total flow over time 111

Figure 8: Performance profiles for the second
instance set (Z = [25, 35]) with computation
time limited to 5 minutes.

Figure 9: Performance profiles for the second
instance set (Z = [25, 35]) with computation
time limited to 30 minutes.

GR GRR GAR GRAR RMJ 2

Network Time(s) mf calls mf calls Time(s) mf calls mf calls mf calls

1 12 210 31,296 17 179 16,500 96,618

2 25 351 22,741 30 287 13,772 74,739

3 25 460 29,168 40 344 16,386 61,270

4 128 1,256 15,201 100 677 9,681 38,703

5 308 2,007 10,693 324 1,247 7,320 25,605

6 115 838 11,574 115 585 7,041 37,588

7 524 2,984 8,871 519 2,010 6,146 14,827

8 825 3,256 6,607 605 1,540 4,090 8,276

Table 5: Average numbers of max flow problems (divided by 1,000) for the first instance
set (Z = [1, 35]).

upper bound obtained by CPLEX in 30 minutes, and z is the objective value of the best
solution found by the considered algorithm in the respective time (5 or 30 minutes).

We make the following observations.

• For the first instance set CPLEX outperforms all other algorithms, but on the large
networks the heuristics, in particular GreedyAccResched and GreedyRandAccResched,
arequite good in providing a reasonably good solution in a short time. The 5 minute
performance profiles both show the distinct advantage of GreedyAccResched and
GreedyRandAccResched over the other methods for short run times. For long run
times, the 30 minute performance profiles show CPLEX to be the clear winner for the
first instance set, with GreedyRandResched and GreedyRandAccResched best for the
second instance set.

112 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

GR GRR GAR GRAR RMJ 2

Network time [sec] mf calls mf calls time [sec] mf calls mf calls mf calls

1 14 321 37,818 12 214 30,966 83,170

2 36 627 28,411 23 382 25,900 65,355

3 28 724 38,786 26 490 32,253 54,133

4 160 1,982 19,304 84 1,129 19,702 35,745

5 367 2,928 13,907 229 1,966 7,793 23,858

6 197 1,762 15,022 96 776 7,603 33,656

7 709 4,704 11,133 499 3,485 5,714 14,388

8 956 4,723 8,147 536 2,334 3,808 8,056

Table 6: Average numbers of max flow problems (divided by 1000) for the second instance
set (Z = [25, 35]).

• For the second instance set, on the small networks CPLEX is still superior, but on
the larger networks, the local search heuristics outperform CPLEX, with all heuristics
giving solutions with smaller gaps on average for all (large) instances over short run
times, and all Greedy heuristics giving smaller gaps on average over long run times –
significantly smaller for 3 out of the 4 (largest) networks.

• Comparing GreedyResched and GreedyAccResched we see that in all cases it pays
off to save the time for reevaluating the possible moves after each step and thus being
able to make more moves in the same amount of time. A similar observation applies
to GreedyRandResched and GreedyRandAccResched, but the benefits of the latter are
less pronounced.

• Across the board, randomized greedy algorithms give better results than their non-
random counterparts, due to the possibility to escape local minima.

• RandMultiJob performs better with σ = 1 than 2, particularly for larger networks
in the second instance set, and for the first instance set, with the shorter run time.
On the first instance set with the longer run time, the two are difficult to separate,
but σ = 2 gives better results on more networks, and in particular does better on
the difficult case of the sixth network. As might be expected, the RandMultiJob

algorithms show more significant improvement than the greedy heuristics when given
more run time. However in no case do the RandMultiJob algorithms outperform the
greedy heuristics. (Hence we omit their profiles from Figures 6 to 9, to avoid cluttering
them.)

4.2 Instances derived from real world data

The real world maintenance scheduling problem is complicated by additional constraints
imposed, for example, by daylight restrictions, availability of equipment or labour force
to carry out the maintenance, incompatibility issues between jobs, or conflicts with other

Scheduling arc maintenance jobs in a network to maximize total flow over time 113

