/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ #include #include #include "binomialOptions_common.h" #include "realtype.h" /////////////////////////////////////////////////////////////////////////////// // Polynomial approximation of cumulative normal distribution function /////////////////////////////////////////////////////////////////////////////// static real CND(real d) { const real A1 = (real)0.31938153; const real A2 = (real)-0.356563782; const real A3 = (real)1.781477937; const real A4 = (real)-1.821255978; const real A5 = (real)1.330274429; const real RSQRT2PI = (real)0.39894228040143267793994605993438; real K = (real)(1.0 / (1.0 + 0.2316419 * (real)fabs(d))); real cnd = (real)RSQRT2PI * (real)exp(- 0.5 * d * d) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))); if (d > 0) cnd = (real)1.0 - cnd; return cnd; } extern "C" void BlackScholesCall( real &callResult, TOptionData optionData ) { real S = optionData.S; real X = optionData.X; real T = optionData.T; real R = optionData.R; real V = optionData.V; real sqrtT = (real)sqrt(T); real d1 = (real)(log(S / X) + (R + (real)0.5 * V * V) * T) / (V * sqrtT); real d2 = d1 - V * sqrtT; real CNDD1 = CND(d1); real CNDD2 = CND(d2); //Calculate Call and Put simultaneously real expRT = (real)exp(- R * T); callResult = (real)(S * CNDD1 - X * expRT * CNDD2); } //////////////////////////////////////////////////////////////////////////////// // Process an array of OptN options on CPU // Note that CPU code is for correctness testing only and not for benchmarking. //////////////////////////////////////////////////////////////////////////////// static real expiryCallValue(real S, real X, real vDt, int i) { real d = S * (real)exp(vDt * (real)(2 * i - NUM_STEPS)) - X; return (d > (real)0) ? d : (real)0; } extern "C" void binomialOptionsCPU( real &callResult, TOptionData optionData ) { static real Call[NUM_STEPS + 1]; const real S = optionData.S; const real X = optionData.X; const real T = optionData.T; const real R = optionData.R; const real V = optionData.V; const real dt = T / (real)NUM_STEPS; const real vDt = (real)V * (real)sqrt(dt); const real rDt = R * dt; //Per-step interest and discount factors const real If = (real)exp(rDt); const real Df = (real)exp(-rDt); //Values and pseudoprobabilities of upward and downward moves const real u = (real)exp(vDt); const real d = (real)exp(-vDt); const real pu = (If - d) / (u - d); const real pd = (real)1.0 - pu; const real puByDf = pu * Df; const real pdByDf = pd * Df; /////////////////////////////////////////////////////////////////////// // Compute values at expiration date: // call option value at period end is V(T) = S(T) - X // if S(T) is greater than X, or zero otherwise. // The computation is similar for put options. /////////////////////////////////////////////////////////////////////// for (int i = 0; i <= NUM_STEPS; i++) Call[i] = expiryCallValue(S, X, vDt, i); //////////////////////////////////////////////////////////////////////// // Walk backwards up binomial tree //////////////////////////////////////////////////////////////////////// for (int i = NUM_STEPS; i > 0; i--) for (int j = 0; j <= i - 1; j++) Call[j] = puByDf * Call[j + 1] + pdByDf * Call[j]; callResult = (real)Call[0]; }