
Revise some C programming fundamentals, including pointers, file I/O, command line arguments and
system calls.
Develop a parallelisation strategy for a computationally intensive problem
To explore and implement Interprocess communication using pipes
To implement a the ring IPC topology

The Advanced Encryption Standard (AES) is a specification for the encryption for digital information. The
figure below summarises the process of encrypting and decrypting a plain-text message.

Essentially, this process starts by feeding the plain-text massage into the AES encryption function. This
function uses a 256-bit key (which is normally generated using a randomised generation process) to
produce a stream of cipher-text, that contains the original message in an encrypted form. The encrypted
message can then be transmitted through an un-secure channel, to a destination where the AES decrypt
function can be used to recover the plain-text from the cipher-text. The AES decrypt function uses the same
256-bit key, that wae used for the original encryption process, to convert the cipher-text back to the plain-
text.

Clearly, the security of this system is reliant on the key that is used to encrypt and decrypt the plain text
remaining secret. If a potential attacker is able to get access to a sample of plain-text and its corresponding
cipher-text, an exhaustive key search can be used to determine the key used to produce cipher text from
the given plain text. This basically involves trying every possible value for the 256-bit key on the sample of
cipher-text until a value is found that produces the corresponding cipher-text. The problem with this
approach is that it will require (worst-case) 2^256 encryption operations. The universe will end long before
the key is every found. If (through coercion, espionage or a phishing attack) you are able to obtain part of
the 256-bit key, the search space can be drastically cut-down resulting in a more achievable partial key
search.

In this assignment you will write a multi-process program to carry out a partial key search. The input for

Assignment 1 - AES Partial Key Search
Aims

The problem

this program will be a stream of cipher-text, a stream of corresponding plain-text and 236 bits of the 256 key
that was used for the original encryption.

Your program will use a ring of processes to search for the full encryption key used to generate a piece of
cipher-text.

For the encryption and decryption, you will need to use the AES encryption functions provided within the
OpenSSL libraries (these are already installed on turing). The following program uses the OpenSSL
functions to encrypt a segment of plain-text that is read is from a text file. The key is read from the
command line as an argument.

generate_ciphertext.c

This program can be compiled using the line:

[mwelch8@turing	
 a1]$	
 gcc	
 generate_ciphertext.c	
 -­‐lcrypto	
 -­‐o	
 generate_ciphertext	
 -­‐Wall

Please notice that libcrypto has been included for linking using the -lcrypto flag.

The program linked below provides an example for the decryption process.

decrypt_ciphertext.c

This program reads the cipher-text from a text file and decrypts it using a key that is passed in from a
command line argument. A full example of both programs running (please not that your web browser can't
display the cipher-text bytes correctly):

Getting Started

http://turing.une.edu.au/%7Ecomp309/markdown_lectures/assignments/assignment_01/generate_ciphertext.c
http://turing.une.edu.au/%7Ecomp309/markdown_lectures/assignments/assignment_01/decrypt_ciphertext.c

[mwelch8@turing	
 a1]$	
 cat	
 plain.txt
This	
 is	
 my	
 super	
 secret	
 text
[mwelch8@turing	
 a1]$	
 generate_ciphertext	
 12345678123456781234567812345678	
 >	
 cipher.txt
[mwelch8@turing	
 a1]$	
 cat	
 cipher.txt
!\ufffd\ufffd\ufffdh\ufffd\ufffd\ufffd\ufffd.\ufffdd\ufffdE}G_\ufffd\ufffdx=t\ufffd\ufffd
?\ufffdm
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 [mwelch8@turing	
 a1]$
[mwelch8@turing	
 a1]$	
 decrypt_ciphertext	
 12345678123456781234567812345678
This	
 is	
 the	
 key:	
 12345678123456781234567812345678
It	
 is	
 32	
 bytes	
 in	
 length
Ciphertext:	
 !\ufffd\ufffd\ufffdh\ufffd\ufffd\ufffd\ufffd.\ufffdd\ufffdE}G_\ufffd\ufffdx=t
\ufffd\ufffd?\ufffdm

