/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* * CUDA particle system kernel code. */ #ifndef _PARTICLES_KERNEL_H_ #define _PARTICLES_KERNEL_H_ #include #include #include namespace cg = cooperative_groups; #include "helper_math.h" #include "math_constants.h" #include "particles_kernel.cuh" // simulation parameters in constant memory __constant__ SimParams params; struct integrate_functor { float deltaTime; __host__ __device__ integrate_functor(float delta_time) : deltaTime(delta_time) {} template __device__ void operator()(Tuple t) { volatile float4 posData = thrust::get<0>(t); volatile float4 velData = thrust::get<1>(t); float3 pos = make_float3(posData.x, posData.y, posData.z); float3 vel = make_float3(velData.x, velData.y, velData.z); vel += params.gravity * deltaTime; vel *= params.globalDamping; // new position = old position + velocity * deltaTime pos += vel * deltaTime; // set this to zero to disable collisions with cube sides #if 1 if (pos.x > 1.0f - params.particleRadius) { pos.x = 1.0f - params.particleRadius; vel.x *= params.boundaryDamping; } if (pos.x < -1.0f + params.particleRadius) { pos.x = -1.0f + params.particleRadius; vel.x *= params.boundaryDamping; } if (pos.y > 1.0f - params.particleRadius) { pos.y = 1.0f - params.particleRadius; vel.y *= params.boundaryDamping; } if (pos.z > 1.0f - params.particleRadius) { pos.z = 1.0f - params.particleRadius; vel.z *= params.boundaryDamping; } if (pos.z < -1.0f + params.particleRadius) { pos.z = -1.0f + params.particleRadius; vel.z *= params.boundaryDamping; } #endif if (pos.y < -1.0f + params.particleRadius) { pos.y = -1.0f + params.particleRadius; vel.y *= params.boundaryDamping; } // store new position and velocity thrust::get<0>(t) = make_float4(pos, posData.w); thrust::get<1>(t) = make_float4(vel, velData.w); } }; // calculate position in uniform grid __device__ int3 calcGridPos(float3 p) { int3 gridPos; gridPos.x = floorf((p.x - params.worldOrigin.x) / params.cellSize.x); gridPos.y = floorf((p.y - params.worldOrigin.y) / params.cellSize.y); gridPos.z = floorf((p.z - params.worldOrigin.z) / params.cellSize.z); return gridPos; } // calculate address in grid from position (clamping to edges) __device__ uint calcGridHash(int3 gridPos) { gridPos.x = gridPos.x & (params.gridSize.x-1); // wrap grid, assumes size is power of 2 gridPos.y = gridPos.y & (params.gridSize.y-1); gridPos.z = gridPos.z & (params.gridSize.z-1); return __umul24(__umul24(gridPos.z, params.gridSize.y), params.gridSize.x) + __umul24(gridPos.y, params.gridSize.x) + gridPos.x; } // calculate grid hash value for each particle __global__ void calcHashD(uint *gridParticleHash, // output uint *gridParticleIndex, // output float4 *pos, // input: positions uint numParticles) { uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x; if (index >= numParticles) return; volatile float4 p = pos[index]; // get address in grid int3 gridPos = calcGridPos(make_float3(p.x, p.y, p.z)); uint hash = calcGridHash(gridPos); // store grid hash and particle index gridParticleHash[index] = hash; gridParticleIndex[index] = index; } // rearrange particle data into sorted order, and find the start of each cell // in the sorted hash array __global__ void reorderDataAndFindCellStartD(uint *cellStart, // output: cell start index uint *cellEnd, // output: cell end index float4 *sortedPos, // output: sorted positions float4 *sortedVel, // output: sorted velocities uint *gridParticleHash, // input: sorted grid hashes uint *gridParticleIndex,// input: sorted particle indices float4 *oldPos, // input: sorted position array float4 *oldVel, // input: sorted velocity array uint numParticles) { // Handle to thread block group cg::thread_block cta = cg::this_thread_block(); extern __shared__ uint sharedHash[]; // blockSize + 1 elements uint index = __umul24(blockIdx.x,blockDim.x) + threadIdx.x; uint hash; // handle case when no. of particles not multiple of block size if (index < numParticles) { hash = gridParticleHash[index]; // Load hash data into shared memory so that we can look // at neighboring particle's hash value without loading // two hash values per thread sharedHash[threadIdx.x+1] = hash; if (index > 0 && threadIdx.x == 0) { // first thread in block must load neighbor particle hash sharedHash[0] = gridParticleHash[index-1]; } } cg::sync(cta); if (index < numParticles) { // If this particle has a different cell index to the previous // particle then it must be the first particle in the cell, // so store the index of this particle in the cell. // As it isn't the first particle, it must also be the cell end of // the previous particle's cell if (index == 0 || hash != sharedHash[threadIdx.x]) { cellStart[hash] = index; if (index > 0) cellEnd[sharedHash[threadIdx.x]] = index; } if (index == numParticles - 1) { cellEnd[hash] = index + 1; } // Now use the sorted index to reorder the pos and vel data uint sortedIndex = gridParticleIndex[index]; float4 pos = oldPos[sortedIndex]; float4 vel = oldVel[sortedIndex]; sortedPos[index] = pos; sortedVel[index] = vel; } } // collide two spheres using DEM method __device__ float3 collideSpheres(float3 posA, float3 posB, float3 velA, float3 velB, float radiusA, float radiusB, float attraction) { // calculate relative position float3 relPos = posB - posA; float dist = length(relPos); float collideDist = radiusA + radiusB; float3 force = make_float3(0.0f); if (dist < collideDist) { float3 norm = relPos / dist; // relative velocity float3 relVel = velB - velA; // relative tangential velocity float3 tanVel = relVel - (dot(relVel, norm) * norm); // spring force force = -params.spring*(collideDist - dist) * norm; // dashpot (damping) force force += params.damping*relVel; // tangential shear force force += params.shear*tanVel; // attraction force += attraction*relPos; } return force; } // collide a particle against all other particles in a given cell __device__ float3 collideCell(int3 gridPos, uint index, float3 pos, float3 vel, float4 *oldPos, float4 *oldVel, uint *cellStart, uint *cellEnd) { uint gridHash = calcGridHash(gridPos); // get start of bucket for this cell uint startIndex = cellStart[gridHash]; float3 force = make_float3(0.0f); if (startIndex != 0xffffffff) // cell is not empty { // iterate over particles in this cell uint endIndex = cellEnd[gridHash]; for (uint j=startIndex; j= numParticles) return; // read particle data from sorted arrays float3 pos = make_float3(oldPos[index]); float3 vel = make_float3(oldVel[index]); // get address in grid int3 gridPos = calcGridPos(pos); // examine neighbouring cells float3 force = make_float3(0.0f); for (int z=-1; z<=1; z++) { for (int y=-1; y<=1; y++) { for (int x=-1; x<=1; x++) { int3 neighbourPos = gridPos + make_int3(x, y, z); force += collideCell(neighbourPos, index, pos, vel, oldPos, oldVel, cellStart, cellEnd); } } } // collide with cursor sphere force += collideSpheres(pos, params.colliderPos, vel, make_float3(0.0f, 0.0f, 0.0f), params.particleRadius, params.colliderRadius, 0.0f); // write new velocity back to original unsorted location uint originalIndex = gridParticleIndex[index]; newVel[originalIndex] = make_float4(vel + force, 0.0f); } #endif