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SPREADING-VANISHING DICHOTOMY IN THE DIFFUSIVE
LOGISTIC MODEL WITH A FREE BOUNDARY∗

YIHONG DU† AND ZHIGUI LIN‡

Abstract. In this paper we investigate a diffusive logistic model with a free boundary in one
space dimension. We aim to use the dynamics of such a problem to describe the spreading of a new
or invasive species, with the free boundary representing the expanding front. We prove a spreading-
vanishing dichotomy for this model, namely the species either successfully spreads to all the new
environment and stabilizes at a positive equilibrium state, or it fails to establish and dies out in
the long run. Sharp criteria for spreading and vanishing are given. Moreover, we show that when
spreading occurs, for large time, the expanding front moves at a constant speed. This spreading
speed is uniquely determined by an elliptic problem induced from the original model.
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1. Introduction. The spreading of new or invasive species is a central topic in
ecology, and considerable research has been devoted to the better understanding of
the nature of such spreading. Some of these efforts are discussed in [26] and [19].

Skellam [27] seems to be the first to observe that the spreading of muskrat in
Europe in the early 1900s followed a linear fashion: He calculated the area of the
muskrat range from a map obtained from field data, took the square root (which
gives the spreading radius) and plotted it against years, and found that the data
points lay on a straight line. This phenomenon was also observed in other field
data for various animal species, namely the spreading radius eventually exhibits a
linear growth curve against time. Several mathematical models have been proposed
to describe this phenomenon and many of them can be found in [26]. Later on in
this introduction we will briefly explain one of these models and compare it with our
research here.

Generally speaking, the mathematical modeling of ecological problems is difficult.
First, for most such problems there is a lack of “first principle”. As a result, most
mathematical models in ecology are established based on heuristic analysis. Second,
there are usually very limited empirical data against which to verify such models,
since in most cases any useful field data need to cover vast areas and long time spans,
and hence are extremely difficult and expensive to obtain. Nevertheless, the modeling
of biological invasion has attracted extensive efforts, and remarkable success has been
achieved in understanding the spreading of species through the investigation of front
propagation; see, for example, [11, 15, 27, 1, 2, 26, 28, 29, 17] and the references
therein.
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378 YIHONG DU AND ZHIGUI LIN

In this paper, we propose a different approach to the understanding of the spread-
ing of species. This approach is based on the following diffusive logistic problem:⎧⎪⎪⎨

⎪⎪⎩
ut − duxx = u(a− bu), t > 0, 0 < x < h(t),
ux(t, 0) = 0, u(t, h(t)) = 0, t > 0,
h′(t) = −μux(t, h(t)), t > 0,
h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

(1.1)

where x = h(t) is the moving boundary to be determined, h0, μ, d, a, and b are given
positive constants, and the initial function u0(x) satisfies

u0 ∈ C2([0, h0]), u′
0(0) = u0(h0) = 0, and u0 > 0 in [0, h0).(1.2)

We attempt to use (1.1) to model the spreading of a new or invasive species with
population density u(t, x) over a one dimensional habitat. The free boundary x = h(t)
represents the spreading front, while the homogeneous Neumann boundary condition
at x = 0 indicates that the left boundary is fixed, with the population confined to its
right. The coefficient a represents the intrinsic growth rate of the species, b measures
its intraspecific competition, and d is the dispersal rate.

The equation governing the free boundary, h′(t)= − μux(t, h(t)), is a special
case of the well-known Stefan condition, which has been used in the modeling of a
number of applied problems. For example, it was used to describe the melting of ice
in contact with water [25], in the modeling of oxygen in the muscle [8], and in wound
healing [7], to mention but a few. There is a vast literature on the Stefan problem,
and some important recent theoretical advances can be found in [5]. In [10, 12], the
authors studied a problem very similar to (1.1), but their reaction term has the form
up (p > 1), and so the dynamical behavior of their problem is completely different
from (1.1).

This paper may be the first attempt to use the Stefan condition in the study of
the spreading of populations. Here the initial function u0(x) stands for the population
of a new or invasive species in the very early stage of its introduction, which occupies
an initial region [0, h0]. We assume that the species can only invade further into the
environment from the right end of the initial region, and the spreading front expands
at a speed that is proportional to the population gradient at the front, which gives rise
to the Stefan condition h′(t) = −μux(t, h(t)). We will show that (1.1) has a unique
solution (u(t, x), h(t)) defined for all t > 0, with u(t, x) > 0 and h′(t) > 0. Moreover, a
spreading-vanishing dichotomy holds for (1.1), namely, as time t → ∞, the population
u(t, x) either successfully establishes itself in the new environment (henceforth called
spreading), in the sense that h(t) → ∞ and u(t, x) → a/b, or the population fails to

establish and vanishes eventually (called vanishing), namely h(t) → h∞ ≤ π
2

√
d
a and

u(t, x) → 0. Furthermore, when spreading occurs, for large time, the spreading speed
approaches a positive constant k0, i.e., h(t) = [k0 + o(1)]t as t → ∞. The asymptotic
spreading speed k0 is uniquely determined by an auxiliary elliptic problem induced
from (1.1) (see Proposition 4.1), and is independent of the initial population size
u0. The criteria for spreading or vanishing are the following: If the initial occupying

area [0, h0] is beyond a critical size, namely h0 ≥ π
2

√
d
a , then regardless of the initial

population size u0(x) (satisfying (1.2)), spreading always happens. On the other hand,

if h0 < π
2

√
d
a , then whether spreading or vanishing occurs is determined by the initial

population size u0 and the coefficient μ in the Stefan condition (assuming the other
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parameters are fixed). We will show that for such h0, with each given u0, there exists
a critical μ∗ > 0 depending on u0, such that spreading occurs if μ > μ∗ and vanishing
happens when μ ≤ μ∗.

The above spreading-vanishing dichotomy indicates that the number π
2

√
d
a serves

as a barrier for the spreading process: Either the spreading front x = h(t) breaks
through this barrier at some finite time t ≥ 0, and the population subsequently
spreads to the entire available space [0,∞) and establishes, or the front x = h(t)
never breaks through this barrier and the population dies out at the end.

If the left boundary in (1.1) is replaced by a free boundary x = g(t) governed
by g′(t) = −μux(t, g(t)), we will show that a similar spreading-vanishing dichotomy
holds, and in the case of spreading, both the left front x = g(t) and the right front
x = h(t) expand to infinity at the same asymptotic speed k0 (determined as before).
This double fronts case can be handled by simple modifications of the techniques
developed for treating (1.1). The details are given in section 5.

A great deal of previous mathematical investigation on the spreading of popula-
tion has been based on the diffusive logistic equation over the entire space R

N :

(1.3) ut − dΔu = u(a− bu), t > 0, x ∈ R
N .

In the pioneering works of Fisher [11] and Kolmogorov, Petrovsky, and Piskunov [15],
for space dimension N = 1, traveling wave solutions have been found for (1.3): For
any |c| ≥ c∗ := 2

√
ad, there exists a solution u(t, x) := W (x − ct) with the property

that

W ′(y) < 0 for y ∈ R
1, W (−∞) = a/b, W (+∞) = 0;

no such solution exists if |c| < c∗. The number c∗ is called the minimal speed of the
traveling waves. c∗ is also known (see [1, 27, 26, 19]) as the spreading speed of a new
population u(t, x) (governed by the above logistic equation) with initial distribution
u(0, x) confined to a compact set of x (i.e., u(0, x) = 0 outside a compact set), since
it can be shown that for such u(t, x) (see section 4 in [1]),

lim
t→∞, |x|≤(c∗−ε)t

u(t, x) = a/b, lim
t→∞, |x|≥(c∗+ε)t

u(t, x) = 0

for any small ε > 0. These results have been extended to higher dimensions in [2], and
extensive further development on traveling wave solutions and the spreading speed
has been achieved in several directions; we refer to [30, 13, 28, 3, 4, 17, 29] and the
references therein for more details.