Plaintext:	
 This	
 is	
 my	
 super	
 secret	
 text

[mwelch8@turing	
 a1]$

The final program contains a single process, single threaded, implementation for a simple key-search
program. This program reads in the cipher-text from the cipher.txt file, the plain-text from the plain.txt file
and the partial key from the command line. It then sequentially tries all possible variations, using the partial
key information that passed in.

search_keyspace.c

An example of this program in action:

[mwelch8@turing	
 a1]$	
 search_keyspace	
 12345678123456781234567812345

Plain:This	
 is	
 my	
 super	
 secret	
 text

Cipher:!\ufffd\ufffd\ufffdh\ufffd\ufffd\ufffd\ufffd.\ufffdd\ufffdE}G_\ufffd\ufffdx=t\ufff
d\ufffd?\ufffdm

OK:	
 enc/dec	
 ok	
 for	
 "This	
 is	
 my	
 super	
 secret	
 text"
Key	
 No.:3553080:12345678123456781234567812345678
[mwelch8@turing	
 a1]$

In this example, all but 3 bytes (24 bits) of the encryption key was provided resulting in a search of the
remaining 16777216 (2 ^ 24) possible keys. The key was found after 3553080 trials.

You will implement a multiprocess version of this key-search program that uses pipes arranged using the
ring topology (i.e. a ring of processes) for inter-process communication. Your program should take the

Your Program

http://turing.une.edu.au/%7Ecomp309/markdown_lectures/assignments/assignment_01/search_keyspace.c

number of processes and the partial key as command line arguments and read the supplied plain-text and
cipher-text from the file plain.txt and cipher.txt. Your program will need to divide the search space up
amongst the processes and execute a partial search in each process.

parallel_search_keyspace	
 <num.	
 procs.>	
 <partial	
 key>

Example:

[mwelch8@turing	
 a1]$	
 parallel_search_keyspace	
 5	
 12345678123456781234567812345

Plain:This	
 is	
 my	
 super	
 secret	
 text

Cipher:!\ufffd\ufffd\ufffdh\ufffd\ufffd\ufffd\ufffd.\ufffdd\ufffdE}G_\ufffd\ufffdx=t\ufff
d\ufffd?\ufffdm

OK:	
 enc/dec	
 ok	
 for	
 "This	
 is	
 my	
 super	
 secret	
 text"
Key	
 No.:3553080:12345678123456781234567812345678
[mwelch8@turing	
 a1]$

Within the ring topology, you will need to develop a system/protocol that communicates the full key (from
the process that discovers it) around the ring and back to the parent node. How this is actually done is up to
you.

The partial key you are to process is

L17hhOCMtHI8L6m67Twgo8Dx7n0jD

The last 3 bytes are missing (i.e. the 24 least significant bits)

The cipher-text for your search:

cipher.txt

The corresponding plain-text for your search:

plain.txt

Review all of the supplied code as most of the hard parts are done for you.
Review lectures 4 and 5 - you are free to use any code from the lectures in your assignment.

The Resources

Hints

http://turing.une.edu.au/%7Ecomp309/markdown_lectures/assignments/assignment_01/cipher.txt
http://turing.une.edu.au/%7Ecomp309/markdown_lectures/assignments/assignment_01/plain.txt

Make use of the Data Display Debugger (available on turing) to debug your code - it will allow you to
view the contents or variables and easily spot errors.
The supplied code produced numerous compiler warnings and uses several hardwired constants
throughout. You should re-factor the any code you use to remove these.
Pay attention to the marking scheme!

Your assignment will need to be sumbitted through the submit program on turing.
Make sure that you record a script of your program compiling and working correctly.
Confirm that the file sizes listed in the submission receipt are not 0Kb!

item Marks

The makefile

targets [/1]

uses -Wall [/1]

compiles without warnings etc. [/2]

The Program

Correct Output (i.e. finds full key) [/6]

Ring Structure [/5]

Command line error checking [/2]

Checks for fork failure [/2]

Doesn't use hardwired constants [/2]

Consistent Use of Style [/3]

Correct number of children [/1]

Total 25 Marks

Submission

Tentative Marking Guide

