/* * Copyright 2020 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* * This sample demonstrates stream ordered memory allocation on a GPU using * cudaMallocAsync and cudaMemPool family of APIs. * * basicStreamOrderedAllocation(): demonstrates stream ordered allocation using * cudaMallocAsync/cudaFreeAsync APIs with default settings. * * streamOrderedAllocationPostSync(): demonstrates if there's a synchronization in between allocations, * then setting the release threshold on the pool will make sure the synchronize will not * free memory back to the OS. */ // System includes #include #include #include // CUDA runtime #include // helper functions and utilities to work with CUDA #include #include #define MAX_ITER 20 /* Add two vectors on the GPU */ __global__ void vectorAddGPU(const float *a, const float *b, float *c, int N) { int idx = blockIdx.x*blockDim.x + threadIdx.x; if (idx < N) { c[idx] = a[idx] + b[idx]; } } int basicStreamOrderedAllocation(const int dev, const int nelem, const float *a, const float *b, float *c) { float *d_a, *d_b, *d_c; // Device buffers float errorNorm, refNorm, ref, diff; size_t bytes = nelem * sizeof(float); cudaStream_t stream; printf("Starting basicStreamOrderedAllocation()\n"); checkCudaErrors(cudaSetDevice(dev)); checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)); checkCudaErrors(cudaMallocAsync(&d_a, bytes, stream)); checkCudaErrors(cudaMallocAsync(&d_b, bytes, stream)); checkCudaErrors(cudaMallocAsync(&d_c, bytes, stream)); checkCudaErrors(cudaMemcpyAsync(d_a, a, bytes, cudaMemcpyHostToDevice, stream)); checkCudaErrors(cudaMemcpyAsync(d_b, b, bytes, cudaMemcpyHostToDevice, stream)); dim3 block(256); dim3 grid((unsigned int)ceil(nelem/(float)block.x)); vectorAddGPU<<>>(d_a, d_b, d_c, nelem); checkCudaErrors(cudaFreeAsync(d_a, stream)); checkCudaErrors(cudaFreeAsync(d_b, stream)); checkCudaErrors(cudaMemcpyAsync(c, d_c, bytes, cudaMemcpyDeviceToHost, stream)); checkCudaErrors(cudaFreeAsync(d_c, stream)); checkCudaErrors(cudaStreamSynchronize(stream)); /* Compare the results */ printf("> Checking the results from vectorAddGPU() ...\n"); errorNorm = 0.f; refNorm = 0.f; for (int n = 0; n < nelem; n++) { ref = a[n] + b[n]; diff = c[n] - ref; errorNorm += diff*diff; refNorm += ref*ref; } errorNorm = (float)sqrt((double)errorNorm); refNorm = (float)sqrt((double)refNorm); if (errorNorm/refNorm < 1.e-6f) printf("basicStreamOrderedAllocation PASSED\n"); checkCudaErrors(cudaStreamDestroy(stream)); return errorNorm/refNorm < 1.e-6f ? EXIT_SUCCESS : EXIT_FAILURE; } // streamOrderedAllocationPostSync(): demonstrates If the application wants the memory to persist in the pool beyond // synchronization, then it sets the release threshold on the pool. This way, when the application reaches the "steady state", // it is no longer allocating/freeing memory from the OS. int streamOrderedAllocationPostSync(const int dev, const int nelem, const float *a, const float *b, float *c) { float *d_a, *d_b, *d_c; // Device buffers float errorNorm, refNorm, ref, diff; size_t bytes = nelem * sizeof(float); cudaStream_t stream; cudaMemPool_t memPool; cudaEvent_t start, end; printf("Starting streamOrderedAllocationPostSync()\n"); checkCudaErrors(cudaSetDevice(dev)); checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)); checkCudaErrors(cudaEventCreate(&start)); checkCudaErrors(cudaEventCreate(&end)); checkCudaErrors(cudaDeviceGetDefaultMemPool(&memPool, dev)); uint64_t