/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* * This sample implements a conjugate gradient solver on GPU * using CUBLAS and CUSPARSE * */ // includes, system #include #include #include /* Using updated (v2) interfaces to cublas and cusparse */ #include #include #include // Utilities and system includes #include // helper for shared functions common to CUDA Samples #include // helper function CUDA error checking and initialization const char *sSDKname = "conjugateGradientUM"; /* genTridiag: generate a random tridiagonal symmetric matrix */ void genTridiag(int *I, int *J, float *val, int N, int nz) { I[0] = 0, J[0] = 0, J[1] = 1; val[0] = (float)rand()/RAND_MAX + 10.0f; val[1] = (float)rand()/RAND_MAX; int start; for (int i = 1; i < N; i++) { if (i > 1) { I[i] = I[i-1]+3; } else { I[1] = 2; } start = (i-1)*3 + 2; J[start] = i - 1; J[start+1] = i; if (i < N-1) { J[start+2] = i + 1; } val[start] = val[start-1]; val[start+1] = (float)rand()/RAND_MAX + 10.0f; if (i < N-1) { val[start+2] = (float)rand()/RAND_MAX; } } I[N] = nz; } int main(int argc, char **argv) { int N = 0, nz = 0, *I = NULL, *J = NULL; float *val = NULL; const float tol = 1e-5f; const int max_iter = 10000; float *x; float *rhs; float a, b, na, r0, r1; float dot; float *r, *p, *Ax; int k; float alpha, beta, alpham1; printf("Starting [%s]...\n", sSDKname); // This will pick the best possible CUDA capable device cudaDeviceProp deviceProp; int devID = findCudaDevice(argc, (const char **)argv); checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID)); if (!deviceProp.managedMemory) { // This samples requires being run on a device that supports Unified Memory fprintf(stderr, "Unified Memory not supported on this device\n"); exit(EXIT_WAIVED); } // Statistics about the GPU device printf("> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n", deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor); /* Generate a random tridiagonal symmetric matrix in CSR format */ N = 1048576; nz = (N-2)*3 + 4; cudaMallocManaged((void **)&I, sizeof(int)*(N+1)); cudaMallocManaged((void **)&J, sizeof(int)*nz); cudaMallocManaged((void **)&val, sizeof(float)*nz); genTridiag(I, J, val, N, nz); cudaMallocManaged((void **)&x, sizeof(float)*N); cudaMallocManaged((void **)&rhs, sizeof(float)*N); for (int i = 0; i < N; i++) { rhs[i] = 1.0; x[i] = 0.0; } /* Get handle to the CUBLAS context */ cublasHandle_t cublasHandle = 0; cublasStatus_t cublasStatus; cublasStatus = cublasCreate(&cublasHandle); checkCudaErrors(cublasStatus); /* Get handle to the CUSPARSE context */ cusparseHandle_t cusparseHandle = 0; cusparseStatus_t cusparseStatus; cusparseStatus = cusparseCreate(&cusparseHandle); checkCudaErrors(cusparseStatus); cusparseMatDescr_t descr = 0; cusparseStatus = cusparseCreateMatDescr(&descr); checkCudaErrors(cusparseStatus); cusparseSetMatType(descr,CUSPARSE_MATRIX_TYPE_GENERAL); cusparseSetMatIndexBase(descr,CUSPARSE_INDEX_BASE_ZERO); // temp memory for CG checkCudaErrors(cudaMallocManaged((void **)&r, N*sizeof(float))); checkCudaErrors(cudaMallocManaged((void **)&p, N*sizeof(float))); checkCudaErrors(cudaMallocManaged((void **)&Ax, N*sizeof(float))); /* Wrap raw data into cuSPARSE generic API objects */ cusparseSpMatDescr_t matA = NULL; checkCudaErrors(cusparseCreateCsr( &matA, N, N, nz, I, J, val, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ZERO, CUDA_R_32F)); cusparseDnVecDescr_t vecx = NULL; checkCudaErrors(cusparseCreateDnVec(&vecx, N, x, CUDA_R_32F)); cusparseDnVecDescr_t vecp = NULL; checkCudaErrors(cusparseCreateDnVec(&vecp, N, p, CUDA_R_32F)); cusparseDnVecDescr_t vecAx = NULL; checkCudaErrors(cusparseCreateDnVec(&vecAx, N, Ax, CUDA_R_32F)); cudaDeviceSynchronize(); for (int i=0; i < N; i++) { r[i] = rhs[i]; } alpha = 1.0; alpham1 = -1.0; beta = 0.0; r0 = 0.; /* Allocate workspace for cuSPARSE */ size_t bufferSize = 0; checkCudaErrors(cusparseSpMV_bufferSize( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecx, &beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize)); void *buffer = NULL; checkCudaErrors(cudaMalloc(&buffer, bufferSize)); checkCudaErrors(cusparseSpMV( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecx, &beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, buffer)); cublasSaxpy(cublasHandle, N, &alpham1, Ax, 1, r, 1); cublasStatus = cublasSdot(cublasHandle, N, r, 1, r, 1, &r1); k = 1; while (r1 > tol*tol && k <= max_iter) { if (k > 1) { b = r1 / r0; cublasStatus = cublasSscal(cublasHandle, N, &b, p, 1); cublasStatus = cublasSaxpy(cublasHandle, N, &alpha, r, 1, p, 1); } else { cublasStatus = cublasScopy(cublasHandle, N, r, 1, p, 1); } checkCudaErrors(cusparseSpMV( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecp, &beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, buffer)); cublasStatus = cublasSdot(cublasHandle, N, p, 1, Ax, 1, &dot); a = r1 / dot; cublasStatus = cublasSaxpy(cublasHandle, N, &a, p, 1, x, 1); na = -a; cublasStatus = cublasSaxpy(cublasHandle, N, &na, Ax, 1, r, 1); r0 = r1; cublasStatus = cublasSdot(cublasHandle, N, r, 1, r, 1, &r1); cudaDeviceSynchronize(); printf("iteration = %3d, residual = %e\n", k, sqrt(r1)); k++; } printf("Final residual: %e\n",sqrt(r1)); fprintf(stdout,"&&&& conjugateGradientUM %s\n", (sqrt(r1) < tol) ? "PASSED" : "FAILED"); float rsum, diff, err = 0.0; for (int i = 0; i < N; i++) { rsum = 0.0; for (int j = I[i]; j < I[i+1]; j++) { rsum += val[j]*x[J[j]]; } diff = fabs(rsum - rhs[i]); if (diff > err) { err = diff; } } cusparseDestroy(cusparseHandle); cublasDestroy(cublasHandle); if (matA ) { checkCudaErrors(cusparseDestroySpMat(matA)); } if (vecx ) { checkCudaErrors(cusparseDestroyDnVec(vecx)); } if (vecAx ) { checkCudaErrors(cusparseDestroyDnVec(vecAx)); } if (vecp ) { checkCudaErrors(cusparseDestroyDnVec(vecp)); } cudaFree(I); cudaFree(J); cudaFree(val); cudaFree(x); cudaFree(rhs); cudaFree(r); cudaFree(p); cudaFree(Ax); printf("Test Summary: Error amount = %f, result = %s\n", err, (k <= max_iter) ? "SUCCESS" : "FAILURE"); exit((k <= max_iter) ? EXIT_SUCCESS : EXIT_FAILURE); }