/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ #include #include #include #include #include "convolutionTexture_common.h" //////////////////////////////////////////////////////////////////////////////// // GPU-specific defines //////////////////////////////////////////////////////////////////////////////// //Maps to a single instruction on G8x / G9x / G10x #define IMAD(a, b, c) ( __mul24((a), (b)) + (c) ) //Use unrolled innermost convolution loop #define UNROLL_INNER 1 //Round a / b to nearest higher integer value inline int iDivUp(int a, int b) { return (a % b != 0) ? (a / b + 1) : (a / b); } //Align a to nearest higher multiple of b inline int iAlignUp(int a, int b) { return (a % b != 0) ? (a - a % b + b) : a; } //////////////////////////////////////////////////////////////////////////////// // Convolution kernel and input array storage //////////////////////////////////////////////////////////////////////////////// __constant__ float c_Kernel[KERNEL_LENGTH]; extern "C" void setConvolutionKernel(float *h_Kernel) { cudaMemcpyToSymbol(c_Kernel, h_Kernel, KERNEL_LENGTH * sizeof(float)); } //////////////////////////////////////////////////////////////////////////////// // Loop unrolling templates, needed for best performance //////////////////////////////////////////////////////////////////////////////// template __device__ float convolutionRow(float x, float y, cudaTextureObject_t texSrc) { return tex2D(texSrc, x + (float)(KERNEL_RADIUS - i), y) * c_Kernel[i] + convolutionRow(x, y, texSrc); } template<> __device__ float convolutionRow<-1>(float x, float y, cudaTextureObject_t texSrc) { return 0; } template __device__ float convolutionColumn(float x, float y, cudaTextureObject_t texSrc) { return tex2D(texSrc, x, y + (float)(KERNEL_RADIUS - i)) * c_Kernel[i] + convolutionColumn(x, y, texSrc); } template<> __device__ float convolutionColumn<-1>(float x, float y, cudaTextureObject_t texSrc) { return 0; } //////////////////////////////////////////////////////////////////////////////// // Row convolution filter //////////////////////////////////////////////////////////////////////////////// __global__ void convolutionRowsKernel( float *d_Dst, int imageW, int imageH, cudaTextureObject_t texSrc ) { const int ix = IMAD(blockDim.x, blockIdx.x, threadIdx.x); const int iy = IMAD(blockDim.y, blockIdx.y, threadIdx.y); const float x = (float)ix + 0.5f; const float y = (float)iy + 0.5f; if (ix >= imageW || iy >= imageH) { return; } float sum = 0; #if(UNROLL_INNER) sum = convolutionRow<2 *KERNEL_RADIUS>(x, y, texSrc); #else for (int k = -KERNEL_RADIUS; k <= KERNEL_RADIUS; k++) { sum += tex2D(texSrc, x + (float)k, y) * c_Kernel[KERNEL_RADIUS - k]; } #endif d_Dst[IMAD(iy, imageW, ix)] = sum; } extern "C" void convolutionRowsGPU( float *d_Dst, cudaArray *a_Src, int imageW, int imageH, cudaTextureObject_t texSrc ) { dim3 threads(16, 12); dim3 blocks(iDivUp(imageW, threads.x), iDivUp(imageH, threads.y)); convolutionRowsKernel<<>>( d_Dst, imageW, imageH, texSrc ); getLastCudaError("convolutionRowsKernel() execution failed\n"); } //////////////////////////////////////////////////////////////////////////////// // Column convolution filter //////////////////////////////////////////////////////////////////////////////// __global__ void convolutionColumnsKernel( float *d_Dst, int imageW, int imageH, cudaTextureObject_t texSrc ) { const int ix = IMAD(blockDim.x, blockIdx.x, threadIdx.x); const int iy = IMAD(blockDim.y, blockIdx.y, threadIdx.y); const float x = (float)ix + 0.5f; const float y = (float)iy + 0.5f; if (ix >= imageW || iy >= imageH) { return; } float sum = 0; #if(UNROLL_INNER) sum = convolutionColumn<2 *KERNEL_RADIUS>(x, y, texSrc); #else for (int k = -KERNEL_RADIUS; k <= KERNEL_RADIUS; k++) { sum += tex2D(texSrc, x, y + (float)k) * c_Kernel[KERNEL_RADIUS - k]; } #endif d_Dst[IMAD(iy, imageW, ix)] = sum; } extern "C" void convolutionColumnsGPU( float *d_Dst, cudaArray *a_Src, int imageW, int imageH, cudaTextureObject_t texSrc ) { dim3 threads(16, 12); dim3 blocks(iDivUp(imageW, threads.x), iDivUp(imageH, threads.y)); convolutionColumnsKernel<<>>( d_Dst, imageW, imageH, texSrc ); getLastCudaError("convolutionColumnsKernel() execution failed\n"); }