/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ // System includes #include #include // CUDA runtime #include #include "nvrtc_helper.h" // helper functions and utilities to work with CUDA #include #ifndef MAX #define MAX(a,b) (a > b ? a : b) #endif static const char *sSDKsample = "[simpleVoteIntrinsics_nvrtc]\0"; //////////////////////////////////////////////////////////////////////////////// // Global types and parameters //////////////////////////////////////////////////////////////////////////////// #define VOTE_DATA_GROUP 4 //////////////////////////////////////////////////////////////////////////////// // CUDA Voting Kernel functions //////////////////////////////////////////////////////////////////////////////// // Generate the test pattern for Tests 1 and 2 void genVoteTestPattern(unsigned int *VOTE_PATTERN, int size) { // For testing VOTE.Any (all of these threads will return 0) for (int i=0; i < size/4; i++) { VOTE_PATTERN[i] = 0x00000000; } // For testing VOTE.Any (1/2 these threads will return 1) for (int i=2*size/8; i < 4*size/8; i++) { VOTE_PATTERN[i] = (i&0x01) ? i : 0; } // For testing VOTE.all (1/2 of these threads will return 0) for (int i=2*size/4; i < 3*size/4; i++) { VOTE_PATTERN[i] = (i&0x01) ? 0 : i; } // For testing VOTE.all (all of these threads will return 1) for (int i=3*size/4; i < 4*size/4; i++) { VOTE_PATTERN[i] = 0xffffffff; } } int checkErrors1(unsigned int *h_result, int start, int end, int warp_size, const char *voteType) { int i, sum=0; for (sum=0, i=start; i < end; i++) { sum += h_result[i]; } if (sum > 0) { printf("\t<%s>[%d - %d] = ", voteType, start, end-1); for (i=start; i < end; i++) { printf("%d", h_result[i]); } printf("%d values FAILED\n", sum); } return (sum>0); } int checkErrors2(unsigned int *h_result, int start, int end, int warp_size, const char *voteType) { int i, sum=0; for (sum=0, i=start; i < end; i++) { sum += h_result[i]; } if (sum!=warp_size) { printf("\t<%s>[%d - %d] = ", voteType, start, end-1); for (i=start; i < end; i++) { printf("%d", h_result[i]); } printf(" - FAILED\n"); } return (sum!=warp_size); } // Verification code for Kernel #1 int checkResultsVoteAnyKernel1(unsigned int *h_result, int size, int warp_size) { int error_count = 0; error_count += checkErrors1(h_result, 0, VOTE_DATA_GROUP*warp_size/4, warp_size, "Vote.Any"); error_count += checkErrors2(h_result, VOTE_DATA_GROUP*warp_size/4, 2*VOTE_DATA_GROUP*warp_size/4, warp_size, "Vote.Any"); error_count += checkErrors2(h_result, 2*VOTE_DATA_GROUP*warp_size/4, 3*VOTE_DATA_GROUP*warp_size/4, warp_size, "Vote.Any"); error_count += checkErrors2(h_result, 3*VOTE_DATA_GROUP*warp_size/4, 4*VOTE_DATA_GROUP*warp_size/4, warp_size, "Vote.Any"); printf((error_count == 0) ? "\tOK\n" : "\tERROR\n"); return error_count; } // Verification code for Kernel #2 int checkResultsVoteAllKernel2(unsigned int *h_result, int size, int warp_size) { int error_count = 0; error_count += checkErrors1(h_result, 0, VOTE_DATA_GROUP*warp_size/4, warp_size, "Vote.All"); error_count += checkErrors1(h_result, VOTE_DATA_GROUP*warp_size/4, 2*VOTE_DATA_GROUP*warp_size/4, warp_size, "Vote.All"); error_count += checkErrors1(h_result, 2*VOTE_DATA_GROUP*warp_size/4, 3*VOTE_DATA_GROUP*warp_size/4, warp_size, "Vote.All"); error_count += checkErrors2(h_result, 3*VOTE_DATA_GROUP*warp_size/4, 4*VOTE_DATA_GROUP*warp_size/4, warp_size, "Vote.All"); printf((error_count == 0) ? "\tOK\n" : "\tERROR\n"); return error_count; } // Verification code for Kernel #3 int checkResultsVoteAnyKernel3(bool *hinfo, int size) { int i, error_count = 0; for (i = 0; i < size * 3; i++) { switch (i % 3) { case 0: // First warp should be all zeros. if (hinfo[i] != (i >= size * 1)) { error_count++; } break; case 1: // First warp and half of second should be all zeros. if (hinfo[i] != (i >= size * 3 / 2)) { error_count++; } break; case 2: // First two warps should be all zeros. if (hinfo[i] != (i >= size * 2)) { error_count++; } break; } } printf((error_count == 0) ? "\tOK\n" : "\tERROR\n"); return