/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "../inc/piestimator.h" #include #include #include #include #include #include #include namespace cg = cooperative_groups; #include using std::string; using std::vector; __device__ unsigned int reduce_sum(unsigned int in, cg::thread_block cta) { extern __shared__ unsigned int sdata[]; // Perform first level of reduction: // - Write to shared memory unsigned int ltid = threadIdx.x; sdata[ltid] = in; cg::sync(cta); // Do reduction in shared mem for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) { if (ltid < s) { sdata[ltid] += sdata[ltid + s]; } cg::sync(cta); } return sdata[0]; } // Estimator kernel template __global__ void computeValue(unsigned int *const results, const Real *const points, const unsigned int numSims) { // Handle to thread block group cg::thread_block cta = cg::this_thread_block(); // Determine thread ID unsigned int bid = blockIdx.x; unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x; unsigned int step = gridDim.x * blockDim.x; // Shift the input/output pointers const Real *pointx = points + tid; const Real *pointy = pointx + numSims; // Count the number of points which lie inside the unit quarter-circle unsigned int pointsInside = 0; for (unsigned int i = tid; i < numSims; i += step, pointx += step, pointy += step) { Real x = *pointx; Real y = *pointy; Real l2norm2 = x * x + y * y; if (l2norm2 < static_cast(1)) { pointsInside++; } } // Reduce within the block pointsInside = reduce_sum(pointsInside, cta); // Store the result if (threadIdx.x == 0) { results[bid] = pointsInside; } } template PiEstimator::PiEstimator(unsigned int numSims, unsigned int device, unsigned int threadBlockSize) : m_numSims(numSims), m_device(device), m_threadBlockSize(threadBlockSize) {} template Real PiEstimator::operator()() { cudaError_t cudaResult = cudaSuccess; struct cudaDeviceProp deviceProperties; struct cudaFuncAttributes funcAttributes; // Get device properties cudaResult = cudaGetDeviceProperties(&deviceProperties, m_device); if (cudaResult != cudaSuccess) { string msg("Could not get device properties: "); msg += cudaGetErrorString(cudaResult); throw std::runtime_error(msg); } // Check precision is valid if (typeid(Real) == typeid(double) && (deviceProperties.major < 1 || (deviceProperties.major == 1 && deviceProperties.minor < 3))) { throw std::runtime_error("Device does not have double precision support"); } // Attach to GPU cudaResult = cudaSetDevice(m_device); if (cudaResult != cudaSuccess) { string msg("Could not set CUDA device: "); msg += cudaGetErrorString(cudaResult); throw std::runtime_error(msg); } // Determine how to divide the work between cores dim3 block; dim3 grid; block.x = m_threadBlockSize; grid.x = (m_numSims + m_threadBlockSize - 1) / m_threadBlockSize; // Aim to launch around ten or more times as many blocks as there // are multiprocessors on the target device. unsigned int blocksPerSM = 10; unsigned int numSMs = deviceProperties.multiProcessorCount; while (grid.x > 2 * blocksPerSM * numSMs) { grid.x >>= 1; } // Get computeValue function properties and check the maximum block size cudaResult = cudaFuncGetAttributes(&funcAttributes, computeValue); if (cudaResult != cudaSuccess) { string msg("Could not get function attributes: "); msg += cudaGetErrorString(cudaResult); throw std::runtime_error(msg); } if (block.x > (unsigned int)funcAttributes.maxThreadsPerBlock) { throw std::runtime_error( "Block X dimension is too large for computeValue kernel"); } // Check the dimensions are valid if (block.x > (unsigned int)deviceProperties.maxThreadsDim[0]) { throw std::runtime_error("Block X dimension is too large for device"); } if (grid.x > (unsigned int)deviceProperties.maxGridSize[0]) { throw std::runtime_error("Grid X dimension is too large for device"); } // Allocate memory for points // Each simulation has two random numbers to give X and Y coordinate Real *d_points = 0; cudaResult = cudaMalloc((void **)&d_points, 2 * m_numSims * sizeof(Real)); if (cudaResult != cudaSuccess) { string msg("Could not allocate memory on device for random numbers: "); msg += cudaGetErrorString(cudaResult); throw std::runtime_error(msg); } // Allocate memory for result // Each thread block will produce one result unsigned int *d_results = 0; cudaResult = cudaMalloc((void **)&d_results, grid.x * sizeof(unsigned int)); if (cudaResult != cudaSuccess) { string msg("Could not allocate memory on device for partial results: "); msg += cudaGetErrorString(cudaResult); throw std::runtime_error(msg); } // Generate random points in unit square curandStatus_t curandResult; curandGenerator_t qrng; if (typeid(Real) == typeid(float)) { curandResult = curandCreateGenerator(&qrng, CURAND_RNG_QUASI_SOBOL32); } else if (typeid(Real) == typeid(double)) { curandResult = curandCreateGenerator(&qrng, CURAND_RNG_QUASI_SOBOL64); } else { string msg("Could not create random number generator of specified type"); throw std::runtime_error(msg); } if (curandResult != CURAND_STATUS_SUCCESS) { string msg("Could not create quasi-random number generator: "); msg += curandResult; throw std::runtime_error(msg); } curandResult = curandSetQuasiRandomGeneratorDimensions(qrng, 2); if (curandResult != CURAND_STATUS_SUCCESS) { string msg( "Could not set number of dimensions for quasi-random number " "generator: "); msg += curandResult; throw std::runtime_error(msg); } curandResult = curandSetGeneratorOrdering(qrng, CURAND_ORDERING_QUASI_DEFAULT); if (curandResult != CURAND_STATUS_SUCCESS) { string msg("Could not set order for quasi-random number generator: "); msg += curandResult; throw std::runtime_error(msg); } if (typeid(Real) == typeid(float)) { curandResult = curandGenerateUniform(qrng, (float *)d_points, 2 * m_numSims); } else if (typeid(Real) == typeid(double)) { curandResult = curandGenerateUniformDouble(qrng, (double *)d_points, 2 * m_numSims); } else { string msg("Could not generate random numbers of specified type"); throw std::runtime_error(msg); } if (curandResult != CURAND_STATUS_SUCCESS) { string msg("Could not generate quasi-random numbers: "); msg += curandResult; throw std::runtime_error(msg); } curandResult = curandDestroyGenerator(qrng); if (curandResult != CURAND_STATUS_SUCCESS) { string msg("Could not destroy quasi-random number generator: "); msg += curandResult; throw std::runtime_error(msg); } // Count the points inside unit quarter-circle computeValue<<>>( d_results, d_points, m_numSims); // Copy partial results back vector results(grid.x); cudaResult = cudaMemcpy(&results[0], d_results, grid.x * sizeof(unsigned int), cudaMemcpyDeviceToHost); if (cudaResult != cudaSuccess) { string msg("Could not copy partial results to host: "); msg += cudaGetErrorString(cudaResult); throw std::runtime_error(msg); } // Complete sum-reduction on host Real value = static_cast(std::accumulate(results.begin(), results.end(), 0)); // Determine the proportion of points inside the quarter-circle, // i.e. the area of the unit quarter-circle value /= m_numSims; // Value is currently an estimate of the area of a unit quarter-circle, so we // can scale to a full circle by multiplying by four. Now since the area of a // circle is pi * r^2, and r is one, the value will be an estimate for the // value of pi. value *= 4; // Cleanup if (d_points) { cudaFree(d_points); d_points = 0; } if (d_results) { cudaFree(d_results); d_results = 0; } return value; } // Explicit template instantiation template class PiEstimator; template class PiEstimator;