A striking difference between (1.1) and (1.3) is that the spreading front in (1.1)
is given explicitly by a function x = h(t), beyond which the population density is
0, while in (1.3), the population u(t, x) becomes positive for all x once t is positive.
Second, (1.3) guarantees successful spreading of the species for any nontrivial initial
population u(0, x) (namely u(t, x) → a/b as t → ∞), regardless of its initial size and
supporting area, but the dynamics of (1.1) exhibits a spreading-vanishing dichotomy.
The phenomenon exhibited by this dichotomy seems closer to the reality, and is sup-
ported by numerous empirical evidences; for example, the introduction of several bird
species from Europe to North America in the 1900s was successful only after many
initial attempts. Third, while (1.3) gives an asymptotic spreading speed of 2

√
ad (for

large time), which is independent of b and is increasing with the dispersal rate d, we
will show that the asymptotic spreading speed k0 of (1.1) depends on all the param-
eters in (1.1), and in sharp contrast, it is not increasing with respect to d (at least
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for large d): k0 approaches 0 if either d increases to ∞ or d decreases to 0; thus the
maximal speed is reached at some finite optimal dispersal rate d. Further discussions
of this and several other points in biological terms can be found in the last section
of this paper, where more ecological evidences are provided to support the biological
predictions drawn from the mathematical results here.

In a forthcoming paper, we will investigate (1.1) in higher space dimensions with
a heterogeneous environment and compare our results with those corresponding to
analogous extensions of (1.3).

Similar free boundary conditions to the one in (1.1) have been used in ecological
models over bounded spatial domains in several earlier papers. In [21, 22, 23], Mimura,
Yamada, and Yotsutani studied the existence, uniqueness, and asymptotic behavior
of the solution to the problem⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1t − k1u1xx = u1f1(u1), t > 0, 0 < x < h(t),
u2t − k2u2xx = u2f2(u2), t > 0, h(t) < x < l,

u1 = u2 = 0, h′(t) = −α1
∂u1

∂x − α2
∂u2

∂x , x = h(t),
u1(t, 0) = M1, u2(t, l) = M2, t > 0,
u(0, x) = u0(x) ≥ 0, 0 ≤ x ≤ l,
h(0) = h0 (0 < h0 < l).

The multidimensional case of this system was studied in [14]. Recently Lin [18] studied
a predator-prey ecological model over a bounded one dimensional domain, with the
predator population satisfying a free boundary condition as in (1.1). He showed that
the predator species disperses to all the domain in finite time.

In section 2, we first use a contraction mapping argument to prove the local
existence and uniqueness of the solution to (1.1). This largely follows some existing
techniques in [7]. We then make use of suitable estimates on the solution to show
that it exists for all time t ∈ (0,∞).

Section 3 is devoted to the proof of the spreading-vanishing dichotomy. Our
arguments are based on the comparison principle and the construction of suitable
upper and lower solutions of (1.1).

In section 4, we estimate the spreading speed. A key tool in our approach here
is an auxiliary elliptic equation (see (4.1)) which determines the spreading speed.
Such an equation arises naturally from an intuitive analysis and it turns out that the
solution of this equation can be suitably modified to construct sharp upper and lower
solutions to (1.1), which provide rather precise estimates for the spreading speed. We
also examine the dependence of the spreading speed k0 on the parameters in (1.1).
We will show that k0 increases in μ and a, decreases in b, but it does not depend on
d in a monotone fashion. If all the other parameters are fixed with k0 viewed as a
function of d, namely k0 = k0(d), we will show that

lim
d→∞

k0(d)
√
d = σ0 ∈ (0,∞), lim

d→0
k0(d)/

√
d = ∞, lim

d→0
k0(d)/(

√
d| lnd|) = 0.

In section 5, we explain how the techniques for (1.1) can be modified to study the
following double fronts free boundary problem:⎧⎪⎪⎨

⎪⎪⎩
ut − duxx = u(a− bu), t > 0, g(t) < x < h(t),
u(t, g(t)) = 0, g′(t) = −μux(t, g(t)), t > 0,
u(t, h(t)) = 0, h′(t) = −μux(t, h(t)), t > 0,
g(0) = −h0, h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0,

(1.4)
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where both x = g(t) and x = h(t) are to be determined, h0 > 0, and u0 satisfies{
u0 ∈ C2([−h0, h0]),
u0(−h0) = u0(h0) = 0, and u0 > 0 in (−h0, h0).

(1.5)

It turns out that all the results for (1.1) can be extended to (1.4).
In section 6, we compare our results in biological terms with some documented

ecological observations and those revealed by (1.3).
Finally, we want to mention that our results can be easily extended to cover a

more general reaction term f(u) which behaves like au − bu2. We leave this to the
interested reader.

2. Existence and uniqueness. In this section, we first prove the following local
existence and uniqueness result by the contraction mapping theorem. We then use
suitable estimates to show that the solution is defined for all t > 0.

Theorem 2.1. For any given u0 satisfying (1.2) and any α ∈ (0, 1), there is a
T > 0 such that problem (1.1) admits a unique solution

(u, h) ∈ C(1+α)/2,1+α(DT )× C1+α/2([0, T ]);

moreover,

‖u‖C(1+α)/2,1+α(DT ) + ‖h‖C1+α/2([0,T ]) ≤ C,(2.1)

where DT = {(t, x) ∈ R
2 : x ∈ [0, h(t)], t ∈ [0, T ]}, C and T only depend on h0, α,

and ‖u0‖C2([0,h0]).
Proof. As in [7], we first straighten the free boundary. Let ζ(y) be a function in

C3[0,∞) satisfying

ζ(y) = 1 if |y − h0| < h0

4
, ζ(y) = 0 if |y − h0| > h0

2
, |ζ′(y)| < 6

h0
∀y.

Consider the transformation

(t, y) → (t, x), where x = y + ζ(y)(h(t) − h0), 0 ≤ y < ∞.

As long as

|h(t)− h0| ≤ h0

8
,

the above transformation is a diffeomorphism from [0,+∞) onto [0,+∞). Moreover,
it changes the free boundary x = h(t) to the line y = h0. Now, direct calculations
show that

∂y

∂x
=

1

1 + ζ′(y)(h(t) − h0)
≡
√
A(h(t), y),

∂2y

∂x2
= − ζ′′(y)(h(t)− h0)

[1 + ζ′(y)(h(t)− h0)]3
≡ B(h(t), y),

− 1

h′(t)
∂y

∂t
=

ζ(y)

1 + ζ′(y)(h(t) − h0)
≡ C(h(t), y).

If we set

u(t, x) = u(t, y + ζ(y)(h(t) − h0)) = w(t, y),
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then

ut = wt − h′(t)C(h(t), y)wy , ux =
√
A(h(t), y)wy ,

uxx = A(h(t), y)wyy + B(h(t), y)wy

and the free boundary problem (1.1) becomes⎧⎪⎪⎨
⎪⎪⎩

wt −Adwyy − (Bd+ h′C)wy = w(a− bw), t > 0, 0 < y < h0,
w = 0, h′(t) = −μ∂w

∂y , t > 0, y = h0,
∂w
∂y (t, 0) = 0, t > 0,

h(0) = h0, w(0, y) = u0(y), 0 ≤ y ≤ h0,

(2.2)

where A = A(h(t), y), B = B(h(t), y), and C = C(h(t), y).
Denote h1 = −μu′

0(h0), and for 0 < T ≤ h0

8(1+h1)
, define ΔT = [0, T ]× [0, h0],

D1T = {w ∈ C(ΔT ) : w(0, y) = u0(y), ||w − u0||C(ΔT ) ≤ 1},
D2T = {h ∈ C1([0, T ]) : h(0) = h0, h′(0) = h1, ‖h′ − h1‖C([0,T ]) ≤ 1}.

It is easily seen that D := D1T ×D2T is a complete metric space with the metric

d((w1, h1), (w2, h2)) = ||w1 − w2||C(ΔT ) + ||h′
1 − h′

2||C([0,T ]).

Let us note that for h1, h2 ∈ D2T , due to h1(0) = h2(0) = h0,

(2.3) ‖h1 − h2‖C([0,T ]) ≤ T ||h′
1 − h′

2||C([0,T ]).

Next, we shall prove the existence and uniqueness result by using the contraction
mapping theorem. First, we observe that due to our choice of T , for any given
(w, h) ∈ D1T ×D2T , we have

|h(t)− h0| ≤ T (1 + h1) ≤ h0

8
.

