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Abstract
Walsh transforms belong to a class of generalized Fourier transformations. They have applications in various fields of electrical engineering and numeric theory. In this sample we demonstrate efficient implementation of naturally-ordered Walsh transform (also known as Walsh-Hadamard or Hadamard transform) in CUDA and its particular application to dyadic convolution computation.
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Implementation Details
Walsh transform, as any other linear transform is essentially a matrix-vector multiplication. Without any information about the transformation matrix, “dense” matrix-vector multiplication takes O(N ^ 2) operations. But in our particular case, recursive nature of Hadamard matrices reduces the computational complexity to O(N * log(N))
    Xn =      H n/2 H n/2      x0 n / 2   =  Hn / 2 (x0 n/2 + x1 n/2)

          H n/2 – Hn/2    x1 n / 2          = Hn / 2(x0 n/2 – x1 n/ 2)

So, a Walsh transform of n-element vector reduces to 
linear combination of upper and lower halves – so-called butterfly operation consisting of two floating-point operations

two Walsh transforms on the combined halves. 
The computational complexity is 2 (operations per butterfly) * N / 2(butterfly operations at each stage) *  log2(N) (stage) mathematical operations. = N * log2(N)  
Each iteration of the loop corresponds to single recursion step. Inside the loop each thread carries out single butterfly operation. The only small problem is to dispatch linear thread coordinate into data indices.
Similarly, for two steps of Hadamard recursion
Xn = H n / 4 H n / 4           H n / 4 H n / 4           :
          H n / 4 – H n / 4       H n / 4 – H n / 4
          H n / 4  H n / 4
          H n / 4 H n / 4
N / 4 (butterfly operations) * 12(operations per butterfly) * log2(N) / 2 (stages) = 1.5 * N * log2(N). Which has slightly higher computational complexity, but twice lower memory complexity. For this reason this radix-4 implementation is more advantageous in G80.
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