/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ #include #include #include "binomialOptions_common.h" /////////////////////////////////////////////////////////////////////////////// // Polynomial approximation of cumulative normal distribution function /////////////////////////////////////////////////////////////////////////////// static double CND(double d) { const double A1 = 0.31938153; const double A2 = -0.356563782; const double A3 = 1.781477937; const double A4 = -1.821255978; const double A5 = 1.330274429; const double RSQRT2PI = 0.39894228040143267793994605993438; double K = 1.0 / (1.0 + 0.2316419 * fabs(d)); double cnd = RSQRT2PI * exp(- 0.5 * d * d) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))); if (d > 0) cnd = 1.0 - cnd; return cnd; } extern "C" void BlackScholesCall( float &callResult, TOptionData optionData ) { double S = optionData.S; double X = optionData.X; double T = optionData.T; double R = optionData.R; double V = optionData.V; double sqrtT = sqrt(T); double d1 = (log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT); double d2 = d1 - V * sqrtT; double CNDD1 = CND(d1); double CNDD2 = CND(d2); //Calculate Call and Put simultaneously double expRT = exp(- R * T); callResult = (float)(S * CNDD1 - X * expRT * CNDD2); } //////////////////////////////////////////////////////////////////////////////// // Process an array of OptN options on CPU // Note that CPU code is for correctness testing only and not for benchmarking. //////////////////////////////////////////////////////////////////////////////// static double expiryCallValue(double S, double X, double vDt, int i) { double d = S * exp(vDt * (2.0 * i - NUM_STEPS)) - X; return (d > 0) ? d : 0; } extern "C" void binomialOptionsCPU( float &callResult, TOptionData optionData ) { static double Call[NUM_STEPS + 1]; const double S = optionData.S; const double X = optionData.X; const double T = optionData.T; const double R = optionData.R; const double V = optionData.V; const double dt = T / (double)NUM_STEPS; const double vDt = V * sqrt(dt); const double rDt = R * dt; //Per-step interest and discount factors const double If = exp(rDt); const double Df = exp(-rDt); //Values and pseudoprobabilities of upward and downward moves const double u = exp(vDt); const double d = exp(-vDt); const double pu = (If - d) / (u - d); const double pd = 1.0 - pu; const double puByDf = pu * Df; const double pdByDf = pd * Df; /////////////////////////////////////////////////////////////////////// // Compute values at expiration date: // call option value at period end is V(T) = S(T) - X // if S(T) is greater than X, or zero otherwise. // The computation is similar for put options. /////////////////////////////////////////////////////////////////////// for (int i = 0; i <= NUM_STEPS; i++) Call[i] = expiryCallValue(S, X, vDt, i); //////////////////////////////////////////////////////////////////////// // Walk backwards up binomial tree //////////////////////////////////////////////////////////////////////// for (int i = NUM_STEPS; i > 0; i--) for (int j = 0; j <= i - 1; j++) Call[j] = puByDf * Call[j + 1] + pdByDf * Call[j]; callResult = (float)Call[0]; }