1 2 3 4 5 6 7 8

avg gap 0.0 0.4 0.3 1.1 3.0 3.7 3.9 12.9

CPX max gap 0.1 0.8 1.7 2.6 6.1 4.6 5.4 20.2

best sol 10 10 9 10 7 10 8 3

avg gap 2.1 2.8 1.9 1.6 2.3 4.9 2.1 3.3

GR max gap 4.1 4.0 3.5 1.9 2.5 5.5 2.7 5.3

best sol 0 0 0 0 0 0 0 0

avg gap 1.5 2.0 1.6 1.5 2.4 4.1 2.4 3.7

GRR max gap 2.2 3.1 2.4 2.0 2.7 5.2 3.1 6.1

best sol 0 0 0 0 0 0 0 0

avg gap 1.5 2.0 1.5 1.4 2.1 4.0 1.5 1.5

GAR max gap 1.9 2.4 2.2 1.6 2.5 4.8 1.9 2.2

best sol 0 0 1 0 2 0 2 6

avg gap 1.4 1.8 1.4 1.4 2.0 3.8 1.5 1.5

GRAR max gap 1.8 2.2 2.2 1.6 2.4 4.2 1.8 2.2

best sol 0 0 1 0 1 0 0 1

avg gap 3.0 5.1 2.0 4.5 7.3 11.1 5.2 5.7

RMJ 1 max gap 4.9 7.1 2.8 6.9 8.5 12.5 6.5 7.6

best sol 0 0 0 0 0 0 0 0

avg gap 2.5 4.6 1.9 4.8 7.3 11.2 5.3 5.9

RMJ 2 max gap 3.8 6.0 2.6 7.1 8.1 13.2 6.7 8.0

best sol 0 0 0 0 0 0 0 0

Table 7: Average and maximal relative gaps and number of best solutions found on the first
instance set, Z = [1, 35] (runtime 5 minutes).

users of the infrastructure. All of this can be modelled in an MIP framework and taken
into account in a local search, both of which are the subject of ongoing work. For the
present paper, we ignore the additional constraints and conduct some experiments on pure
MaxTFFAO instances derived from real world data. The network shown in Figure 10 is
a simplified version of the real situation. We generate two instances using the maintenance
job lists and the actual maintenance schedules for 2010 and 2011. These job lists contain
1, 457 and 1, 234 jobs, respectively. Based on the level of detail occurring in practice, we use
a time discretization of 1 hour, leading to instances with time horizons T = 365 ·24 = 8, 760.
The processing times vary between an hour and several days, while 75% of the jobs have a
processing time between 1 and 18 hours. For every job we assume a time window of two
weeks, i.e. dj = rj + pj + 14 · 24− 2 for all j. This model leads to really large problems as
indicated in Table 11, containing the problem sizes. As a start solution we used a snapshot
of the HVCCC maintenance scheduling process. We increased the time limit to 2 hours,
and the results are shown in Figures 11 and 12. For clarity, the same results for CPLEX
and a selection of the better algorithms is given in Figures 13 and 14.

114 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

1 2 3 4 5 6 7 8

avg gap 0.0 0.2 0.3 0.3 1.6 2.0 0.9 2.8

CPX max gap 0.0 0.4 1.7 0.8 2.8 2.7 2.1 6.1

best sol 10 10 9 10 7 10 8 3

avg gap 2.1 2.8 1.9 1.6 2.3 4.9 1.6 1.6

GR max gap 4.1 4.0 3.5 1.9 2.5 5.5 2.1 2.3

best sol 0 0 0 0 0 0 0 0

avg gap 1.4 1.7 1.5 1.4 2.0 3.7 1.4 1.5

GRR max gap 2.2 2.2 2.3 1.9 2.3 4.9 2.0 2.2

best sol 0 0 0 0 0 0 0 0

avg gap 1.5 2.0 1.5 1.4 2.1 4.0 1.5 1.5

GAR max gap 1.9 2.4 2.2 1.6 2.5 4.8 1.9 2.2

best sol 0 0 1 0 2 0 2 6

avg gap 1.3 1.7 1.4 1.3 2.0 3.7 1.4 1.5

GRAR max gap 1.7 2.1 2.2 1.5 2.4 4.2 1.8 2.2

best sol 0 0 1 0 1 0 0 1

avg gap 2.9 5.0 2.0 3.9 6.3 9.9 4.2 4.6

RMJ 1 max gap 4.9 6.9 2.8 5.7 6.8 11.9 5.7 6.2

best sol 0 0 0 0 0 0 0 0

avg gap 2.5 4.5 1.8 3.9 6.3 9.5 4.2 4.6

RMJ 2 max gap 3.8 5.9 2.6 6.1 7.0 11.0 5.0 6.5

best sol 0 0 0 0 0 0 0 0

Table 8: Average and maximal relative gaps and number of best solutions found on the first
instance set, Z = [1, 35] (runtime 30 minutes).