Therefore the transformation (t, y) → (t, x) introduced at the beginning of the proof is
well defined. Applying standard Lp theory and then the Sobolev imbedding theorem
[16], we find that for any (w, h) ∈ D we have the following initial boundary value
problem:⎧⎨

⎩
wt −Adwyy − (Bd+ h′C)wy = w(a− bw), t > 0, 0 < y < h0,
∂w
∂y (t, 0) = 0, w(t, h0) = 0, t > 0,

w(0, y) = u0(y), 0 ≤ y ≤ h0,

(2.4)

admits a unique solution w ∈ C(1+α)/2,1+α(ΔT ), and

(2.5) ||w||C(1+α)/2,1+α(ΔT ) ≤ C1,

where C1 is a constant dependent on h0, α, and ||u0||C2[0,h0].
Defining

(2.6) h(t) = h0 −
∫ t

0

μwy(τ, h0)dτ,
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we have

h
′
(t) = −μwy(t, h0), h(0) = h0, h

′
(0) = −μwy(0, h0) = h1,

and hence h
′ ∈ Cα/2([0, T ]) with

(2.7) ||h′||Cα/2([0,T ]) ≤ C2 := μC1.

We now define F : D → C(ΔT )× C1([0, T ]) by

F(w, h) = (w, h).

Clearly (w, h) ∈ D is a fixed point of F if and only if it solves (2.2).
By (2.5) and (2.7), we have

||h′ − h1||C([0,T ]) ≤ ||h′||Cα/2([0,T ])T
α/2 ≤ μC1T

α/2,

||w − u0||C(ΔT ) ≤ ||w − u0||C(1+α)/2,0(ΔT )T
(1+α)/2 ≤ C1T

(1+α)/2.

Therefore if we take T ≤ min{(μC1)
−2/α, C

−2/(1+α)
1 }, then F maps D into itself.

Next we prove that F is a contraction mapping on D for T > 0 sufficiently small.
Indeed, let (wi, hi) ∈ D (i = 1, 2) and denote (wi, hi) = F(wi, hi). Then it follows
from (2.5) and (2.7) that

||wi||C(1+α)/2,1+α(ΔT ) ≤ C1, ||h′
i(t)||Cα/2([0,T ]) ≤ C2.

Setting U = w1 − w2, we find that U(y, t) satisfies

Ut −A(h2, y)dUyy − (B(h2, y)d+ h′
2C(h2, y))Uy

= [A(h1, y)−A(h2, y)]dw1,yy + [B(h1, y)−B(h2, y)]dw1,y

+[h′
1C(h1, y)− h′

2C(h2, y)]w1,y + (w1 − w2)(a− bw1 − bw2), t > 0, 0 < y < h0,

∂U

∂y
(t, 0) = 0, U(t, h0) = 0, t > 0,

U(0, y) = 0, 0 ≤ y ≤ h0.

Using the Lp estimates for parabolic equations and Sobolev’s imbedding theorem,
we obtain

(2.8) ||w1 − w2||C(1+α)/2,1+α(ΔT ) ≤ C3(||w1 − w2||C(ΔT ) + ||h1 − h2||C1([0,T ])),

where C3 depends on C1, C2 and the functions A,B, and C in the definition of the
transformation (t, y) → (t, x). Taking the difference of the equations for h1, h2 results
in

(2.9) ||h′
1 − h

′
2||Cα/2([0,T ]) ≤ μ

(
||w1,y − w2,y||Cα/2,0(ΔT )

)
.

Combining (2.3), (2.8), and (2.9), and assuming T ≤ 1, we obtain

||w1 − w2||C(1+α)/2,1+α(ΔT ) + ||h′
1 − h

′
2||Cα/2([0,T ])

≤ C4(||w1 − w2||C(ΔT ) + ||h′
1 − h′

2||C[0,T ]),
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with C4 depending on C3 and μ. Hence for

T := min

{
1,

(
1

2C4

)2/α

, (μC1)
−2/α, C

−2/(1+α)
1 ,

h0

8(1 + h1)

}
,

we have

||w1 − w2||C(ΔT ) + ||h′
1 − h

′
2||C([0,T ])

≤ T (1+α)/2||w1 − w2||C(1+α)/2,1+α(ΔT ) + Tα/2||h′
1 − h

′
2||Cα/2([0,T ])

≤ C4T
α/2(||w1 − w2||C(ΔT ) + ||h′

1 − h′
2||C([0,T ]))

≤ 1

2
(||w1 − w2||C(ΔT ) + ||h′

1 − h′
2||C([0,T ])).

This shows that for this T , F is a contraction mapping on D. It now follows from the
contraction mapping theorem that F has a unique fixed point (w, h) in D. Moreover,
by the Schauder estimates, we have additional regularity for (w, h) as a solution of
(2.2), namely, h ∈ C1+α/2(0, T ] and w ∈ C1+α/2,2+α((0, T ]× [0, h0]), and (2.5), (2.7)
hold. In other words, (w(t, y), h(t)) is a unique local classical solution of the problem
(2.2).

To show that the local solution obtained in Theorem 2.1 can be extended to all
t > 0, we need the following estimate.

Lemma 2.2. Let (u, h) be a solution to problem (1.1) defined for t ∈ (0, T0) for
some T0 ∈ (0,+∞]. Then there exist constants C1 and C2 independent of T0 such
that

0 < u(t, x) ≤ C1, 0 < h′(t) ≤ C2 for 0 ≤ x < h(t), t ∈ (0, T0).

Proof. Using the strong maximum principle to the equation of u we immediately
obtain

u(t, x) > 0, ux(t, h(t)) < 0 for 0 < t < T0, 0 ≤ x < h(t).

Hence h′(t) > 0 for t ∈ (0, T0).
It follows from the comparison principle that u(t, x) ≤ u(t) for t ∈ (0, T0) and

x ∈ [0, h(t)], where

u(t) :=
a

b
e

a
b t
(
e

a
b t − 1 +

a

b||u0||∞
)−1

,

which is the solution of the problem

(2.10)
du

dt
= u(a− bu), t > 0; u(0) = ||u0||∞.

Thus we have

u(t, x) ≤ C1 := sup
t≥0

u(t).

It remains to show that h′(t) ≤ C2 for all t ∈ (0, T0) with some C2 independent
of T0. To this end, we define

Ω = ΩM := {(t, x) : 0 < t < T0, h(t)−M−1 < x < h(t)}



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE DIFFUSIVE LOGISTIC MODEL WITH A FREE BOUNDARY 385

and construct an auxiliary function

w(t, x) := C1[2M(h(t)− x) −M2(h(t)− x)2].

We will choose M so that w(t, x) ≥ u(t, x) holds over Ω.
Direct calculations show that, for (t, x) ∈ Ω,

wt = 2C1Mh′(t)(1 −M(h(t)− x)) ≥ 0,

−wxx = 2C1M
2, u(a− bu) ≤ aC1.

It follows that

wt − dwxx ≥ 2dC1M
2 ≥ au in Ω

if M2 ≥ a
2d . On the other hand,

w(t, h(t) −M−1) = C1 ≥ u(t, h(t)−M−1), w(t, h(t)) = 0 = u(t, h(t)).

Thus, if we can choose M such that u0(x) ≤ w(0, x) for x ∈ [h0 −M−1, h0], then
we can apply the maximum principle to w− u over Ω to deduce that u(t, x) ≤ w(t, x)
for (t, x) ∈ Ω. It would then follow that

ux(t, h(t)) ≥ wx(t, h(t)) = −2MC1, h′(t) = −μux(t, h(t)) ≤ C2 := 2MC1μ.

To complete the proof, we need only find some M independent of T0 such that
u0(x) ≤ w(0, x) for x ∈ [h0 −M−1, h0]. We calculate

wx(0, x) = −2C1M [1−M(h0 − x)] ≤ −C1M for x ∈ [h0 − (2M)−1, h0].

Therefore upon choosing

M := max

{√
a

2d
,
4‖u0‖C1([0,h0])

3C1

}
,

we will have

wx(0, x) ≤ u′
0(x) for x ∈ [h0 − (2M)−1, h0].

Since w(0, h0) = u0(h0) = 0, the above inequality implies

w(0, x) ≥ u0(x) for x ∈ [h0 − (2M)−1, h0].

