/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* * This sample calculates scalar products of a * given set of input vector pairs */ #include #include #include #include #include #include /////////////////////////////////////////////////////////////////////////////// // Calculate scalar products of VectorN vectors of ElementN elements on CPU /////////////////////////////////////////////////////////////////////////////// extern "C" void scalarProdCPU( float *h_C, float *h_A, float *h_B, int vectorN, int elementN ); /////////////////////////////////////////////////////////////////////////////// // Calculate scalar products of VectorN vectors of ElementN elements on GPU /////////////////////////////////////////////////////////////////////////////// #include "scalarProd_kernel.cuh" //////////////////////////////////////////////////////////////////////////////// // Helper function, returning uniformly distributed // random float in [low, high] range //////////////////////////////////////////////////////////////////////////////// float RandFloat(float low, float high) { float t = (float)rand() / (float)RAND_MAX; return (1.0f - t) * low + t * high; } /////////////////////////////////////////////////////////////////////////////// // Data configuration /////////////////////////////////////////////////////////////////////////////// //Total number of input vector pairs; arbitrary const int VECTOR_N = 256; //Number of elements per vector; arbitrary, //but strongly preferred to be a multiple of warp size //to meet memory coalescing constraints const int ELEMENT_N = 4096; //Total number of data elements const int DATA_N = VECTOR_N * ELEMENT_N; const int DATA_SZ = DATA_N * sizeof(float); const int RESULT_SZ = VECTOR_N * sizeof(float); /////////////////////////////////////////////////////////////////////////////// // Main program /////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { float *h_A, *h_B, *h_C_CPU, *h_C_GPU; float *d_A, *d_B, *d_C; double delta, ref, sum_delta, sum_ref, L1norm; StopWatchInterface *hTimer = NULL; int i; printf("%s Starting...\n\n", argv[0]); // use command-line specified CUDA device, otherwise use device with highest Gflops/s findCudaDevice(argc, (const char **)argv); sdkCreateTimer(&hTimer); printf("Initializing data...\n"); printf("...allocating CPU memory.\n"); h_A = (float *)malloc(DATA_SZ); h_B = (float *)malloc(DATA_SZ); h_C_CPU = (float *)malloc(RESULT_SZ); h_C_GPU = (float *)malloc(RESULT_SZ); printf("...allocating GPU memory.\n"); checkCudaErrors(cudaMalloc((void **)&d_A, DATA_SZ)); checkCudaErrors(cudaMalloc((void **)&d_B, DATA_SZ)); checkCudaErrors(cudaMalloc((void **)&d_C, RESULT_SZ)); printf("...generating input data in CPU mem.\n"); srand(123); //Generating input data on CPU for (i = 0; i < DATA_N; i++) { h_A[i] = RandFloat(0.0f, 1.0f); h_B[i] = RandFloat(0.0f, 1.0f); } printf("...copying input data to GPU mem.\n"); //Copy options data to GPU memory for further processing checkCudaErrors(cudaMemcpy(d_A, h_A, DATA_SZ, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_B, h_B, DATA_SZ, cudaMemcpyHostToDevice)); printf("Data init done.\n"); printf("Executing GPU kernel...\n"); checkCudaErrors(cudaDeviceSynchronize()); sdkResetTimer(&hTimer); sdkStartTimer(&hTimer); scalarProdGPU<<<128, 256>>>(d_C, d_A, d_B, VECTOR_N, ELEMENT_N); getLastCudaError("scalarProdGPU() execution failed\n"); checkCudaErrors(cudaDeviceSynchronize()); sdkStopTimer(&hTimer); printf("GPU time: %f msecs.\n", sdkGetTimerValue(&hTimer)); printf("Reading back GPU result...\n"); //Read back GPU results to compare them to CPU results checkCudaErrors(cudaMemcpy(h_C_GPU, d_C, RESULT_SZ, cudaMemcpyDeviceToHost)); printf("Checking GPU results...\n"); printf("..running CPU scalar product calculation\n"); scalarProdCPU(h_C_CPU, h_A, h_B, VECTOR_N, ELEMENT_N); printf("...comparing the results\n"); //Calculate max absolute difference and L1 distance //between CPU and GPU results sum_delta = 0; sum_ref = 0; for (i = 0; i < VECTOR_N; i++) { delta = fabs(h_C_GPU[i] - h_C_CPU[i]); ref = h_C_CPU[i]; sum_delta += delta; sum_ref += ref; } L1norm = sum_delta / sum_ref; printf("Shutting down...\n"); checkCudaErrors(cudaFree(d_C)); checkCudaErrors(cudaFree(d_B)); checkCudaErrors(cudaFree(d_A)); free(h_C_GPU); free(h_C_CPU); free(h_B); free(h_A); sdkDeleteTimer(&hTimer); printf("L1 error: %E\n", L1norm); printf((L1norm < 1e-6) ? "Test passed\n" : "Test failed!\n"); exit(L1norm < 1e-6 ? EXIT_SUCCESS : EXIT_FAILURE); }