We observe that the MIP seems to be really hard. For the 2010 data, CPLEX finds
one integer solution with better objective value than the start solution, and for 2011 no
improving solution can be found at all. Confirming the results for the random instances,
the greedy approaches perform very well in terms of finding high quality solutions quickly.
The impacts, i.e. the annual capacity reductions due to maintenance, for the start solutions
were 37.6Mt (2010) and 32.5 Mt (2011). Table 12 shows the impact reductions achieved by
the different algorithms. We note two features that seem to be different to the behaviour
for the random instances.

1. Randomization does not always improve the greedy heuristics. Of course, looking at
two instances is very limited evidence, but for the 2011 data the randomized variants
give slightly worse results. GreedyAccResched gives the best result for this instance.

2. RandMultiJob keeps improving even after 2 hours, while the other local search strategies
seem to get trapped in local optima comparatively early. Both σ = 1 and 2 values
give better results than any of the greedy heuristics or CPLEX for the 2010 instance,

Scheduling arc maintenance jobs in a network to maximize total flow over time 115

1 2 3 4 5 6 7 8

avg gap 0.1 3.9 0.0 6.3 20.5 21.9 16.1 17.0

CPX max gap 0.4 6.2 0.1 11.0 25.3 39.5 22.8 24.8

best sol 10 10 10 9 0 3 0 0

avg gap 1.8 4.0 1.6 1.9 3.4 8.2 2.5 3.6

GR max gap 2.5 4.7 2.1 2.8 4.6 10.0 3.4 5.6

best sol 0 0 0 0 1 0 0 2

avg gap 1.4 3.2 1.2 1.9 3.5 7.7 2.6 4.0

GRR max gap 2.1 4.0 1.4 2.7 4.8 10.8 3.2 5.8

best sol 0 0 0 0 1 2 0 1

avg gap 1.4 3.4 1.2 1.8 2.9 7.7 1.4 1.3

GAR max gap 2.3 4.5 1.4 2.5 3.5 9.1 1.8 1.9

best sol 0 0 0 0 7 3 4 4

avg gap 1.3 3.0 1.2 1.8 2.8 7.7 1.4 1.4

GRAR max gap 2.3 3.9 1.4 2.4 3.5 9.4 1.8 1.9

best sol 0 0 0 1 1 2 6 3

avg gap 2.0 6.5 1.4 4.6 8.1 15.3 5.1 4.9

RMJ 1 max gap 3.0 8.2 1.7 8.3 9.3 18.8 5.9 6.6

best sol 0 0 0 0 0 0 0 0

avg gap 1.9 6.5 1.4 4.7 8.2 15.5 5.0 5.0

RMJ 2 max gap 2.8 8.2 1.7 8.7 10.0 18.4 5.9 6.6

best sol 0 0 0 0 0 0 0 0

Table 9: Average and maximal relative gaps and number of best solutions found on the
second instance set, Z = [25, 35] (runtime 5 minutes).

with σ = 2 giving the best result overall.

116 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

1 2 3 4 5 6 7 8

avg gap 0.0 1.9 0.0 1.6 7.4 8.9 6.6 13.3

CPX max gap 0.1 3.3 0.1 4.9 10.8 14.2 10.1 18.3

best sol 10 10 10 9 0 3 0 0

avg gap 1.8 4.0 1.6 1.9 3.1 8.2 1.5 1.3

GR max gap 2.5 4.7 2.1 2.8 4.1 10.0 2.0 1.6

best sol 0 0 0 0 1 0 0 2

avg gap 1.3 3.1 1.2 1.8 2.8 7.2 1.4 1.3

GRR max gap 1.8 3.9 1.4 2.5 3.5 9.0 1.8 1.5

best sol 0 0 0 0 1 2 0 1

avg gap 1.4 3.4 1.2 1.8 2.9 7.7 1.4 1.3

GAR max gap 2.3 4.5 1.4 2.5 3.5 9.1 1.7 1.9

best sol 0 0 0 0 7 3 4 4

avg gap 1.3 3.0 1.2 1.7 2.8 7.3 1.4 1.3

GRAR max gap 1.8 3.8 1.4 2.3 3.5 8.5 1.8 1.9

best sol 0 0 0 1 1 2 6 3

avg gap 2.0 6.4 1.4 3.9 7.0 13.9 4.1 4.0

RMJ 1 max gap 3.0 8.2 1.6 7.2 7.9 17.4 5.2 5.8

best sol 0 0 0 0 0 0 0 0

avg gap 1.9 6.2 1.3 3.8 7.1 14.1 4.2 4.0

RMJ 2 max gap 2.8 8.2 1.7 7.0 8.2 17.1 4.9 5.7

best sol 0 0 0 0 0 0 0 0

Table 10: Average and maximal relative gaps and number of best solutions found on the
second instance set, Z = [25, 35] (runtime 30 minutes).