Moreover, for x ∈ [h0 −M−1, h0 − (2M)−1], we have

w(0, x) ≥ 3

4
C1, u0(x) ≤ ‖u0‖C1([0,h0])M

−1 ≤ 3

4
C1.

Therefore u0(x) ≤ w(0, x) for x ∈ [h0 −M−1, h0]. This completes the proof.
Theorem 2.3. The solution of problem (1.1) exists and is unique for all t ∈

(0,∞).
Proof. Let [0, Tmax) be the maximal time interval in which the solution exists.

By Theorem 2.1, Tmax > 0. It remains to show that Tmax = ∞. Arguing indirectly,
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we assume that Tmax < ∞. By Lemma 2.2, there exist C1 and C2 independent of
Tmax such that for t ∈ [0, Tmax) and x ∈ [0, h(t)],

0 ≤ u(t, x) ≤ C1, h0 ≤ h(t) ≤ h0 + C2t, 0 ≤ h′(t) ≤ C2.

We now fix δ0 ∈ (0, Tmax) and M > Tmax. By standard Lp estimates, the Sobolev
embedding theorem, and the Hölder estimates for parabolic equations, we can find
C3 > 0 depending only on δ0, M , C1, and C2 such that ||u(t, ·)||C2([0,h(t)]) ≤ C3 for
t ∈ [δ0, Tmax). It then follows from the proof of Theorem 2.1 that there exists a τ > 0
depending only on C3, C2, and C1 such that the solution of problem (1.1) with initial
time Tmax − τ/2 can be extended uniquely to the time Tmax − τ/2 + τ . But this
contradicts the assumption. The proof is now complete.

Remark 2.4. It follows from the uniqueness of the solution to (1.1) and some
standard compactness argument that the unique solution (u, h) depends continuously
on the parameters appearing in (1.1). This fact will be used in the sections below.

3. The spreading-vanishing dichotomy. This section is devoted to both the
proof of the spreading-vanishing dichotomy described in the introduction, and the
proof of the criteria governing spreading and vanishing.

It follows from Lemma 2.2 that x = h(t) is monotonic increasing and, therefore,
there exists h∞ ∈ (0,+∞] such that limt→+∞ h(t) = h∞. The spreading-vanishing
dichotomy is a consequence of the following two lemmas.

Lemma 3.1. If h∞ < ∞, then h∞ ≤ π
2

√
d
a , and limt→+∞ ||u(t, ·)||C([0,h(t)]) = 0.

Proof. We first prove that h∞ ≤ π
2

√
d
a . Otherwise h∞ > π

2

√
d
a and there exists

T > 0 such that l := h(T ) > π
2

√
d
a . This implies that a > λ1, where λ1 denotes the

first eigenvalue of the problem

−dφ′′ = λφ in (−l, l), φ(±l) = 0.

It follows that for all small ε > 0, the first eigenvalue λε
1 of the problem

−dφ′′ − εφ′ = λφ in (−l, l), φ(±l) = 0

satisfies λε
1 < a. Fix such an ε > 0 and consider the problem

(3.1) Lεv = av − bv2 in (−l, l), v(±l) = 0,

where Lεv = −dv′′ − εv′. This is a logistic problem with a > λε
1. It is well known

(see, for example, Proposition 3.3 in [6]) that (3.1) admits a unique positive solution
v = vε. By the moving plane method, one easily sees that v(x) is symmetric about
x = 0 with v′(x) < 0 for x ∈ (0, l]. Moreover, by the comparison principle, v < a

b in
[−l, l]. We now define

w(t, x) = v

(
l

h(t)
x

)
,

and calculate

wt − dwxx = − lx

h2(t)
h′(t)v′ − d

l2

h2(t)
v′′

=
l2

h2(t)

[
−dv′′ − xh′(t)

l
v′
]
.
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Since h′(t) → 0 as t → +∞, we can find T0 > T such that h′(t) < ε l
h∞

for t ≥ T0,

and hence for t ≥ T0 and x ∈ [0, h(t)], we have xh′(t)
l ≤ ε. It follows that for such t

and x,

wt − dwxx ≤ l2

h2(t)
(−dv′′ − εv′)

=
l2

h2(t)
(av − bv2).

Since 0 ≤ v < a
b , we have av − bv2 ≥ 0, and hence from l

h(t) ≤ 1, we deduce

wt − dwxx ≤ av − bv2 = aw − bw2 for t ≥ T0, x ∈ [0, h(t)].

We now choose δ ∈ (0, 1) small so that δw(T0, x) ≤ u(T0, x). Then u(t, x) :=
δw(t, x) satisfies⎧⎨

⎩
ut − duxx ≤ au− bu2, t ≥ T0, x ∈ [0, h(t)],
ux(t, 0) = 0, u(t, h(t)) = 0, t ≥ T0,
u(T0, x) ≤ u(T0, x), 0 ≤ x ≤ h0.

Hence we can apply the comparison principle to conclude that

u(t, x) ≤ u(t, x) for t ≥ T0, x ∈ [0, h(t)].

It follows that

ux(t, h(t)) ≤ ux(t, h(t)) = δ
l

h(t)
v′(l) → δ

l

h∞
v′(l) < 0.

On the other hand, we have

ux(t, h(t)) = − 1

μ
h′(t) → 0 as t → ∞.

This contradiction proves that h∞ ≤ π
2

√
d
a .

We are now ready to show that ||u(t, ·)||C([0,h(t)]) → 0 as t → ∞. Let u(t, x)
denote the unique solution of the problem⎧⎨

⎩
ut − duxx = au− bu2, t > 0, 0 < x < h∞,
ux(t, 0) = 0, u(t, h∞) = 0, t > 0,
u(0, x) = ũ0(x), 0 < x < h∞,

(3.2)

where

ũ0(x) =

{
u0(x), 0 ≤ x ≤ h0,
0, x ≥ h0.

The comparison principle gives 0 ≤ u(t, x) ≤ u(t, x) for t > 0 and x ∈ [0, h(t)]. Since

h∞ ≤ π
2

√
d
a , we have a ≤ d( π

2h∞ )2 and it follows from a well-known conclusion on

the logistic problem (3.2) that u(t, x) → 0 uniformly for x ∈ [0, h∞] as t → ∞ (see,
for example, Corollary 3.4 in [6]). Thus limt→+∞ ||u(t, ·)||C([0,h(t)]) = 0.

Lemma 3.2. If h∞ = ∞, then limt→+∞ u(t, x) = a
b uniformly in any bounded

subset of [0,∞).
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Proof. First, we recall that the comparison principle gives u(t, x) ≤ u(t) for t > 0
and x ∈ [0, h(t)], where

u(t) =
a

b
e

a
b t

(
e

a
b t − 1 +

a

b||u0||∞

)−1

is the solution of (2.10). Since limt→∞ u(t) = a
b , we deduce

lim supt→+∞ u(t, x) ≤ a
b uniformly for x ∈ [0,∞).

On the other hand, for any l > max{h0,
π
2

√
d
a }, there exists tl > 0 such that

h(tl) = l. By the comparison principle we have u(t, x) ≥ ul(t, x) in (tl,∞) × (0, l),
where ul is the solution of the following problem with fix boundary:⎧⎨

⎩
(ul)t − d(ul)xx = ul(a− bul), t > tl, 0 < x < l,
(ul)x(t, 0) = ul(t, l) = 0, t > tl,
ul(tl, x) = u(tl, x), 0 ≤ x ≤ l.

(3.3)

Since a > d( π
2l )

2, it is well known that ul(t, x) → u∗
l (x) as t → ∞ uniformly in

compact subset of [0, l), where u∗
l is the unique positive solution of{ −d(u∗

l )xx = u∗
l (a− bu∗

l ), −l < x < l,
u∗
l (−l) = u∗

l (l) = 0.

It follows that lim inft→+∞ u(t, x) ≥ u∗
l (x) uniformly in compact subsets of [0, l).

Using Lemma 2.2 of [9], we easily see that u∗
l (x) → a

b as l → +∞ uniformly in
any compact subset of [0,∞). Therefore, lim inf t→+∞ u(t, x) ≥ a

b uniformly in any
compact subset of [0,∞). In view of our earlier conclusion on lim supu(t, x), this
completes the proof of the desired result.

