/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ #include namespace cg = cooperative_groups; #include #include #include "mergeSort_common.h" inline __device__ void Comparator( uint &keyA, uint &valA, uint &keyB, uint &valB, uint arrowDir ) { uint t; if ((keyA > keyB) == arrowDir) { t = keyA; keyA = keyB; keyB = t; t = valA; valA = valB; valB = t; } } __global__ void bitonicSortSharedKernel( uint *d_DstKey, uint *d_DstVal, uint *d_SrcKey, uint *d_SrcVal, uint arrayLength, uint sortDir ) { // Handle to thread block group cg::thread_block cta = cg::this_thread_block(); //Shared memory storage for one or more short vectors __shared__ uint s_key[SHARED_SIZE_LIMIT]; __shared__ uint s_val[SHARED_SIZE_LIMIT]; //Offset to the beginning of subbatch and load data d_SrcKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; d_SrcVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; d_DstKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; d_DstVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x; s_key[threadIdx.x + 0] = d_SrcKey[ 0]; s_val[threadIdx.x + 0] = d_SrcVal[ 0]; s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcKey[(SHARED_SIZE_LIMIT / 2)]; s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] = d_SrcVal[(SHARED_SIZE_LIMIT / 2)]; for (uint size = 2; size < arrayLength; size <<= 1) { //Bitonic merge uint dir = (threadIdx.x & (size / 2)) != 0; for (uint stride = size / 2; stride > 0; stride >>= 1) { cg::sync(cta); uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1)); Comparator( s_key[pos + 0], s_val[pos + 0], s_key[pos + stride], s_val[pos + stride], dir ); } } //ddd == sortDir for the last bitonic merge step { for (uint stride = arrayLength / 2; stride > 0; stride >>= 1) { cg::sync(cta); uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1)); Comparator( s_key[pos + 0], s_val[pos + 0], s_key[pos + stride], s_val[pos + stride], sortDir ); } } cg::sync(cta); d_DstKey[ 0] = s_key[threadIdx.x + 0]; d_DstVal[ 0] = s_val[threadIdx.x + 0]; d_DstKey[(SHARED_SIZE_LIMIT / 2)] = s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)]; d_DstVal[(SHARED_SIZE_LIMIT / 2)] = s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)]; } //Helper function (also used by odd-even merge sort) extern "C" uint factorRadix2(uint *log2L, uint L) { if (!L) { *log2L = 0; return 0; } else { for (*log2L = 0; (L & 1) == 0; L >>= 1, *log2L++); return L; } } extern "C" void bitonicSortShared( uint *d_DstKey, uint *d_DstVal, uint *d_SrcKey, uint *d_SrcVal, uint batchSize, uint arrayLength, uint sortDir ) { //Nothing to sort if (arrayLength < 2) { return; } //Only power-of-two array lengths are supported by this implementation uint log2L; uint factorizationRemainder = factorRadix2(&log2L, arrayLength); assert(factorizationRemainder == 1); uint blockCount = batchSize * arrayLength / SHARED_SIZE_LIMIT; uint threadCount = SHARED_SIZE_LIMIT / 2; assert(arrayLength <= SHARED_SIZE_LIMIT); assert((batchSize * arrayLength) % SHARED_SIZE_LIMIT == 0); bitonicSortSharedKernel<<>>(d_DstKey, d_DstVal, d_SrcKey, d_SrcVal, arrayLength, sortDir); getLastCudaError("bitonicSortSharedKernel<<<>>> failed!\n"); } //////////////////////////////////////////////////////////////////////////////// // Merge step 3: merge elementary intervals //////////////////////////////////////////////////////////////////////////////// static inline __host__ __device__ uint iDivUp(uint a, uint b) { return ((a % b) == 0) ? (a / b) : (a / b + 1); } static inline __host__ __device__ uint getSampleCount(uint dividend) { return iDivUp(dividend, SAMPLE_STRIDE); } template static inline __device__ void ComparatorExtended( uint &keyA, uint &valA, uint &flagA, uint &keyB, uint &valB, uint &flagB, uint arrowDir ) { uint t; if ( (!