Rows # Columns # Nonzeros # Binaries Root relaxation solution time (s)

2010 2,741,944 3,317,433 13,500,830 1,775,673 3,823

2011 2,735,919 3,310,352 13,226,945 1,768,592 7,154

Table 11: Problem sizes for the instances derived from real world data.

Scheduling arc maintenance jobs in a network to maximize total flow over time 117

Figure 10: The HVCC network. The circled parts of the network represent the flow of coal
through terminal handling equipment. The rest represents the rail network, sourcing coal
from 33 coal load points.

Figure 11: Progress for the 2010 data. Figure 12: Progress for the 2011 data.

118 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Figure 13: Progress for the 2010 data (selec-
ted algorithms).

Figure 14: Progress for the 2011 data (selec-
ted algorithms).

2010 2011

Impact (Mt) Reduction (%) Gap (%) Impact (Mt) Reduction (%) Gap (%)

CPX 28.9 22.9 7.8 32.5 0.0 13.4

GR 26.4 29.6 6.1 19.8 39.0 4.9

GRR 25.6 31.8 5.5 20.3 37.5 5.2

GAR 25.4 32.3 5.4 19.8 39.1 4.9

GRAR 25.0 33.4 5.1 19.9 38.7 4.9

RMJ 1 24.8 33.9 4.9 20.5 36.8 5.4

RMJ 2 24.6 34.6 4.8 20.4 37.3 5.3

Table 12: Impact reduction obtained by the different local search strategies. The column
labeled “Gap” contains the relative gap to the best known upper bound from CPLEX.

Scheduling arc maintenance jobs in a network to maximize total flow over time 119

5 Future directions

We want to point out three directions for further investigation, other than those already
indicated in the paper.

1. A natural idea is to develop the local search towards a Greedy Randomized Adaptive
Search Procedure (GRASP) [16]. That means, instead of using a fixed start solution,
start solutions are constructed in a randomized greedy manner.

2. As the general problem is NP-hard, it is interesting to look for special cases (special
in terms of the network structure and/or in terms of properties of the job list) that
can be solved efficiently.

3. In the other direction, there might be generalizations of the problem that are worth
studying, for instance allowing

• arbitrary subsets of [T] as sets of possible start times (not only intervals [rj , dj]),
and

• job processing to only reduce the arc capacity by some fraction, rather than
taking it out completely.

The former arises in the Hunter Valley coal chain application in respect of rail track
maintenance, where crews must work during daylight hours of the working week. The
latter obviously arises in contexts such as highway maintenance, where lane closures
and slow-downs come into effect.

These examples of possible future directions illustrate what an exciting new problem we
believe maximum total flow with flexible arc outages to be, with great potential for both
theoretical and practical development.

Acknowledgment

We like to acknowledge the valuable contributions of Jonathon Vandervoort, Rob Oyston,
Tracey Giles, and the Capacity Planning Team from the Hunter Valley Coal Chain Coordin-
ator (HVCCC) P/L. Without their patience, support, and feedback, this research could not
have occurred. We also thank the HVCCC and the Australian Research Council for their
joint funding under the ARC Linkage Grant no. LP0990739. Furthermore, we are very
grateful to the anonymous referees for their helpful comments and suggestions.

References

[1] N. Boland and M. Savelsbergh. “Optimizing the Hunter Valley coal chain”. In: Supply
Chain Disruptions: Theory and Practice of Managing Risk. Ed. by H. Gurnani, A.
Mehrotra and S. Ray. Springer-Verlag London Ltd., 2011, pp. 275–302.

120 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

[2] B. Cavdaroglu, J.E. Mitchell, S.G. Nurre, T.C. Sharkey and W.A. Wallace. Restoring
infrastructure systems: An integrated network design and scheduling problem. Tech.
rep. www.rpi.edu/~sharkt/RIS.pdf (13 November 2011). Rensselaer Polytechnic
Institute, 2010.