Combing Lemmas 3.1 and 3.2, we immediately obtain the following spreading-
vanishing dichotomy.

Theorem 3.3. Let (u(t, x), h(t)) be the solution of the free boundary problem
(1.1). Then the following alternative holds:

Either
(i) spreading: h∞ = +∞ and limt→+∞ u(t, x) = a

b uniformly for x in any
bounded set of [0,∞);

or

(ii) vanishing: h∞ ≤ π
2

√
d
a and limt→+∞ ||u(t, ·)||C([0,h(t)]) = 0.

We next decide exactly when each of the two alternatives occurs. We need to
divide our discussion into two cases:

(a) h0 ≥ π

2

√
d

a
, (b) h0 <

π

2

√
d

a
.

In case (a), due to h′(t) > 0 for t > 0, we must have h∞ > π
2

√
d
a . Hence Lemma 3.1

implies the following result.

Theorem 3.4. If h0 ≥ π
2

√
d
a , then h∞ = +∞.

In order to study case (b), and also for later applications, we now present a
comparison principle which can be used to estimate both u(t, x) and the free boundary
x = h(t).
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Lemma 3.5. Suppose that T ∈ (0,∞), h ∈ C1([0, T ]), u ∈ C(D
∗
T ) ∩ C1,2(D∗

T )
with D∗

T = {(t, x) ∈ R
2 : 0 < t ≤ T, 0 < x < h(t)}, and⎧⎨

⎩
ut − duxx ≥ u(a− bu), t > 0, 0 < x < h(t),

u = 0, h
′
(t) ≥ −μux, t > 0, x = h(t),

ux(t, 0) ≤ 0, t > 0.

If

h0 ≤ h(0) and u0(x) ≤ u(0, x) in [0, h0],

then the solution (u, h) of the free boundary problem (1.1) satisfies

h(t) ≤ h(t) in (0, T ], u(x, t) ≤ u(x, t) for t ∈ (0, T ] and x ∈ (0, h(t)).

Proof. For small ε > 0, let (uε, hε) denote the unique solution of (1.1) with h0

replaced by hε
0 := h0(1 − ε), with μ replaced by με := μ(1 − ε), and with u0 replaced

by some uε
0 ∈ C2([0, hε

0]) satisfying

0 < uε
0(x) ≤ u0(x) in [0, hε

0], u
ε
0(h

ε
0) = 0,

and as ε → 0,

uε
0

(
h0

hε
0

x

)
→ u0(x)

in the C2([0, h0]) norm.
We claim that hε(t) < h(t) for all t ∈ (0, T ]. Clearly, this is true for small t > 0.

If our claim does not hold, then we can find a first t∗ ≤ T such that hε(t) < h(t) for
t ∈ (0, t∗) and hε(t

∗) = h(t∗). It follows that

(3.4) h′
ε(t

∗) ≥ h
′
(t∗).

We now compare uε and u over the region

Ωt∗ := {(t, x) ∈ R
2 : 0 < t ≤ t∗, 0 ≤ x < hε(t)}.

The strong maximum principle yields uε(t, x) < u(t, x) in Ωt∗ . Hence w(t, x) :=
u(t, x)− uε(t, x) > 0 in Ωt∗ with w(t∗, hε(t

∗)) = 0. It follows that wx(t
∗, hε(t

∗)) ≤ 0,

from which we deduce, in view of (uε)x(t
∗, h(t∗)) < 0 and με < μ, that h′

ε(t
∗) < h

′
(t∗).

But this contradicts (3.4), which proves our claim that hε(t) < h(t) for all t ∈ (0, T ].
We may now apply the usual comparison principle over ΩT to conclude that uε < u
in ΩT .

Since the unique solution of (1.1) depends continuously on the parameters in
(1.1), as ε → 0, (uε, hε) converges to (u, h), the unique solution of (1.1). The desired
result then follows by letting ε → 0 in the inequalities uε < u and hε < h.

Remark 3.6. The pair (u, h) in Lemma 3.5 is usually called an upper solution
of the problem (1.1). We can define a lower solution by reversing all the inequalities
in the obvious places. Moreover, one can easily prove an analogue of Lemma 3.5 for
lower solutions.

We are now ready to consider case (b), where h0 < π
2

√
d
a . We first examine

the case that μ is large, then we look at the case μ > 0 is small, and finally we use
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Lemma 3.5 and Remark 3.6 to prove the existence of a critical μ∗ so that spreading
occurs when μ > μ∗ and vanishing happens if μ ∈ (0, μ∗].

Lemma 3.7. Suppose h0 < π
2

√
d
a . If

μ ≥ μ0 := max

{
1,

b

a
‖u0‖∞

}
d

(
π

2

√
d

a
− h0

)(∫ h0

0

u0(x)dx

)−1

,

then h∞ = +∞.
Proof. We first consider the case ||u0||∞ ≤ a

b . In this case the solution u(t) of
(2.10) satisfies u(t) ≤ a/b for all t > 0. It follows that u(t, x) < u(t) ≤ a

b for t > 0
and x ∈ [0, h(t)].

Direct calculation gives

d

dt

∫ h(t)

0

u(t, x)dx =

∫ h(t)

0

ut(t, x)dx+ h′(t)u(t, h(t))

=

∫ h(t)

0

duxxdx+

∫ h(t)

0

(au− bu2)dx

= − d

μ
h′(t) +

∫ h(t)

0

(au− bu2)dx.

Integrating from 0 to t yields∫ h(t)

0

u(t, x)dx =

∫ h0

0

u0(x)dx +
d

μ
h0 − d

μ
h(t)

+

∫ t

0

∫ h(s)

0

(au− bu2)dxds, t ≥ 0.(3.5)

Since 0 < u(t, x) < a
b for t > 0 and x ∈ [0, h(t)), we have∫ t

0

∫ h(s)

0

(au − bu2)dxds ≥
∫ 1

0

∫ h(s)

0

(au− bu2)dxds > 0 for t ≥ 1.

If h∞ �= ∞, then h∞ ≤ π
2

√
d
a and limt→+∞ ||u(t, ·)||∞ = 0. So letting t → +∞

in (3.5) gives ∫ h0

0

u0(x)dx <
d

μ

π

2

√
d

a
− d

μ
h0,

which is a contradiction to the assumption μ ≥ μ0.
For the case ||u0||∞ > a

b , we take u0 = a
b||u0||∞u0(x). The solution (u, h) of

(1.1) with u0 replaced by u0 is a lower solution to (1.1), and by Remark 3.6 we have
h(t) ≥ h(t) for t > 0. But from what was proved above for the first case, due to
‖u0‖∞ = a/b and our assumption on μ, we have limt→∞ h(t) = ∞. Thus we also have
h∞ = ∞. This completes the proof.

Lemma 3.8. Suppose h0 < π
2

√
d
a . Then there exists μ > 0 depending on u0 such

that h∞ < +∞ if μ ≤ μ.
Proof. We are going to construct a suitable upper solution to (1.1) and then apply

Lemma 3.5. Inspired by [24], we define

σ(t) = h0

(
1 + δ − δ

2
e−γt

)
, t ≥ 0; V (y) = cos

(π
2
y
)
, 0 ≤ y ≤ 1,
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and

w(t, x) = Me−αtV (x/σ(t)), t ≥ 0, 0 ≤ x ≤ σ(t),

where δ, γ, α, and M are positive constants to be chosen later.
Direct computations yield

wt − dwxx − w(a− bw)

= Me−αt[−αV − xσ′σ−2V ′ − dσ−2V ′′ − V (a− bMe−αtV )]

≥ Me−αtV

[
−α+

(π
2

)2 d

(1 + δ)2h2
0

− a+ bMe−αtV

]

for all t > 0 and 0 < x < σ(t). On the other hand, we have σ′(t) = γh0
δ
2e

−γt and
−wx(t, σ(t)) =

π
2 εσ

−1(t)e−αt. Noting that a < d( π
2h0

)2, we can find δ > 0 such that

(π
2

)2 d

(1 + δ)2h2
0

− a =
1

2

[(π
2

)2 d

h2
0

− a

]
.

