Assignment 2 - Nordvik Suspension Bridge
Problem

Aims

¢ Revise some C programming fundamentals, including pointers, file 1/0, command line arguments and
system calls.

e Develop a multi-threaded program that uses mutual exclusion and synchronization to solve a copmlex
problem.

e To explore and implement a system of semaphores

The problem

This assignment is a variation on the readers and writers synchronization problem. The classic readers and
writers problem is that although any number of readers should be able to read shared data at a time, a
writer should have exclusive access. This classic problem is elegantly solved by binary semaphores:

shared semaphore count lock
shared int readers count initially 0
shared semaphore data lock

shared data

reader algorithm:
lock count_lock

readers_count++

if(readers count == 1)
lock data_ lock

unlock count lock
read the data
lock count lock

readers_count--

if(readers count == 0)
unlock data_ lock

unlock count lock

That is, the first reader attempting access gains access to the data on behalf of all readers that follow. After
reading the data, the last reader out releases access to the data.

writer algorithm:
lock data_lock

write to the data
unlock data_lock

That is, a writer gets exclusive access to the data, locking out all other writers and readers. Using pthreads,
the semaphores can be implemented simply as pthread mutexs. The readers and writers are threads
executing different functions as the algorithms.

Now, the Nordvik Suspension Bridge problem:

The road to Nordvik carries traffic (cars and trucks) in both directions, except at a 1 lane suspension bridge.
The bridge is only wide enough to carry traffic in one direction at a time. Of course, if cars entered the
bridge from both directions at once, there would be a road block:

car3 car2 carl -> <- carA carB carC ...

suspension bridge

But it would be all right if more than one car was on the bridge travelling in the same direction:

car5 car4 car3 car2 carl -> <- carA carB

suspension bridge

So, once cars from one direction are on the bridge, no cars travelling in the other direction should enter.
They will have to wait until the bridge is clear. Furthermore, engineers are a bit worried about weight on the
bridge, so they have decided that if a truck is crossing the bridge, it should be the only vehicle (car or truck)
on the bridge at a time.

Write a program in C that creates different numbers of threads representing cars and trucks crossing the
bridge. Some from either direction. Their crossing of the bridge should be synchronized according to the
rules of using the bridge described above.

Although the actual order of outputs can’t be guaranteed, the output of the program may look like:

$ nordvik

Car 0 going west on the bridge
Car 1 going west on the bridge
Car 0 going west off the bridge
Car 1 going west off the bridge
Truck 0 going east on the bridge
Truck 0 going east off the bridge

Car 2 going east on the bridge
Car 0 going east on the bridge
Car 1 going east on the bridge
Car 2 going east off the bridge
Car 0 going east off the bridge
Car 1 going east off the bridge
Truck going west on the bridge

Truck going west off the bridge

Truck going west off the bridge

Truck

1
1

Truck 0 going west on the bridge
0
1 going east on the bridge
1

Truck going east off the bridge

Car 2 going west on the bridge
Car 2 going west off the bridge
$

Hints:

e This is a variation on the readers and writers synchonization problem.
¢ In order to get more variety of output, | had threads execute

sleep(rand() % MAXWAIT);

at the start of their function, with define MAXWAIT 20

e Also, | had threads execute:

sleep(CROSSINGTIME);

while on the bridge, with #define CROSSINGTIME 4

Tentative Marking Guide

item
The makefile
targets
uses -Wall
compiles without warnings etc.
The Program
Correct Output
Correct Access protocol
Checks for system call failures
Doesn't use hardwired constants
Consistent Use of Style
Correct number of children

Total

Marks

[/1]
[/1]

[/1]

[/7]
[/9]
[/2]
[/2]
[/1]
[/1]

25 Marks