[3] L. Fleischer. “Faster algorithms for the quickest transshipment problem”. In: SIAM
journal on Optimization 12.1 (2001), pp. 18–35. doi: 10.1137/S1052623497327295.

[4] L. Fleischer. “Universally maximum flow with piecewise-constant capacities”. In: Net-
works 38.3 (2001), pp. 115–125. doi: 10.1002/net.1030.

[5] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton, N.J.: Princeton Univ.
Press, 1962.

[6] M.R. Garey and D.S. Johnson. Computers and intractability, a guide to the theory of
NP–completeness. W.H. Freeman, 1979.

[7] D. Goldfarb and M.D. Grigoriadis. “A computational comparison of the Dinic and
network simplex methods for maximum flow”. In: Annals of Operations Research 13.1
(1988), pp. 81–123. doi: 10.1007/BF02288321.

[8] B. Hajek and R.G. Ogier. “Optimal dynamic routing in communication networks
with continuous traffic”. In: Networks 14.3 (1984), pp. 457–487. doi: 10.1002/net.
3230140308.

[9] B. Hoppe and É. Tardos. “Polynomial time algorithms for some evacuation problems”.
In: Proc. 5th ACM-SIAM symposium on discrete algorithms SODA 1994. Society for
Industrial and Applied Mathematics. 1994, pp. 433–441.

[10] R. Koch, E. Nasrabadi and M. Skutella. “Continuous and discrete flows over time”.
In: Mathematical Methods of Operations Research 73.3 (2011), pp. 301–337. doi: 10.
1007/s00186-011-0357-2.

[11] B. Kotnyek. An annotated overview of dynamic network flows. Tech. rep. 4936. http:
//hal.inria.fr/inria-00071643/ (20 February 2013). INRIA, 2003.

[12] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, 1988.

[13] S.G. Nurre and T.C. Sharkey. “Restoring infrastructure systems: An integrated net-
work design and scheduling problem”. In: Proceedings of the 2010 Industrial Engin-
eering Research Conference. 2010.

[14] R.G. Ogier. “Minimum-delay routing in continuous-time dynamic networks with piecewise-
constant capacities”. In: Networks 18.4 (1988), pp. 303–318. doi: 10.1002/net.

3230180405.

[15] M.L. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.

[16] L.S. Pitsoulis and M.G.C. Resende. “Greedy randomized adaptive search procedures”.
In: Handbook of applied optimization. Ed. by P.M. Pardalos and M.G.C. Resende.
Oxford University Press, 2002, pp. 168–183.

www.rpi.edu/~sharkt/RIS.pdf
http://dx.doi.org/10.1137/S1052623497327295
http://dx.doi.org/10.1002/net.1030
http://dx.doi.org/10.1007/BF02288321
http://dx.doi.org/10.1002/net.3230140308
http://dx.doi.org/10.1002/net.3230140308
http://dx.doi.org/10.1007/s00186-011-0357-2
http://dx.doi.org/10.1007/s00186-011-0357-2
http://hal.inria.fr/inria-00071643/
http://hal.inria.fr/inria-00071643/
http://dx.doi.org/10.1002/net.3230180405
http://dx.doi.org/10.1002/net.3230180405

Scheduling arc maintenance jobs in a network to maximize total flow over time 121

[17] J.G. Siek, L.-Q. Lee and A. Lumsdaine. The Boost Graph Library: User Guide and
Reference Manual. C++ In-Depth. Addison-Wesley Professional, 2001.

[18] M. Skutella. “An introduction to network flows over time”. In: Research Trends in
Combinatorial Optimization (2009), pp. 451–482. doi: 10.1007/978-3-540-76796-1.

[19] A. Toriello, G. Nemhauser and M. Savelsbergh. “Decomposing inventory routing prob-
lems with approximate value functions”. In: Naval Research Logistics 57.8 (2010),
pp. 718–727. doi: 10.1002/nav.20433.

http://dx.doi.org/10.1007/978-3-540-76796-1
http://dx.doi.org/10.1002/nav.20433

122 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

	Introduction
	Problem Definition and Complexity Results
	Local search for MaxTFFAO
	Evaluating the objective function
	Moving single jobs
	Preliminary considerations
	The basic method
	Variations

	Moving multiple jobs

	Computational Experiments
	Randomly generated instances
	Instance generation
	Experimental setup
	Results

	Instances derived from real world data

	Future directions