We now choose M sufficiently large such that u0(x) ≤ M cos(π2
x

h0(1+δ/2) ) for x ∈
[0, h0], and take

μ =
δγh2

0

4M
, α = γ =

1

2

[(π
2

)2 d

h2
0

− a

]
.

Then for any 0 < μ ≤ μ, we have⎧⎪⎪⎨
⎪⎪⎩

wt − dwxx ≥ w(a − bw), t > 0, 0 < x < σ(t),
w = 0, σ′(t) > −μ∂w

∂x , t > 0, x = σ(t), t > 0,
∂w
∂x (t, 0) = 0, t > 0,
σ(0) = (1 + δ

2 )h0 > h0.

Hence we can apply Lemma 3.5 to conclude that h(t) ≤ σ(t) and u(t, x) ≤ w(t, x) for
0 ≤ x ≤ h(t) and t > 0. It follows that h∞ ≤ limt→∞ σ(t) = h0(1 + δ) < ∞.

We are now ready to apply Lemma 3.5 to prove the existence of a threshold
μ∗ > 0 that governs the alternatives in the spreading-vanishing dichotomy for the

case h0 < π
2

√
d
a .

Theorem 3.9. If h0 < π
2

√
d
a , then there exists μ∗ > 0 depending on u0 such that

h∞ ≤ π
2

√
d
a if μ ≤ μ∗, and h∞ = +∞ if μ > μ∗.

Proof. Define Σ := {μ > 0 : h∞ ≤ π
2

√
d
a}. By Lemmas 3.8 and 3.1 we have

Σ ⊃ (0, μ]. Using Lemma 3.7 we find on the other hand that Σ ∩ [μ0,∞) = ∅.
Therefore, μ∗ := supΣ ∈ [μ, μ0]. By this definition and Lemma 3.1, we find that
h∞ = +∞ when μ > μ∗.

We claim that μ∗ ∈ Σ. Otherwise h∞ = ∞ for μ = μ∗. Hence we can find T > 0

such that h(T ) > π
2

√
d
a . To stress the dependence of the solution (u, h) of (1.1)

on μ, we now write (uμ, hμ) instead of (u, h). So we have hμ∗(T ) > π
2

√
d
a . By the

continuous dependence of (uμ, hμ) on μ, we can find ε > 0 small so that hμ(T ) >
π
2

√
d
a

for all μ ∈ [μ∗ − ε, μ∗ + ε]. It follows that for all such μ,

lim
t→∞hμ(t) > hμ(T ) >

π

2

√
d

a
.
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This implies that [μ∗ − ε, μ∗ + ε] ∩ Σ = ∅, and supΣ ≤ μ∗ − ε, contradicting the
definition of μ∗. This proves our claim that μ∗ ∈ Σ.

For μ ∈ (0, μ∗), (uμ∗ , hμ∗) is an upper solution of (1.1). Hence we can use
Lemma 3.5 to deduce that hμ(t) ≤ hμ∗(t) for t > 0. It follows that

lim
t→∞ hμ(t) ≤ lim

t→∞hμ∗(t) ≤ π

2

√
d

a
.

Hence μ ∈ Σ. Thus we have proved that Σ = (0, μ∗]. The proof is complete.

4. Spreading speed. The main purpose of this section is to show that when
spreading occurs, the expanding front x = h(t) moves at a constant speed for large
time, namely

h(t) =
(
k0 + o(1)

)
t as t → ∞.

The constant k0 will be called the asymptotic spreading speed, and it is determined
in Proposition 4.1 below. The fact limt→∞ h(t)/t = k0 will be proved by using mod-
ifications of the solution of the following elliptic problem (4.1). We will also discuss
how k0 changes as the parameters in (1.1) vary.

Proposition 4.1. For any k ≥ 0, the problem{ −dU ′′ + kU ′ = aU − bU2, x > 0,
U(0) = 0

(4.1)

admits a unique positive solution U = Uk. Moreover, U ′
k(x) > 0 for x ≥ 0, U ′

k1
(0) >

U ′
k2
(0), Uk1(x) > Uk2(x) for x > 0 and k1 < k2, and for each μ > 0, there exists a

unique k0 = k0(μ) > 0 such that μU ′
k0
(0) = k0.

Before giving the proof of Proposition 4.1, we explain intuitively how problem
(4.1) arises from (1.1). So we assume that (u, h) is the unique solution of (1.1) and
h(t) → ∞ as t → ∞. Letting v(t, x) = u(t, h(t)− x), we find that⎧⎨

⎩
vt − dvxx + h′(t)vx = v(a− bv), t > 0, 0 < x < h(t),
v(t, 0) = 0, h′(t) = μvx(t, 0), vx(t, h(t)) = 0, t > 0,
h(0) = h0, v(0, x) = u0(h0 − x), 0 ≤ x ≤ h0.

Since limt→∞ h(t) = ∞, if h′(t) approaches a constant k0 and v(t, x) approaches
a positive function U(x) as t → ∞, then U(x) must be a positive solution of (4.1)
with μU ′(0) = k.

Proof of Proposition 4.1. It is well known that for all large l > 0, the problem

−dU ′′ + kU ′ = aU − bU2, 0 < x < l, U(0) = U(l) = 0

has a unique positive solution U l. Define

V (x) =

{
U l(x), 0 ≤ x ≤ l,
0, x ≥ l.

Then V is a lower solution of (4.1). Clearly any constantC ≥ a
b is an upper solution. It

now follows from the standard upper and lower solutions argument over an unbounded
domain that (4.1) has at least one solution U(x) satisfying

V (x) ≤ U(x) ≤ a

b
in [0,+∞).
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By the strong maximum principle and Serrin’s sweeping argument, we find that any
nontrivial nonnegative solution of (4.1) satisfies

0 < U(x) <
a

b
in (0,+∞).

Next, we claim that U(x) is increasing in x and limx→+∞ U(x) = a
b . Indeed, we

may rewrite (4.1) as

(4.2) −(de−
k
dxU ′)′ = e−

k
dx(aU − bU2).

Since 0 < U(x) < a
b in (0,+∞), we have aU − bU2 > 0, and hence

−(de−
k
dxU ′)′ > 0 in (0,+∞).

Hence e−
k
dxU ′(x) is a decreasing function. Since U(x) is bounded in (0,+∞), we can

find a sequence xn → +∞ such that U ′(xn) → 0 as n → +∞. It follows that

e−
k
dxU ′(x) > lim

n→+∞ e−
k
d xnU ′(xn) = 0 in (0,+∞).

We thus have U ′(x) > 0 and U(x) is increasing. Moreover, σ = limx→+∞ U(x) exists.
Using (4.2) we easily find that σ = a

b .
We now prove the uniqueness. Suppose U1 and U2 are both positive solutions of

(4.1). Then for any ε > 0, it is easily checked that wi = (1 + ε)Ui satisfies

−(de−
k
dxw′

i)
′ ≥ e−

k
dx(awi − bw2

i ), i = 1, 2.

Since limt→+∞ wi(x) = (1 + ε)ab , we can find l0 > 0 large such that

w1(l) > U2(l), w2(l) > U1(l) ∀l ≥ l0.

We may now apply Lemma 2.1 of [9] to conclude that

(1 + ε)U1(x) ≥ U2(x), (1 + ε)U2(x) ≥ U1(x) for 0 < x < l ∀l ≥ l0.

It follows that (1 + ε)U1(x) ≥ U2(x) and (1 + ε)U2(x) ≥ U1(x) for all x ≥ 0. Letting
ε → 0, we deduce that U1 = U2. This proves the uniqueness conclusion.

Finally, if 0 ≤ k1 < k2, then due to U ′
ki
(x) > 0, we have

−dU ′′
k1

+ k2U
′
k1

> −dU ′′
k1

+ k1U
′
k1

= aUk1 − bU2
k1
, x > 0.

It follows that for any ε > 0, w := (1 + ε)Uk1 satisfies

−(de−
k2
d xw′)′ ≥ e−

k2
d x(aw − bw2).

As before we can apply Lemma 2.1 of [9] to conclude that w ≥ Uk2 in [0,+∞), i.e.,
(1 + ε)Uk1 ≥ Uk2 in [0,+∞). Letting ε → 0, we deduce that Uk1(x) ≥ Uk2(x) in
[0,+∞). By the strong maximum principle we deduce Uk1(x) > Uk2(x) for x > 0.
Since Uki(0) = 0, the above inequality implies that

U ′
k1
(0) ≥ U ′

k2
(0) for k1 < k2.

