/** * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ #include #include #include #include //#include "curand_kernel.h" #include "helper_cuda.h" //////////////////////////////////////////////////////////////////////////////// // Common types //////////////////////////////////////////////////////////////////////////////// #include "MonteCarlo_common.h" //////////////////////////////////////////////////////////////////////////////// // Black-Scholes formula for Monte Carlo results validation //////////////////////////////////////////////////////////////////////////////// #define A1 0.31938153 #define A2 -0.356563782 #define A3 1.781477937 #define A4 -1.821255978 #define A5 1.330274429 #define RSQRT2PI 0.39894228040143267793994605993438 //Polynomial approximation of //cumulative normal distribution function double CND(double d) { double K = 1.0 / (1.0 + 0.2316419 * fabs(d)); double cnd = RSQRT2PI * exp(- 0.5 * d * d) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))); if (d > 0) cnd = 1.0 - cnd; return cnd; } //Black-Scholes formula for call value extern "C" void BlackScholesCall( float &callValue, TOptionData optionData ) { double S = optionData.S; double X = optionData.X; double T = optionData.T; double R = optionData.R; double V = optionData.V; double sqrtT = sqrt(T); double d1 = (log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT); double d2 = d1 - V * sqrtT; double CNDD1 = CND(d1); double CNDD2 = CND(d2); double expRT = exp(- R * T); callValue = (float)(S * CNDD1 - X * expRT * CNDD2); } //////////////////////////////////////////////////////////////////////////////// // CPU Monte Carlo //////////////////////////////////////////////////////////////////////////////// static double endCallValue(double S, double X, double r, double MuByT, double VBySqrtT) { double callValue = S * exp(MuByT + VBySqrtT * r) - X; return (callValue > 0) ? callValue : 0; } extern "C" void MonteCarloCPU( TOptionValue &callValue, TOptionData optionData, float *h_Samples, int pathN ) { const double S = optionData.S; const double X = optionData.X; const double T = optionData.T; const double R = optionData.R; const double V = optionData.V; const double MuByT = (R - 0.5 * V * V) * T; const double VBySqrtT = V * sqrt(T); float *samples; curandGenerator_t gen; checkCudaErrors(curandCreateGeneratorHost(&gen, CURAND_RNG_PSEUDO_DEFAULT)); unsigned long long seed = 1234ULL; checkCudaErrors(curandSetPseudoRandomGeneratorSeed(gen, seed)); if (h_Samples != NULL) { samples = h_Samples; } else { samples = (float *) malloc(pathN * sizeof(float)); checkCudaErrors(curandGenerateNormal(gen, samples, pathN, 0.0, 1.0)); } // for(int i=0; i<10; i++) printf("CPU sample = %f\n", samples[i]); double sum = 0, sum2 = 0; for (int pos = 0; pos < pathN; pos++) { double sample = samples[pos]; double callValue = endCallValue(S, X, sample, MuByT, VBySqrtT); sum += callValue; sum2 += callValue * callValue; } if (h_Samples == NULL) free(samples); checkCudaErrors(curandDestroyGenerator(gen)); //Derive average from the total sum and discount by riskfree rate callValue.Expected = (float)(exp(-R * T) * sum / (double)pathN); //Standard deviation double stdDev = sqrt(((double)pathN * sum2 - sum * sum)/ ((double)pathN * (double)(pathN - 1))); //Confidence width; in 95% of all cases theoretical value lies within these borders callValue.Confidence = (float)(exp(-R * T) * 1.96 * stdDev / sqrt((double)pathN)); }