/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ //////////////////////////////////////////////////////////////////////////////// // KNN kernel //////////////////////////////////////////////////////////////////////////////// __global__ void KNN( TColor *dst, int imageW, int imageH, float Noise, float lerpC, cudaTextureObject_t texImage ) { const int ix = blockDim.x * blockIdx.x + threadIdx.x; const int iy = blockDim.y * blockIdx.y + threadIdx.y; //Add half of a texel to always address exact texel centers const float x = (float)ix + 0.5f; const float y = (float)iy + 0.5f; if (ix < imageW && iy < imageH) { //Normalized counter for the weight threshold float fCount = 0; //Total sum of pixel weights float sumWeights = 0; //Result accumulator float3 clr = {0, 0, 0}; //Center of the KNN window float4 clr00 = tex2D(texImage, x, y); //Cycle through KNN window, surrounding (x, y) texel for (float i = -KNN_WINDOW_RADIUS; i <= KNN_WINDOW_RADIUS; i++) for (float j = -KNN_WINDOW_RADIUS; j <= KNN_WINDOW_RADIUS; j++) { float4 clrIJ = tex2D(texImage, x + j, y + i); float distanceIJ = vecLen(clr00, clrIJ); //Derive final weight from color distance float weightIJ = __expf(- (distanceIJ * Noise + (i * i + j * j) * INV_KNN_WINDOW_AREA)); //Accumulate (x + j, y + i) texel color with computed weight clr.x += clrIJ.x * weightIJ; clr.y += clrIJ.y * weightIJ; clr.z += clrIJ.z * weightIJ; //Sum of weights for color normalization to [0..1] range sumWeights += weightIJ; //Update weight counter, if KNN weight for current window texel //exceeds the weight threshold fCount += (weightIJ > KNN_WEIGHT_THRESHOLD) ? INV_KNN_WINDOW_AREA : 0; } //Normalize result color by sum of weights sumWeights = 1.0f / sumWeights; clr.x *= sumWeights; clr.y *= sumWeights; clr.z *= sumWeights; //Choose LERP quotient basing on how many texels //within the KNN window exceeded the weight threshold float lerpQ = (fCount > KNN_LERP_THRESHOLD) ? lerpC : 1.0f - lerpC; //Write final result to global memory clr.x = lerpf(clr.x, clr00.x, lerpQ); clr.y = lerpf(clr.y, clr00.y, lerpQ); clr.z = lerpf(clr.z, clr00.z, lerpQ); dst[imageW * iy + ix] = make_color(clr.x, clr.y, clr.z, 0); }; } extern "C" void cuda_KNN( TColor *d_dst, int imageW, int imageH, float Noise, float lerpC, cudaTextureObject_t texImage ) { dim3 threads(BLOCKDIM_X, BLOCKDIM_Y); dim3 grid(iDivUp(imageW, BLOCKDIM_X), iDivUp(imageH, BLOCKDIM_Y)); KNN<<>>(d_dst, imageW, imageH, Noise, lerpC, texImage); } //////////////////////////////////////////////////////////////////////////////// // Stripped KNN kernel, only highlighting areas with different LERP directions //////////////////////////////////////////////////////////////////////////////// __global__ void KNNdiag( TColor *dst, int imageW, int imageH, float Noise, float lerpC, cudaTextureObject_t texImage ) { const int ix = blockDim.x * blockIdx.x + threadIdx.x; const int iy = blockDim.y * blockIdx.y + threadIdx.y; //Add half of a texel to always address exact texel centers const float x = (float)ix + 0.5f; const float y = (float)iy + 0.5f; if (ix < imageW && iy < imageH) { //Normalized counter for the weight threshold float fCount = 0; //Center of the KNN window float4 clr00 = tex2D(texImage, x, y); //Cycle through KNN window, surrounding (x, y) texel for (float i = -KNN_WINDOW_RADIUS; i <= KNN_WINDOW_RADIUS; i++) for (float j = -KNN_WINDOW_RADIUS; j <= KNN_WINDOW_RADIUS; j++) { float4 clrIJ = tex2D(texImage, x + j, y + i); float distanceIJ = vecLen(clr00, clrIJ); //Derive final weight from color and geometric distance float weightIJ = __expf(- (distanceIJ * Noise + (i * i + j * j) * INV_KNN_WINDOW_AREA)); //Update weight counter, if KNN weight for current window texel //exceeds the weight threshold fCount += (weightIJ > KNN_WEIGHT_THRESHOLD) ? INV_KNN_WINDOW_AREA : 0.0f; } //Choose LERP quotient basing on how many texels //within the KNN window exceeded the weight threshold float lerpQ = (fCount > KNN_LERP_THRESHOLD) ? 1.0f : 0; //Write final result to global memory dst[imageW * iy + ix] = make_color(lerpQ, 0, (1.0f - lerpQ), 0); }; } extern "C" void cuda_KNNdiag( TColor *d_dst, int imageW, int imageH, float Noise, float lerpC, cudaTextureObject_t texImage ) { dim3 threads(BLOCKDIM_X, BLOCKDIM_Y); dim3 grid(iDivUp(imageW, BLOCKDIM_X), iDivUp(imageH, BLOCKDIM_Y)); KNNdiag<<>>(d_dst, imageW, imageH, Noise, lerpC, texImage); }