[image: image1.wmf]

Fast Walsh Transform in CUDA
Victor Podlozhnyuk
vpodlozhnyuk@nvidia.com
Document Change History

	Version
	Date
	Responsible
	Reason for Change

	1.0
	11/07/2007
	vpodlozhnyuk
	Initial release

	
	
	
	

	
	
	
	

	
	
	
	

Abstract
Walsh transforms belong to a class of generalized Fourier transformations. They have applications in various fields of electrical engineering and numeric theory. In this sample we demonstrate efficient implementation of naturally-ordered Walsh transform (also known as Walsh-Hadamard or Hadamard transform) in CUDA and its particular application to dyadic convolution computation.
Introduction
[image: image2.jpg]

Implementation Details
Walsh transform, as any other linear transform is essentially a matrix-vector multiplication. Without any information about the transformation matrix, “dense” matrix-vector multiplication takes O(N ^ 2) operations. But in our particular case, recursive nature of Hadamard matrices reduces the computational complexity to O(N * log(N))
 Xn = H n/2 H n/2 x0 n / 2 = Hn / 2 (x0 n/2 + x1 n/2)

 H n/2 – Hn/2 x1 n / 2 = Hn / 2(x0 n/2 – x1 n/ 2)

So, a Walsh transform of n-element vector reduces to
linear combination of upper and lower halves – so-called butterfly operation consisting of two floating-point operations

two Walsh transforms on the combined halves.
The computational complexity is 2 (operations per butterfly) * N / 2(butterfly operations at each stage) * log2(N) (stage) mathematical operations. = N * log2(N)
Each iteration of the loop corresponds to single recursion step. Inside the loop each thread carries out single butterfly operation. The only small problem is to dispatch linear thread coordinate into data indices.
Similarly, for two steps of Hadamard recursion
Xn = H n / 4 H n / 4 H n / 4 H n / 4 :
 H n / 4 – H n / 4 H n / 4 – H n / 4
 H n / 4 H n / 4
 H n / 4 H n / 4
N / 4 (butterfly operations) * 12(operations per butterfly) * log2(N) / 2 (stages) = 1.5 * N * log2(N). Which has slightly higher computational complexity, but twice lower memory complexity. For this reason this radix-4 implementation is more advantageous in G80.
Implementation Details

Running the Sample
Performance
Integration

Conclusion (Optional)
Reiterate why your technique is so great.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or registered trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.
Copyright

© 2007 NVIDIA Corporation. All rights reserved.

� EMBED Equation.3 ���

[image: image3.jpg]

November 2007

[image: image4.wmf][image: image5.jpg]NVIDIA.

_1256139891.unknown