error_count; } int main(int argc, char **argv) { unsigned int *h_input, *h_result; CUdeviceptr d_input, d_result; char *cubin, *kernel_file; size_t cubinSize; kernel_file = sdkFindFilePath("simpleVote_kernel.cuh", argv[0]); compileFileToCUBIN(kernel_file, argc, argv, &cubin, &cubinSize, 0); CUmodule module = loadCUBIN(cubin, argc, argv); bool *hinfo = NULL; CUdeviceptr dinfo; int error_count[3] = { 0, 0, 0 }; int warp_size = 32; printf("%s\n", sSDKsample); h_input = (unsigned int *)malloc(VOTE_DATA_GROUP*warp_size * sizeof(unsigned int)); h_result = (unsigned int *)malloc(VOTE_DATA_GROUP*warp_size * sizeof(unsigned int)); checkCudaErrors(cuMemAlloc(&d_input, VOTE_DATA_GROUP*warp_size * sizeof(unsigned int))); checkCudaErrors(cuMemAlloc(&d_result, VOTE_DATA_GROUP*warp_size * sizeof(unsigned int))); genVoteTestPattern(h_input, VOTE_DATA_GROUP*warp_size); checkCudaErrors(cuMemcpyHtoD(d_input, h_input, VOTE_DATA_GROUP*warp_size * sizeof(unsigned int))); // Start of Vote Any Test Kernel #1 printf("[VOTE Kernel Test 1/3]\n"); printf("\tRunning <> kernel1 ...\n"); { dim3 gridBlock(1, 1); dim3 threadBlock(VOTE_DATA_GROUP*warp_size, 1); CUfunction kernel_addr; checkCudaErrors(cuModuleGetFunction(&kernel_addr, module, "VoteAnyKernel1")); int size = VOTE_DATA_GROUP *warp_size; void *arr[] = { (void *)&d_input, (void *)&d_result, (void *)&size }; checkCudaErrors(cuLaunchKernel(kernel_addr, gridBlock.x, gridBlock.y, gridBlock.z, /* grid dim */ threadBlock.x, threadBlock.y, threadBlock.z, /* block dim */ 0,0, /* shared mem, stream */ &arr[0], /* arguments */ 0)); checkCudaErrors(cuCtxSynchronize()); } checkCudaErrors(cuMemcpyDtoH(h_result, d_result,VOTE_DATA_GROUP*warp_size * sizeof(unsigned int))); error_count[0] += checkResultsVoteAnyKernel1(h_result, VOTE_DATA_GROUP*warp_size, warp_size); // Start of Vote All Test Kernel #2 printf("\n[VOTE Kernel Test 2/3]\n"); printf("\tRunning <> kernel2 ...\n"); { dim3 gridBlock(1, 1); dim3 threadBlock(VOTE_DATA_GROUP*warp_size, 1); CUfunction kernel_addr; checkCudaErrors(cuModuleGetFunction(&kernel_addr, module, "VoteAllKernel2")); int size = VOTE_DATA_GROUP *warp_size; void *arr[] = { (void *)&d_input, (void *)&d_result, (void *)&size }; checkCudaErrors(cuLaunchKernel(kernel_addr, gridBlock.x, gridBlock.y, gridBlock.z, /* grid dim */ threadBlock.x, threadBlock.y, threadBlock.z, /* block dim */ 0,0, /* shared mem, stream */ &arr[0], /* arguments */ 0)); checkCudaErrors(cuCtxSynchronize()); } checkCudaErrors(cuMemcpyDtoH(h_result, d_result,VOTE_DATA_GROUP*warp_size * sizeof(unsigned int))); error_count[1] += checkResultsVoteAllKernel2(h_result, VOTE_DATA_GROUP*warp_size, warp_size); // Second Vote Kernel Test #3 (both Any/All) hinfo = (bool *)calloc(warp_size * 3 * 3, sizeof(bool)); checkCudaErrors(cuMemAlloc(&dinfo, warp_size * 3 * 3 * sizeof(bool))); checkCudaErrors(cuMemcpyHtoD(dinfo, hinfo, warp_size * 3 * 3 * sizeof(bool))); printf("\n[VOTE Kernel Test 3/3]\n"); printf("\tRunning <> kernel3 ...\n"); { dim3 gridBlock(1, 1); dim3 threadBlock(warp_size *3, 1); CUfunction kernel_addr; checkCudaErrors(cuModuleGetFunction(&kernel_addr, module, "VoteAnyKernel3")); int size = warp_size; void *arr[] = { (void *)&dinfo, (void *)&size }; checkCudaErrors(cuLaunchKernel(kernel_addr, gridBlock.x, gridBlock.y, gridBlock.z, /* grid dim */ threadBlock.x, threadBlock.y, threadBlock.z, /* block dim */ 0,0, /* shared mem, stream */ &arr[0], /* arguments */ 0)); checkCudaErrors(cuCtxSynchronize()); } checkCudaErrors(cuMemcpyDtoH(hinfo, dinfo, warp_size * 3 * 3 * sizeof(bool))); error_count[2] = checkResultsVoteAnyKernel3(hinfo, warp_size * 3); // Now free these resources for Test #1,2 checkCudaErrors(cuMemFree(d_input)); checkCudaErrors(cuMemFree(d_result)); free(h_input); free(h_result); // Free resources from Test #3 free(hinfo); checkCudaErrors(cuMemFree(dinfo)); printf("\tShutting down...\n"); return (error_count[0] == 0 && error_count[1] == 0 && error_count[2] == 0) ? EXIT_SUCCESS : EXIT_FAILURE; }