/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ #include "render_particles.h" #include #include #include #include #include void mat_identity(matrix4 m) { m[0][1] = m[0][2] = m[0][3] = m[1][0] = m[1][2] = m[1][3] = m[2][0] = m[2][1] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0f; m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f; } void mat_multiply(matrix4 m0, matrix4 m1) { float m[4]; for(int r = 0; r < 4; r++) { m[0] = m[1] = m[2] = m[3] = 0.0f; for(int c = 0; c < 4; c++) { for(int i = 0; i < 4; i++) { m[c] += m0[i][r] * m1[c][i]; } } for(int c = 0; c < 4; c++) { m0[c][r] = m[c]; } } } void mat_translate(matrix4 m, vector3 v) { matrix4 m2; m2[0][0] = m2[1][1] = m2[2][2] = m2[3][3] = 1.0f; m2[0][1] = m2[0][2] = m2[0][3] = m2[1][0] = m2[1][2] = m2[1][3] = m2[2][0] = m2[2][1] = m2[2][3] = 0.0f; m2[3][0] = v[0]; m2[3][1] = v[1]; m2[3][2] = v[2]; mat_multiply(m, m2); } void mat_perspective(matrix4 m, GLfloat fovy, GLfloat aspect, GLfloat znear, GLfloat zfar) { matrix4 m2; m2[1][0] = m2[2][0] = m2[3][0] = m2[0][1] = m2[2][1] = m2[3][1] = m2[0][2] = m2[1][2] = m2[0][3] = m2[1][3] = m2[3][3] = 0.0f; m2[2][3] = -1.0f; float f = 1 / tan( (fovy * M_PI / 180) /2); m2[0][0] = f / aspect; m2[1][1] = f; m2[2][2] = ( (znear + zfar) / (znear - zfar) ); m2[3][2] = ( (2 * znear * zfar) / (znear - zfar) ); mat_multiply(m, m2); } ParticleRenderer::ParticleRenderer(unsigned int windowWidth, unsigned int windowHeight) : m_pos(0), m_numParticles(0), m_pointSize(1.0f), m_spriteSize(2.0f), m_vertexShader(0), m_vertexShaderPoints(0), m_fragmentShader(0), m_programPoints(0), m_programSprites(0), m_texture(0), m_pbo(0), m_vboColor(0), m_windowWidth(windowWidth), m_windowHeight(windowHeight), m_bFp64Positions(false) { m_camera[0] = 0; m_camera[1] = 0; m_camera[2] = 0; _initGL(); } ParticleRenderer::~ParticleRenderer() { m_pos = 0; } void ParticleRenderer::resetPBO() { glDeleteBuffers(1, (GLuint *)&m_pbo); } void ParticleRenderer::setPositions(float *pos, int numParticles) { m_pos = pos; m_numParticles = numParticles; if (!m_pbo) { glGenBuffers(1, (GLuint *)&m_pbo); } glBindBuffer(GL_ARRAY_BUFFER, m_pbo); glBufferData(GL_ARRAY_BUFFER, numParticles * 4 * sizeof(float), pos, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); checkGLErrors("Setting particle float position"); } void ParticleRenderer::setPositions(double *pos, int numParticles) { m_bFp64Positions = true; m_pos_fp64 = pos; m_numParticles = numParticles; if (!m_pbo) { glGenBuffers(1, (GLuint *)&m_pbo); } glBindBuffer(GL_ARRAY_BUFFER, m_pbo); glBufferData(GL_ARRAY_BUFFER, numParticles * 4 * sizeof(double), pos, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); checkGLErrors("Setting particle double position"); } void ParticleRenderer::setColors(float *color, int numParticles) { glBindBuffer(GL_ARRAY_BUFFER, m_vboColor); glBufferData(GL_ARRAY_BUFFER, numParticles * 4 * sizeof(float), color, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } void ParticleRenderer::setBaseColor(float color[4]) { for (int i = 0; i < 4; i++) m_baseColor[i] = color[i]; } void ParticleRenderer::setPBO(unsigned int pbo, int numParticles, bool fp64) { m_pbo = pbo; m_numParticles = numParticles; if (fp64) m_bFp64Positions = true; } void ParticleRenderer::display() { glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE); glDepthMask(GL_FALSE); glUseProgram(m_programSprites); // Set modelview and projection matrices GLint h_ModelViewMatrix = glGetUniformLocation(m_programSprites, "modelview"); GLint h_ProjectionMatrix = glGetUniformLocation(m_programSprites, "projection"); matrix4 modelview; matrix4 projection; mat_identity(modelview); mat_identity(projection); mat_translate(modelview, m_camera); mat_perspective(projection, 60, (float)m_windowWidth / (float)m_windowHeight, 0.1, 1000.0); glUniformMatrix4fv(h_ModelViewMatrix, 1, GL_FALSE, (GLfloat*)modelview); glUniformMatrix4fv(h_ProjectionMatrix, 1, GL_FALSE, (GLfloat*)projection); // Set point size GLint h_PointSize = glGetUniformLocation(m_programSprites, "size"); glUniform1f(h_PointSize, m_spriteSize); // Set base and secondary colors GLint h_BaseColor = glGetUniformLocation(m_programSprites, "baseColor"); GLint h_SecondaryColor = glGetUniformLocation(m_programSprites, "secondaryColor"); glUniform4f(h_BaseColor, 1.0, 1.0, 1.0, 