(flagA || flagB) && ((keyA > keyB) == arrowDir)) || ((arrowDir == sortDir) && (flagA == 1)) || ((arrowDir != sortDir) && (flagB == 1)) ) { t = keyA; keyA = keyB; keyB = t; t = valA; valA = valB; valB = t; t = flagA; flagA = flagB; flagB = t; } } template __global__ void bitonicMergeElementaryIntervalsKernel( uint *d_DstKey, uint *d_DstVal, uint *d_SrcKey, uint *d_SrcVal, uint *d_LimitsA, uint *d_LimitsB, uint stride, uint N ) { // Handle to thread block group cg::thread_block cta = cg::this_thread_block(); __shared__ uint s_key[2 * SAMPLE_STRIDE]; __shared__ uint s_val[2 * SAMPLE_STRIDE]; __shared__ uint s_inf[2 * SAMPLE_STRIDE]; const uint intervalI = blockIdx.x & ((2 * stride) / SAMPLE_STRIDE - 1); const uint segmentBase = (blockIdx.x - intervalI) * SAMPLE_STRIDE; d_SrcKey += segmentBase; d_SrcVal += segmentBase; d_DstKey += segmentBase; d_DstVal += segmentBase; //Set up threadblock-wide parameters __shared__ uint startSrcA, lenSrcA, startSrcB, lenSrcB, startDst; if (threadIdx.x == 0) { uint segmentElementsA = stride; uint segmentElementsB = umin(stride, N - segmentBase - stride); uint segmentSamplesA = stride / SAMPLE_STRIDE; uint segmentSamplesB = getSampleCount(segmentElementsB); uint segmentSamples = segmentSamplesA + segmentSamplesB; startSrcA = d_LimitsA[blockIdx.x]; startSrcB = d_LimitsB[blockIdx.x]; startDst = startSrcA + startSrcB; uint endSrcA = (intervalI + 1 < segmentSamples) ? d_LimitsA[blockIdx.x + 1] : segmentElementsA; uint endSrcB = (intervalI + 1 < segmentSamples) ? d_LimitsB[blockIdx.x + 1] : segmentElementsB; lenSrcA = endSrcA - startSrcA; lenSrcB = endSrcB - startSrcB; } s_inf[threadIdx.x + 0] = 1; s_inf[threadIdx.x + SAMPLE_STRIDE] = 1; //Load input data cg::sync(cta); if (threadIdx.x < lenSrcA) { s_key[threadIdx.x] = d_SrcKey[0 + startSrcA + threadIdx.x]; s_val[threadIdx.x] = d_SrcVal[0 + startSrcA + threadIdx.x]; s_inf[threadIdx.x] = 0; } //Prepare for bitonic merge by inversing the ordering if (threadIdx.x < lenSrcB) { s_key[2 * SAMPLE_STRIDE - 1 - threadIdx.x] = d_SrcKey[stride + startSrcB + threadIdx.x]; s_val[2 * SAMPLE_STRIDE - 1 - threadIdx.x] = d_SrcVal[stride + startSrcB + threadIdx.x]; s_inf[2 * SAMPLE_STRIDE - 1 - threadIdx.x] = 0; } //"Extended" bitonic merge for (uint stride = SAMPLE_STRIDE; stride > 0; stride >>= 1) { cg::sync(cta); uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1)); ComparatorExtended( s_key[pos + 0], s_val[pos + 0], s_inf[pos + 0], s_key[pos + stride], s_val[pos + stride], s_inf[pos + stride], sortDir ); } //Store sorted data cg::sync(cta); d_DstKey += startDst; d_DstVal += startDst; if (threadIdx.x < lenSrcA) { d_DstKey[threadIdx.x] = s_key[threadIdx.x]; d_DstVal[threadIdx.x] = s_val[threadIdx.x]; } if (threadIdx.x < lenSrcB) { d_DstKey[lenSrcA + threadIdx.x] = s_key[lenSrcA + threadIdx.x]; d_DstVal[lenSrcA + threadIdx.x] = s_val[lenSrcA + threadIdx.x]; } } extern "C" void bitonicMergeElementaryIntervals( uint *d_DstKey, uint *d_DstVal, uint *d_SrcKey, uint *d_SrcVal, uint *d_LimitsA, uint *d_LimitsB, uint stride, uint N, uint sortDir ) { uint lastSegmentElements = N % (2 * stride); uint mergePairs = (lastSegmentElements > stride) ? getSampleCount(N) : (N - lastSegmentElements) / SAMPLE_STRIDE; if (sortDir) { bitonicMergeElementaryIntervalsKernel<1U><<>>( d_DstKey, d_DstVal, d_SrcKey, d_SrcVal, d_LimitsA, d_LimitsB, stride, N ); getLastCudaError("mergeElementaryIntervalsKernel<1> failed\n"); } else { bitonicMergeElementaryIntervalsKernel<0U><<>>( d_DstKey, d_DstVal, d_SrcKey, d_SrcVal, d_LimitsA, d_LimitsB, stride, N ); getLastCudaError("mergeElementaryIntervalsKernel<0> failed\n"); } }