/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* * Multi-GPU sample using OpenMP for threading on the CPU side * needs a compiler that supports OpenMP 2.0 */ #include #include // stdio functions are used since C++ streams aren't necessarily thread safe #include using namespace std; // a simple kernel that simply increments each array element by b __global__ void kernelAddConstant(int *g_a, const int b) { int idx = blockIdx.x * blockDim.x + threadIdx.x; g_a[idx] += b; } // a predicate that checks whether each array element is set to its index plus b int correctResult(int *data, const int n, const int b) { for (int i = 0; i < n; i++) if (data[i] != i + b) return 0; return 1; } int main(int argc, char *argv[]) { int num_gpus = 0; // number of CUDA GPUs printf("%s Starting...\n\n", argv[0]); ///////////////////////////////////////////////////////////////// // determine the number of CUDA capable GPUs // cudaGetDeviceCount(&num_gpus); if (num_gpus < 1) { printf("no CUDA capable devices were detected\n"); return 1; } ///////////////////////////////////////////////////////////////// // display CPU and GPU configuration // printf("number of host CPUs:\t%d\n", omp_get_num_procs()); printf("number of CUDA devices:\t%d\n", num_gpus); for (int i = 0; i < num_gpus; i++) { cudaDeviceProp dprop; cudaGetDeviceProperties(&dprop, i); printf(" %d: %s\n", i, dprop.name); } printf("---------------------------\n"); ///////////////////////////////////////////////////////////////// // initialize data // unsigned int n = num_gpus * 8192; unsigned int nbytes = n * sizeof(int); int *a = 0; // pointer to data on the CPU int b = 3; // value by which the array is incremented a = (int *)malloc(nbytes); if (0 == a) { printf("couldn't allocate CPU memory\n"); return 1; } for (unsigned int i = 0; i < n; i++) a[i] = i; //////////////////////////////////////////////////////////////// // run as many CPU threads as there are CUDA devices // each CPU thread controls a different device, processing its // portion of the data. It's possible to use more CPU threads // than there are CUDA devices, in which case several CPU // threads will be allocating resources and launching kernels // on the same device. For example, try omp_set_num_threads(2*num_gpus); // Recall that all variables declared inside an "omp parallel" scope are // local to each CPU thread // omp_set_num_threads(num_gpus); // create as many CPU threads as there are CUDA devices //omp_set_num_threads(2*num_gpus);// create twice as many CPU threads as there are CUDA devices #pragma omp parallel { unsigned int cpu_thread_id = omp_get_thread_num(); unsigned int num_cpu_threads = omp_get_num_threads(); // set and check the CUDA device for this CPU thread int gpu_id = -1; checkCudaErrors(cudaSetDevice(cpu_thread_id % num_gpus)); // "% num_gpus" allows more CPU threads than GPU devices checkCudaErrors(cudaGetDevice(&gpu_id)); printf("CPU thread %d (of %d) uses CUDA device %d\n", cpu_thread_id, num_cpu_threads, gpu_id); int *d_a = 0; // pointer to memory on the device associated with this CPU thread int *sub_a = a + cpu_thread_id * n / num_cpu_threads; // pointer to this CPU thread's portion of data unsigned int nbytes_per_kernel = nbytes / num_cpu_threads; dim3 gpu_threads(128); // 128 threads per block dim3 gpu_blocks(n / (gpu_threads.x * num_cpu_threads)); checkCudaErrors(cudaMalloc((void **)&d_a, nbytes_per_kernel)); checkCudaErrors(cudaMemset(d_a, 0, nbytes_per_kernel)); checkCudaErrors(cudaMemcpy(d_a, sub_a, nbytes_per_kernel, cudaMemcpyHostToDevice)); kernelAddConstant<<>>(d_a, b); checkCudaErrors(cudaMemcpy(sub_a, d_a, nbytes_per_kernel, cudaMemcpyDeviceToHost)); checkCudaErrors(cudaFree(d_a)); } printf("---------------------------\n"); if (cudaSuccess != cudaGetLastError()) printf("%s\n", cudaGetErrorString(cudaGetLastError())); //////////////////////////////////////////////////////////////// // check the result // bool bResult = correctResult(a, n, b); if (a) free(a); // free CPU memory exit(bResult ? EXIT_SUCCESS : EXIT_FAILURE); }