1.0); glUniform4f(h_SecondaryColor, m_baseColor[0], m_baseColor[1], m_baseColor[2], m_baseColor[3]); // Set position coords GLint h_position = glGetAttribLocation(m_programSprites, "a_position"); glBindBuffer(GL_ARRAY_BUFFER, m_pbo); glEnableVertexAttribArray(h_position); glVertexAttribPointer(h_position, 4, GL_FLOAT, GL_FALSE, 0, 0); GLuint texLoc = glGetUniformLocation(m_programSprites, "splatTexture"); glUniform1i(texLoc, 0); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, m_texture); glDrawArrays(GL_POINTS, 0, m_numParticles); glDisableVertexAttribArray(h_position); glUseProgram(0); glDisable(GL_BLEND); glDepthMask(GL_TRUE); } const char vertexShader[] = { "attribute vec4 a_position;" "uniform mat4 projection;" "uniform mat4 modelview;" "uniform float size;" "void main()" "{" "float pointSize = 500.0 * size;" "vec4 vert = a_position;" "vert.w = 1.0;" "vec3 pos_eye = vec3(modelview * vert);" "gl_PointSize = max(1.0, pointSize / (1.0 - pos_eye.z));" "gl_Position = projection * modelview * a_position;" "}" }; const char fragmentShader[] = { "uniform sampler2D splatTexture;" "uniform lowp vec4 baseColor;" "uniform lowp vec4 secondaryColor;" "void main()" "{" "lowp vec4 textureColor = (0.6 + 0.4 * baseColor) * texture2D(splatTexture, gl_PointCoord);" "gl_FragColor = textureColor * secondaryColor;" "}" }; // Checks if the shader is compiled. static int CheckCompiled(GLuint shader) { GLint isCompiled = 0; glGetShaderiv(shader, GL_COMPILE_STATUS, &isCompiled); if (!isCompiled) { GLint infoLen = 0; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen); if (infoLen > 1) { char * infoLog = (char *) malloc(sizeof(char) * infoLen); glGetShaderInfoLog(shader, infoLen, NULL, infoLog); printf("Error compiling program:\n%s\n", infoLog); free(infoLog); } return 0; } return 1; } void ParticleRenderer::_initGL() { m_vertexShader = glCreateShader(GL_VERTEX_SHADER); m_fragmentShader = glCreateShader(GL_FRAGMENT_SHADER); const char *v = vertexShader; const char *f = fragmentShader; glShaderSource(m_vertexShader, 1, &v, 0); glShaderSource(m_fragmentShader, 1, &f, 0); checkGLErrors("Shader Source"); glCompileShader(m_vertexShader); glCompileShader(m_fragmentShader); if (!CheckCompiled(m_vertexShader) || !CheckCompiled(m_fragmentShader)) { printf("A shader failed to compile.\n"); exit(1); } m_programSprites = glCreateProgram(); checkGLErrors("create program"); glAttachShader(m_programSprites, m_vertexShader); glAttachShader(m_programSprites, m_fragmentShader); checkGLErrors("attaching shaders"); glLinkProgram(m_programSprites); checkGLErrors("linking program"); EGLint linked; glGetProgramiv(m_programSprites, GL_LINK_STATUS, &linked); if (!linked) { printf ("A shader failed to link.\n"); exit(1); } _createTexture(32); glGenBuffers(1, (GLuint *)&m_vboColor); glBindBuffer(GL_ARRAY_BUFFER, m_vboColor); glBufferData(GL_ARRAY_BUFFER, m_numParticles * 4 * sizeof(float), 0, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } //------------------------------------------------------------------------------ // Function : EvalHermite // Description : //------------------------------------------------------------------------------ /** * EvalHermite(float pA, float pB, float vA, float vB, float u) * @brief Evaluates Hermite basis functions for the specified coefficients. */ inline float evalHermite(float pA, float pB, float vA, float vB, float u) { float u2=(u*u), u3=u2*u; float B0 = 2*u3 - 3*u2 + 1; float B1 = -2*u3 + 3*u2; float B2 = u3 - 2*u2 + u; float B3 = u3 - u; return (B0*pA + B1*pB + B2*vA + B3*vB); } unsigned char *createGaussianMap(int N) { float *M = new float[2*N*N]; unsigned char *B = new unsigned char[4*N*N]; float X,Y,Y2,Dist; float Incr = 2.0f/N; int i=0; int j = 0; Y = -1.0f; //float mmax = 0; for (int y=0; y1) Dist=1; M[i+1] = M[i] = evalHermite(1.0f,0,0,0,Dist); B[j+3] = B[j+2] = B[j+1] = B[j] = (unsigned char)(M[i] * 255); } } delete [] M; return (B); } void ParticleRenderer::_createTexture(int resolution) { unsigned char *data = createGaussianMap(resolution); glGenTextures(1, (GLuint *)&m_texture); glBindTexture(GL_TEXTURE_2D, m_texture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);//_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, resolution, resolution, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); }