/** * Copyright 1993-2020 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* * This sample illustrates basic usage of binary partition cooperative groups * within the thread block tile when divergent path exists. * 1.) Each thread loads a value from random array. * 2.) then checks if it is odd or even. * 3.) create binary partition group based on the above predicate * 4.) we count the number of odd/even in the group based on size of the binary groups * 5.) write it global counter of odd. * 6.) sum the values loaded by individual threads(using reduce) and write it to global * even & odd elements sum. * * **NOTE** : binary_partition results in splitting warp into divergent thread groups this is not good from performance perspective, but in cases where warp divergence is inevitable one can use binary_partition group. */ #include <stdio.h> #include <cooperative_groups.h> #include <cooperative_groups/reduce.h> #include <helper_cuda.h> namespace cg = cooperative_groups; void initOddEvenArr(int *inputArr, unsigned int size) { for (unsigned int i=0; i < size; i++) { inputArr[i] = rand() % 50; } } /** * CUDA kernel device code * * Creates cooperative groups and performs odd/even counting & summation. */ __global__ void oddEvenCountAndSumCG(int *inputArr, int *numOfOdds, int *sumOfOddAndEvens, unsigned int size) { cg::thread_block cta = cg::this_thread_block(); cg::grid_group grid = cg::this_grid(); cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta); for (int i = grid.thread_rank(); i < size; i += grid.size()) { int elem = inputArr[i]; auto subTile = cg::binary_partition(tile32, elem & 1); if (elem & 1) // Odd numbers group { int oddGroupSum = cg::reduce(subTile, elem, cg::plus<int>()); if (subTile.thread_rank() == 0) { // Add number of odds present in this group of Odds. atomicAdd(numOfOdds, subTile.size()); // Add local reduction of odds present in this group of Odds. atomicAdd(&sumOfOddAndEvens[0], oddGroupSum); } } else // Even numbers group { int evenGroupSum = cg::reduce(subTile, elem, cg::plus<int>()); if (subTile.thread_rank() == 0) { // Add local reduction of even present in this group of evens. atomicAdd(&sumOfOddAndEvens[1], evenGroupSum); } } // reconverge warp so for next loop iteration we ensure convergence of // above diverged threads to perform coalesced loads of inputArr. cg::sync(tile32); } } /** * Host main routine */ int main(int argc, const char **argv) { int deviceId = findCudaDevice(argc, argv); int *h_inputArr, *d_inputArr; int *h_numOfOdds, *d_numOfOdds; int *h_sumOfOddEvenElems, *d_sumOfOddEvenElems; unsigned int arrSize = 1024 * 100; checkCudaErrors(cudaMallocHost(&h_inputArr, sizeof(int) * arrSize)); checkCudaErrors(cudaMallocHost(&h_numOfOdds, sizeof(int))); checkCudaErrors(cudaMallocHost(&h_sumOfOddEvenElems, sizeof(int) * 2)); initOddEvenArr(h_inputArr, arrSize); cudaStream_t stream; checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)); checkCudaErrors(cudaMalloc(&d_inputArr, sizeof(int)*arrSize)); checkCudaErrors(cudaMalloc(&d_numOfOdds, sizeof(int))); checkCudaErrors(cudaMalloc(&d_sumOfOddEvenElems, sizeof(int)*2)); checkCudaErrors(cudaMemcpyAsync(d_inputArr, h_inputArr, sizeof(int)*arrSize, cudaMemcpyHostToDevice, stream)); checkCudaErrors(cudaMemsetAsync(d_numOfOdds, 0, sizeof(int), stream)); checkCudaErrors(cudaMemsetAsync(d_sumOfOddEvenElems, 0, 2*sizeof(int), stream)); //Launch the kernel int threadsPerBlock = 0; int blocksPerGrid = 0; checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(&blocksPerGrid, &threadsPerBlock, oddEvenCountAndSumCG, 0, 0)); printf("\nLaunching %d blocks with %d threads...\n\n",blocksPerGrid, threadsPerBlock); oddEvenCountAndSumCG<<<blocksPerGrid, threadsPerBlock, 0, stream>>>(d_inputArr, d_numOfOdds, d_sumOfOddEvenElems, arrSize); checkCudaErrors(cudaMemcpyAsync(h_numOfOdds, d_numOfOdds, sizeof(int), cudaMemcpyDeviceToHost, stream)); checkCudaErrors(cudaMemcpyAsync(h_sumOfOddEvenElems, d_sumOfOddEvenElems, 2*sizeof(int), cudaMemcpyDeviceToHost, stream)); checkCudaErrors(cudaStreamSynchronize(stream)); printf("Array size = %d Num of Odds = %d Sum of Odds = %d Sum of Evens %d\n", arrSize, h_numOfOdds[0], h_sumOfOddEvenElems[0], h_sumOfOddEvenElems[1]); printf("\n...Done.\n\n"); checkCudaErrors(cudaFreeHost(h_inputArr)); checkCudaErrors(cudaFreeHost(h_numOfOdds)); checkCudaErrors(cudaFreeHost(h_sumOfOddEvenElems)); checkCudaErrors(cudaFree(d_inputArr)); checkCudaErrors(cudaFree(d_numOfOdds)); checkCudaErrors(cudaFree(d_sumOfOddEvenElems)); return EXIT_SUCCESS; }