thresholdVal = ULONG_MAX; // set high release threshold on the default pool so that cudaFreeAsync will not actually release memory to the system. // By default, the release threshold for a memory pool is set to zero. This implies that the CUDA driver is // allowed to release a memory chunk back to the system as long as it does not contain any active suballocations. checkCudaErrors(cudaMemPoolSetAttribute(memPool, cudaMemPoolAttrReleaseThreshold, (void*)&thresholdVal)); // Record the start event checkCudaErrors(cudaEventRecord(start, stream)); for (int i = 0; i < MAX_ITER; i++) { checkCudaErrors(cudaMallocAsync(&d_a, bytes, stream)); checkCudaErrors(cudaMallocAsync(&d_b, bytes, stream)); checkCudaErrors(cudaMallocAsync(&d_c, bytes, stream)); checkCudaErrors(cudaMemcpyAsync(d_a, a, bytes, cudaMemcpyHostToDevice, stream)); checkCudaErrors(cudaMemcpyAsync(d_b, b, bytes, cudaMemcpyHostToDevice, stream)); dim3 block(256); dim3 grid((unsigned int)ceil(nelem/(float)block.x)); vectorAddGPU<<>>(d_a, d_b, d_c, nelem); checkCudaErrors(cudaFreeAsync(d_a, stream)); checkCudaErrors(cudaFreeAsync(d_b, stream)); checkCudaErrors(cudaMemcpyAsync(c, d_c, bytes, cudaMemcpyDeviceToHost, stream)); checkCudaErrors(cudaFreeAsync(d_c, stream)); checkCudaErrors(cudaStreamSynchronize(stream)); } checkCudaErrors(cudaEventRecord(end, stream)); // Wait for the end event to complete checkCudaErrors(cudaEventSynchronize(end)); float msecTotal = 0.0f; checkCudaErrors(cudaEventElapsedTime(&msecTotal, start, end)); printf("Total elapsed time = %f ms over %d iterations\n", msecTotal, MAX_ITER); /* Compare the results */ printf("> Checking the results from vectorAddGPU() ...\n"); errorNorm = 0.f; refNorm = 0.f; for (int n = 0; n < nelem; n++) { ref = a[n] + b[n]; diff = c[n] - ref; errorNorm += diff*diff; refNorm += ref*ref; } errorNorm = (float)sqrt((double)errorNorm); refNorm = (float)sqrt((double)refNorm); if (errorNorm/refNorm < 1.e-6f) printf("streamOrderedAllocationPostSync PASSED\n"); checkCudaErrors(cudaStreamDestroy(stream)); return errorNorm/refNorm < 1.e-6f ? EXIT_SUCCESS : EXIT_FAILURE; } int main(int argc, char **argv) { int nelem; int dev = 0; // use default device 0 size_t bytes; float *a, *b, *c; // Host if (checkCmdLineFlag(argc, (const char **)argv, "help")) { printf("Usage: streamOrderedAllocation [OPTION]\n\n"); printf("Options:\n"); printf(" --device=[device #] Specify the device to be used\n"); return EXIT_SUCCESS; } dev = findCudaDevice(argc, (const char **)argv); int isMemPoolSupported = 0; checkCudaErrors(cudaDeviceGetAttribute(&isMemPoolSupported, cudaDevAttrMemoryPoolsSupported, dev)); if (!isMemPoolSupported) { printf("Waiving execution as device does not support Memory Pools\n"); exit(EXIT_WAIVED); } // Allocate CPU memory. nelem = 1048576; bytes = nelem*sizeof(float); a = (float*) malloc(bytes); b = (float*) malloc(bytes); c = (float*) malloc(bytes); /* Initialize the vectors. */ for (int n = 0; n < nelem; n++) { a[n] = rand() / (float)RAND_MAX; b[n] = rand() / (float)RAND_MAX; } int ret1 = basicStreamOrderedAllocation(dev, nelem, a, b, c); int ret2 = streamOrderedAllocationPostSync(dev, nelem, a, b, c); /* Memory clean up */ free(a); free(b); free(c); return ((ret1 == EXIT_SUCCESS && ret2 == EXIT_SUCCESS) ? EXIT_SUCCESS : EXIT_FAILURE); }