/* * Copyright 2019-2020 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ #include "SineWaveSimulation.h" #include #include __global__ void sinewave(float *heightMap, unsigned int width, unsigned int height, float time) { const float freq = 4.0f; const size_t stride = gridDim.x * blockDim.x; // Iterate through the entire array in a way that is // independent of the grid configuration for (size_t tid = blockIdx.x * blockDim.x + threadIdx.x; tid < width * height; tid += stride) { // Calculate the x, y coordinates const size_t y = tid / width; const size_t x = tid - y * width; // Normalize x, y to [0,1] const float u = ((2.0f * x) / width) - 1.0f; const float v = ((2.0f * y) / height) - 1.0f; // Calculate the new height value const float w = 0.5f * sinf(u * freq + time) * cosf(v * freq + time); // Store this new height value heightMap[tid] = w; } } SineWaveSimulation::SineWaveSimulation(size_t width, size_t height) : m_heightMap(nullptr), m_width(width), m_height(height) { } void SineWaveSimulation::initCudaLaunchConfig(int device) { cudaDeviceProp prop = {}; checkCudaErrors(cudaSetDevice(device)); checkCudaErrors(cudaGetDeviceProperties(&prop, device)); // We don't need large block sizes, since there's not much inter-thread communication m_threads = prop.warpSize; // Use the occupancy calculator and fill the gpu as best as we can checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&m_blocks, sinewave, prop.warpSize, 0)); m_blocks *= prop.multiProcessorCount; // Go ahead and the clamp the blocks to the minimum needed for this height/width m_blocks = std::min(m_blocks, (int)((m_width * m_height + m_threads - 1) / m_threads)); } int SineWaveSimulation::initCuda(uint8_t *vkDeviceUUID, size_t UUID_SIZE) { int current_device = 0; int device_count = 0; int devices_prohibited = 0; cudaDeviceProp deviceProp; checkCudaErrors(cudaGetDeviceCount(&device_count)); if (device_count == 0) { fprintf(stderr, "CUDA error: no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } // Find the GPU which is selected by Vulkan while (current_device < device_count) { cudaGetDeviceProperties(&deviceProp, current_device); if ((deviceProp.computeMode != cudaComputeModeProhibited)) { // Compare the cuda device UUID with vulkan UUID int ret = memcmp((void*)&deviceProp.uuid, vkDeviceUUID, UUID_SIZE); if (ret == 0) { checkCudaErrors(cudaSetDevice(current_device)); checkCudaErrors(cudaGetDeviceProperties(&deviceProp, current_device)); printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", current_device, deviceProp.name, deviceProp.major, deviceProp.minor); return current_device; } } else { devices_prohibited++; } current_device++; } if (devices_prohibited == device_count) { fprintf(stderr, "CUDA error:" " No Vulkan-CUDA Interop capable GPU found.\n"); exit(EXIT_FAILURE); } return -1; } SineWaveSimulation::~SineWaveSimulation() { m_heightMap = NULL; } void SineWaveSimulation::initSimulation(float *heights) { m_heightMap = heights; } void SineWaveSimulation::stepSimulation(float time, cudaStream_t stream) { sinewave <<< m_blocks, m_threads, 0, stream >>> (m_heightMap, m_width, m_height, time); getLastCudaError("Failed to launch CUDA simulation"); }