By the Hopf lemma, we have U ′
k(0) > 0 and U ′

k1
(0) > U ′

k2
(0). Thus for any fixed

μ > 0, the function σ(k) = k−μU ′
k(0) is a strictly increasing function. By a standard
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compactness argument, we can use the uniqueness of Uk to see that k → Uk is
a continuous mapping from [0,+∞) to C1

loc[0,+∞). Hence σ(k) is a continuous
function. Clearly,

σ(0) = −μU ′
0(0) < 0 and σ(+∞) = +∞.

Therefore, there exists a unique k0 = k0(μ) > 0 such that σ(k0) = 0.

Theorem 4.2. If h∞ = +∞, then limt→+∞
h(t)
t = k0, where k0 is uniquely

determined in Proposition 4.1.
Proof. It follows from the proof of Lemma 3.2 that lim supt→+∞ u(t, x) ≤

limt→∞ u(t) = a
b uniformly for x ≥ 0. Therefore, for any given ε > 0 small, there

exists T = Tε > 0 such that

u(t, x) ≤ a

b
(1− ε)−1 ∀t ≥ T, x ≥ 0.

Let Uk0(x) denote the unique positive solution of (4.1) with k = k0. Since Uk0(x) → a
b

as x → +∞, there exists X0 > 0 large such that

Uk0(x) >
a

b
(1− ε) for x ≥ X0.

We now define

ξ(t) = (1 − ε)−2k0t+X0 + h(T ), t ≥ 0,

v(t, x) = (1− ε)−2Uk0(ξ(t)− x), t ≥ 0, 0 ≤ x ≤ ξ(t).

Then

ξ′(t) = (1 − ε)−2k0,

−μvx(t, ξ(t)) = μ(1 − ε)−2U ′
k0
(0) = (1− ε)−2k0,

and so we have

ξ′(t) = −μvx(t, ξ(t)).

Clearly,

v(t, ξ(t)) = 0 and vx(t, 0) = −(1− ε)−2U ′
k0
(ξ(t)) ≤ 0.

Moreover, for 0 ≤ x ≤ h(T ),

v(0, x) = (1− ε)−2Uk0(ξ(0)− x) ≥ (1 − ε)−2Uk0(X0) ≥ a

b
(1 − ε)−1 ≥ u(T, x)

and v(0, x) > 0 for h(T ) < x < ξ(0). Direct calculations show that

vt − dvxx = (1 − ε)−2(U ′
k0
ξ′ − dU ′′

k0
)

= (1 − ε)−2[(1− ε)−2k0U
′
k0

− dU ′′
k0
]

≥ (1 − ε)−2(k0U
′
k0

− dU ′′
k0
) (due to U ′

k0
≥ 0)

= (1 − ε)−2(aUk0 − bU2
k0
)

= av − (1− ε)2bv2

≥ av − bv2 for t > 0, 0 < x < ξ(t).
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Hence we can use Lemma 3.5 to conclude that

u(t+ T, x) ≤ v(t, x), h(t+ T ) ≤ ξ(t) for t ≥ 0, 0 ≤ x ≤ h(t+ T ).

It follows that

lim sup
t→+∞

h(t)

t
≤ lim

t→+∞
ξ(t− T )

t
= k0(1− ε)−2.

Since ε > 0 can be arbitrarily small, we deduce that

lim sup
t→+∞

h(t)

t
≤ k0.

Next, we show

lim inf
t→+∞

h(t)

t
≥ k0

by constructing a suitable lower solution. We consider the following problem:{ −dV ′′ + k0V
′ = aV − bV 2, 0 < x < l,

V (0) = V (l) = 0.
(4.3)

As before we know that for all large l problem (4.3) admits a unique positive solution
Vl and

Vl(x) < Uk0(x) <
a

b
for 0 < x ≤ l.

Moreover, as l → ∞, Vl(x) increases to a function V∞(x) which solves (4.1) with
k = k0. By the uniqueness of the positive solution to (4.1), we deduce V∞ = Uk0 .
Moreover, a simple regularity and compactness consideration shows that

lim
l→∞

Vl = Uk0 in C1
loc[0,+∞).

Therefore for any given small ε > 0, we can find l0 = l0(ε) > 0 large such that

V ′
l0(0) >

√
1− εU ′

k0
(0) =

√
1− ε

k0
μ
.

We now define

V0(x) =

{
Vl0(x), 0 ≤ x ≤ ξ0,
Vl0(ξ0), x > ξ0,

where ξ0 ∈ (0, l0) is such that Vl0(ξ0) = max[0,l0] Vl0 . From the equation for Vl0

we see that e−(k0/d)xV ′
l0
(x) is monotone decreasing in (0, l0). Thus V ′

l0
(x) changes

sign exactly once in this interval. It follows that such ξ0 is unique, V ′
l0
(x) > 0 for

x ∈ (0, ξ0), and V ′
l0
(x) < 0 for x ∈ (ξ0, l0). Thus we have

V0(x) ≤ Vl0(ξ0) < Uk0(ξ0) <
a

b
for x ≥ 0,

V ′
0(x) = 0 for x ≥ ξ0, V ′

0(x) > 0 for 0 ≤ x < ξ0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

396 YIHONG DU AND ZHIGUI LIN

Moreover, it is easily checked that V0 satisfies (in the weak sense){ −dV ′′
0 + k0V

′
0 ≤ aV0 − bV 2

0 , 0 ≤ x < +∞,
V0(0) = 0, V0(x) <

a
b , x ≥ 0.

(4.4)

Due to Lemma 3.2, we can choose T = Tε,ξ0 > 0 large such that

h(T ) > ξ0 and u(T, x) ≥ a

b

√
1− ε ∀x ∈ [0, ξ0].

Then define

η(t) = (1− ε)k0t+ ξ0, t ≥ 0,

w(t, x) =
√
1− εV0(η(t) − x), t ≥ 0, 0 ≤ x ≤ η(t).

We have

−μwx(t, η(t)) =
√
1− εμV ′

0(0) =
√
1− εμV ′

l0(0) > (1− ε)k0,

η′(t) = (1 − ε)k0 < −μwx(t, η(t)),

w(t, η(t)) = 0,

wx(t, 0) = −√
1− εV ′

0(η(t)) = 0 (since η(t) ≥ ξ0),

w(0, x) =
√
1− εV0(ξ0 − x) <

√
1− ε

a

b
≤ u(T, x) ∀x ∈ [0, ξ0].

Moreover,

wt − dwxx =
√
1− ε[(1− ε)k0V

′
0 − dV ′′

0 ]

≤ √
1− ε(k0V

′
0 − dV ′′

0 )

≤ √
1− ε(aV0 − bV 2

0 ) (by (4.4))

= aw − (
√
1− ε)−1bw2

≤ aw − bw2

for t > 0, 0 < x < η(t). Hence by Remark 3.6 we deduce

u(t+ T, x) ≥ w(t, x), h(t+ T ) ≥ η(t) for t ≥ 0, 0 ≤ x ≤ η(t).

It follows that

lim inf
t→+∞

h(t)

t
≥ lim

t→+∞
η(t− T )

t
= (1− ε)k0.

Since ε > 0 can be arbitrarily small, this implies that

lim inf
t→+∞

h(t)

t
≥ k0.

The proof is now complete.
Next, we analyze the dependence of k0 on the parameters a, b, μ, and d. From

the proof of Proposition 4.1 we know that k0 is the unique solution of

k − μU ′
k(0) = 0

or, equivalently, the unique value of k at which the increasing line σ = 1
μk and the

decreasing curve σ = U ′
k(0) intersect in the k − σ plane, as indicated in Figure 1.
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k

σ

U ′
0(0)

σ = U ′
k(0)

σ = 1
μ
k

k0

Fig. 1. Graphical representation of k0.

