/** * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /** * Vector addition: C = A + B. * * This sample is a very basic sample that implements element by element * vector addition. It is the same as the sample illustrating Chapter 2 * of the programming guide with some additions like error checking. */ #include #include // For the CUDA runtime routines (prefixed with "cuda_") #include #include // helper functions and utilities to work with CUDA #include #include /** * Host main routine */ int main(int argc, char **argv) { char *cubin, *kernel_file; size_t cubinSize; kernel_file = sdkFindFilePath("vectorAdd_kernel.cu", argv[0]); compileFileToCUBIN(kernel_file, argc, argv, &cubin, &cubinSize, 0); CUmodule module = loadCUBIN(cubin, argc, argv); CUfunction kernel_addr; checkCudaErrors(cuModuleGetFunction(&kernel_addr, module, "vectorAdd")); // Print the vector length to be used, and compute its size int numElements = 50000; size_t size = numElements * sizeof(float); printf("[Vector addition of %d elements]\n", numElements); // Allocate the host input vector A float *h_A = reinterpret_cast(malloc(size)); // Allocate the host input vector B float *h_B = reinterpret_cast(malloc(size)); // Allocate the host output vector C float *h_C = reinterpret_cast(malloc(size)); // Verify that allocations succeeded if (h_A == NULL || h_B == NULL || h_C == NULL) { fprintf(stderr, "Failed to allocate host vectors!\n"); exit(EXIT_FAILURE); } // Initialize the host input vectors for (int i = 0; i < numElements; ++i) { h_A[i] = rand() / static_cast(RAND_MAX); h_B[i] = rand() / static_cast(RAND_MAX); } // Allocate the device input vector A CUdeviceptr d_A; checkCudaErrors(cuMemAlloc(&d_A, size)); // Allocate the device input vector B CUdeviceptr d_B; checkCudaErrors(cuMemAlloc(&d_B, size)); // Allocate the device output vector C CUdeviceptr d_C; checkCudaErrors(cuMemAlloc(&d_C, size)); // Copy the host input vectors A and B in host memory to the device input // vectors in device memory printf("Copy input data from the host memory to the CUDA device\n"); checkCudaErrors(cuMemcpyHtoD(d_A, h_A, size)); checkCudaErrors(cuMemcpyHtoD(d_B, h_B, size)); // Launch the Vector Add CUDA Kernel int threadsPerBlock = 256; int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock; printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock); dim3 cudaBlockSize(threadsPerBlock, 1, 1); dim3 cudaGridSize(blocksPerGrid, 1, 1); void *arr[] = {reinterpret_cast(&d_A), reinterpret_cast(&d_B), reinterpret_cast(&d_C), reinterpret_cast(&numElements)}; checkCudaErrors(cuLaunchKernel(kernel_addr, cudaGridSize.x, cudaGridSize.y, cudaGridSize.z, /* grid dim */ cudaBlockSize.x, cudaBlockSize.y, cudaBlockSize.z, /* block dim */ 0, 0, /* shared mem, stream */ &arr[0], /* arguments */ 0)); checkCudaErrors(cuCtxSynchronize()); // Copy the device result vector in device memory to the host result vector // in host memory. printf("Copy output data from the CUDA device to the host memory\n"); checkCudaErrors(cuMemcpyDtoH(h_C, d_C, size)); // Verify that the result vector is correct for (int i = 0; i < numElements; ++i) { if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5) { fprintf(stderr, "Result verification failed at element %d!\n", i); exit(EXIT_FAILURE); } } printf("Test PASSED\n"); // Free device global memory checkCudaErrors(cuMemFree(d_A)); checkCudaErrors(cuMemFree(d_B)); checkCudaErrors(cuMemFree(d_C)); // Free host memory free(h_A); free(h_B); free(h_C); printf("Done\n"); return 0; }