/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* * This sample evaluates fair call price for a * given set of European options under binomial model. * See supplied whitepaper for more explanations. */ #include #include #include #include #include #include #include #include "binomialOptions_common.h" #include "realtype.h" //////////////////////////////////////////////////////////////////////////////// // Black-Scholes formula for binomial tree results validation //////////////////////////////////////////////////////////////////////////////// extern "C" void BlackScholesCall( real &callResult, TOptionData optionData ); //////////////////////////////////////////////////////////////////////////////// // Process single option on CPU // Note that CPU code is for correctness testing only and not for benchmarking. //////////////////////////////////////////////////////////////////////////////// extern "C" void binomialOptionsCPU( real &callResult, TOptionData optionData ); //////////////////////////////////////////////////////////////////////////////// // Process an array of OptN options on GPU //////////////////////////////////////////////////////////////////////////////// extern "C" void binomialOptionsGPU( real *callValue, TOptionData *optionData, int optN ); //////////////////////////////////////////////////////////////////////////////// // Helper function, returning uniformly distributed // random float in [low, high] range //////////////////////////////////////////////////////////////////////////////// real randData(real low, real high) { real t = (real)rand() / (real)RAND_MAX; return ((real)1.0 - t) * low + t * high; } //////////////////////////////////////////////////////////////////////////////// // Main program //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { printf("[%s] - Starting...\n", argv[0]); int devID = findCudaDevice(argc, (const char **)argv); const int OPT_N = MAX_OPTIONS; TOptionData optionData[MAX_OPTIONS]; real callValueBS[MAX_OPTIONS], callValueGPU[MAX_OPTIONS], callValueCPU[MAX_OPTIONS]; real sumDelta, sumRef, gpuTime, errorVal; StopWatchInterface *hTimer = NULL; int i; sdkCreateTimer(&hTimer); printf("Generating input data...\n"); //Generate options set srand(123); for (i = 0; i < OPT_N; i++) { optionData[i].S = randData(5.0f, 30.0f); optionData[i].X = randData(1.0f, 100.0f); optionData[i].T = randData(0.25f, 10.0f); optionData[i].R = 0.06f; optionData[i].V = 0.10f; BlackScholesCall(callValueBS[i], optionData[i]); } printf("Running GPU binomial tree...\n"); checkCudaErrors(cudaDeviceSynchronize()); sdkResetTimer(&hTimer); sdkStartTimer(&hTimer); binomialOptionsGPU(callValueGPU, optionData, OPT_N); checkCudaErrors(cudaDeviceSynchronize()); sdkStopTimer(&hTimer); gpuTime = sdkGetTimerValue(&hTimer); printf("Options count : %i \n", OPT_N); printf("Time steps : %i \n", NUM_STEPS); printf("binomialOptionsGPU() time: %f msec\n", gpuTime); printf("Options per second : %f \n", OPT_N / (gpuTime * 0.001)); printf("Running CPU binomial tree...\n"); for (i = 0; i < OPT_N; i++) { binomialOptionsCPU(callValueCPU[i], optionData[i]); } printf("Comparing the results...\n"); sumDelta = 0; sumRef = 0; printf("GPU binomial vs. Black-Scholes\n"); for (i = 0; i < OPT_N; i++) { sumDelta += fabs(callValueBS[i] - callValueGPU[i]); sumRef += fabs(callValueBS[i]); } if (sumRef >1E-5) { printf("L1 norm: %E\n", (double)(sumDelta / sumRef)); } else { printf("Avg. diff: %E\n", (double)(sumDelta / (real)OPT_N)); } printf("CPU binomial vs. Black-Scholes\n"); sumDelta = 0; sumRef = 0; for (i = 0; i < OPT_N; i++) { sumDelta += fabs(callValueBS[i]- callValueCPU[i]); sumRef += fabs(callValueBS[i]); } if (sumRef >1E-5) { printf("L1 norm: %E\n", sumDelta / sumRef); } else { printf("Avg. diff: %E\n", (double)(sumDelta / (real)OPT_N)); } printf("CPU binomial vs. GPU binomial\n"); sumDelta = 0; sumRef = 0; for (i = 0; i < OPT_N; i++) { sumDelta += fabs(callValueGPU[i] - callValueCPU[i]); sumRef += callValueCPU[i]; } if (sumRef > 1E-5) { printf("L1 norm: %E\n", errorVal = sumDelta / sumRef); } else { printf("Avg. diff: %E\n", (double)(sumDelta / (real)OPT_N)); } printf("Shutting down...\n"); sdkDeleteTimer(&hTimer); printf("\nNOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.\n\n"); if (errorVal > 5e-4) { printf("Test failed!\n"); exit(EXIT_FAILURE); } printf("Test passed\n"); exit(EXIT_SUCCESS); }