
Revise and develop knowledge of the programming fundamentals using the Parallel Virtual Machine
(PVM) platform.
Implement a complex algorithm using a distributed computing architecture.
Explore the complexities of task abstraction for computation by multiple machines.

For this assignment you should write a program in C and PVM to multiply two square matrices. In order to
implement this program, you should review the code from lecture 17 (Also available from the assignment 3
directory):

Lecture 17 Examples

These program store and retrieve matrices stored as files.

Function/Item Purpose

mkIdentityMatrix makes an identity matrix of a given file name and size

mkRandomMatrix makes a random matrix of a given file name and size

getMatrix display the contents of a matrix of given filename and size

matrix.c various functions for reading and writing matrix values

For example, you can create an 20 by 20 identity matrix in file I by:

$ mkIdentityMatrix I 20

These programs deal with matrices numbering from 1 (not 0). That is, they assume the first row is 1, the
first column is 1. Another program that will help is seqmm.c This is a sequential version of matrix
multiplication that will show you how to use the matrix.c functions.

Your version should have a master PVM task which reads in two matrices, spawns a worker task for each
coordinate, then sends each one a row of the first matrix and a column of the second matrix. The task
computes the product for that coordinate and sends it back. After receiving all the results, the master
program writes the new product matrix. The program command line should have the file names of each of

Assignment 3 - Matrix Multiplication
Aims

The Problem

file:///Users/mitchellwelch/Google%20Drive/Teaching/COMP309/Markdown_slides/assignment_03/turing.une.edu.au/%7Ecomp309/markdown_lectures/lecture_17/examples

the two matrices and a name for the product, plus the size of the matrices.

Example usage (Where A, B and C are the matrix files:

[mwelch8@turing mwelch8]$ MatrixMul A B C 20

Multiplication of A an B Complete, result stored in file C

[mwelch8@turing mwelch8]$

You may use any code examples from this course without reference.

Make sure you submit a makefile and that your program compiles error-free with -Wall set.
Build your programs on a node of the cluster - not turing or bourbaki (The libraries are only
installed on the cluster).
Make sure there is a clean

Include error checking on everything (e.g. Command-line args, function returns etc.)

Hints and Tips

Tentative Marking Guide

item Marks

The makefile

targets [/1]

uses -Wall [/1]

compiles without warnings etc. [/1]

The Program

Correct Multiplication Operation [/8]

Algorithm Distributes Processing [/8]

Command line error checking [/2]

Checks for system call failures [/2]

Doesn't use hardwired constants [/1]

Consistent Use of Style [/1]

Total 25 Marks