Clearly, when all the other parameters are fixed, k0 increases with μ, and k0 → 0
as μ → 0, and k0 → +∞ as μ → +∞. On the other hand, one easily sees by a
comparison argument that for fixed k, Uk(·) increases with a and decreases with b,
and it follows that U ′

k(0) increases with a and decreases with b. This implies that k0
increases with a and decreases with b. Combining these, we find that for fixed d, if
k0 is viewed as a function of (μ, a, b), namely k0 = k0(μ, a, b), then

μ1 ≥ μ2, a1 ≥ a2, and b1 ≤ b2 imply k0(μ1, a1, b1) ≥ k0(μ2, a2, b2),

with strict inequality holding when (μ1, a1, b1) �= (μ2, a2, b2).
We next fix μ, a, b and examine the dependence of k0 on d, and we write k0 = k0(d)

to emphasize this dependence.
Proposition 4.3. For fixed μ, a, and b, we have

lim
d→∞

√
d k0(d) = σ0 ∈ (0,∞),

lim
d→0

k0(d)√
d | lnd| = 0 and lim

d→0

k0(d)√
d

= +∞.

Proof. Let Uk0 denote the unique positive solution of (4.1) with k = k0, and
define

V (x) = Uk0(
√
dx).

Then { −V ′′ + k0√
d
V ′ = −dU ′′

k0
+ k0U

′
k0

= aV − bV 2, x > 0,

V (0) = 0.
(4.5)

If for each λ ≥ 0, we use Vλ to denote the unique positive solution of

−V ′′ + λV ′ = aV − bV 2, x > 0, V (0) = 0.

It follows from k0 = μU ′
k0
(0) that

k0 =
μ√
d
V ′

k0√
d

(0)

or k0 =
√
dλ0, where λ0 = λ0(d) is the unique solution of λ = μ

dV
′
λ(0). In other words,

λ0 is the unique value of λ at which the graphs of

η =
d

μ
λ and η = V ′

λ(0)

intersect each other in the λ− η plane, as shown in Figure 2.
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λ

η

V ′
0(0)

η = V ′
λ(0)

η = d
μ
λ

λ0

Fig. 2. Graphical representation of λ0.

Clearly, as d → +∞, we have λ0 → 0 and d
μλ0 → V ′

0 (0). Hence

√
dk0 = dλ0 → μV ′

0 (0) as d → +∞,

that is,

lim
d→∞

√
dk0 = σ0 := μV ′

0(0).

Consider next the case d → 0. From Figure 2 it is clear that λ0 = λ0(d) → +∞
as d → 0, i.e., limd→0

k0(d)√
d

= ∞. To obtain further estimate on λ0, we rewrite the

equation of Vλ as

(4.6) −(e−λxV ′
λ)

′ = e−λx(aVλ − bV 2
λ ).

Since Vλ < a
b , from the equation of Vλ we deduce (e−λxV ′

λ)
′ < 0 and thus

e−λxV ′
λ(x) < V ′

λ(0) for x > 0.

Hence V ′
λ(x) ≤ V ′

λ(0)e
λx and

Vλ(x) ≤ 1

λ
V ′
λ(0)(e

λx − 1) ≤ 1

λ
V ′
λ(0)e

λx.

On the other hand, integrating (4.6) over (0,+∞), we obtain

V ′
λ(0) =

∫ ∞

0

e−λx(aVλ − bV 2
λ )dx (using V ′

λ(+∞) = 0)

≤
∫ M

0

e−λxaVλdx+

∫ +∞

M

e−λx a
2

4b
dx

(
due to aVλ − bV 2

λ ≤ a2

4b

)

≤ aM

λ
V ′
λ(0) +

a2

4bλ
e−Mλ for any M > 0.

Therefore,

V ′
λ(0) ≤

(
1− aM

λ

)−1 a2

4bλ
e−Mλ ≤ e−Mλ
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for λ ≥ aM + a2

4b . It follows that d
μλ0 = V ′

λ0
(0) ≤ e−Mλ0 for all small d (since

λ0 = λ0(d) is large for such d). Thus for small d,

ln d+ lnλ0 − lnμ ≤ −Mλ0,

Mλ0 + lnλ0 ≤ lnμ+ ln

(
1

d

)
,

(M − 1)λ0 ≤ ln

(
1

d

)
,

λ0 ≤ 1

M − 1
ln

(
1

d

)
,

and hence

k0 =
√
dλ0 ≤ 1

M − 1

√
d ln

(
1

d

)
, lim sup

d→0

k0(d)√
d ln(1/d)

≤ 1

M − 1
.

Since M can be arbitrarily large, it follows that limd→0
d0(d)√
d ln(1/d)

= 0.

5. Double fronts spreading. In this section, we explain how the techniques
developed for treating (1.1) can be easily modified to obtain similar results for (1.4).

We start with the existence uniqueness result. The local existence uniqueness re-
sult can be proved in the same way, except that we need to modify the transformation
in the proof of Theorem 2.1 so that both boundaries are straightened. To do this, we
define

x = y + ζ(y)(h(t)− h0) + ξ(y)(g(t) + h0), −∞ < y < ∞,

with ζ(y) defined as before, and ξ(y) = −ζ(−y). The rest of the proof is the same.
The proof and the conclusion of Lemma 2.2 are still valid for (1.4), and the

estimates

0 < u(t, x) ≤ C1, 0 < −g′(t) ≤ C2 for g(t) < x ≤ 0, t ∈ (0, T0),

can be obtained analogously.
Finally, we can obtain the global existence and uniqueness result for (1.4) by

exactly the same argument as in Theorem 2.3.
To summarize, we have the following result.
Theorem 5.1. Problem (1.4) has a unique solution (u, g, h) that is defined for

all t ∈ (0,∞). Moreover,

g′(t) < 0, h′(t) > 0, 0 < u(t, x) < u(t) for t > 0 and g(t) < x < h(t),

where u(t) is the unique solution of (2.10).
We next consider the spreading-vanishing dichotomy. We define h∞ as before and

define g∞ analogously.
Lemma 5.2. If h∞ < ∞ or g∞ > −∞, then both h∞ and g∞ are finite and

h∞ − g∞ ≤ π

√
d

a
, lim

t→∞ ‖u(t, ·)‖C([g(t), h(t)]) = 0.

Proof. For definiteness, we assume that h∞ < ∞. We first prove that h∞− g∞ ≤
π
√

d
a . Otherwise

h∞ − g∞ − π

√
d

a
> 0,
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and we can find T > 0 large and σ > 0 small such that

h(T )− g(T ) > l := σ + π

√
d

a
.

It follows that

g(t) ≤ g(T ) < h∞ − σ − π

√
d

a
for t ≥ T.

We now choose ε > 0 and define v = vε as in the proof of Lemma 3.1 and set

w(t, x) = v

(
x− x0

h(t)− x0
l

)
, x0 = h∞ − π

2

√
d

a
− 1

2
σ.

We observe that

x ∈ [2x0 − h(t), h(t)] implies
x− x0

h(t)− x0
l ∈ [−l, l],

and

2x0 − h(t) > 2x0 − h∞ = h∞ − π

√
d

a
− σ > g(t) for t ≥ T.

One can then follow the argument in the proof of Lemma 3.1 to find T0 > T and then
δ > 0 small such that u(t, x) := δw(t, x) is a lower solution to the equation satisfied by
u(t, x) over the region {(t, x) : t ≥ T0, 2x0 − h(t) ≤ x ≤ h(t)}. Hence u(t, x) ≤ u(t, x)
over this region and we can derive the same contradiction as in Lemma 3.1. This

proves that g∞ is finite and h∞ − g∞ ≤ π
√

d
a .

Let u(t, x) denote the unique solution of the problem⎧⎨
⎩

ut − duxx = au− bu2, t > 0, g∞ < x < h∞,
u(t, g∞) = 0, u(t, h∞) = 0, t > 0,
u(0, x) = ũ0(x), g∞ < x < h∞,

(5.1)

with

ũ0(x) =

{
u0(x), g0 ≤ x ≤ h0,
0 otherwise.

The comparison principle gives 0 ≤ u(t, x) ≤ u(t, x) for t > 0 and x ∈ [g(t), h(t)].

Since h∞−g∞ ≤ π
√

d
a , it follows from a well-known conclusion on the logistic problem

(5.1) that u(t, x) → 0 uniformly for x ∈ [g∞, h∞] as t → ∞. Thus limt→+∞ ||u
(t, ·)||C([g(t), h(t)]) = 0.

Lemma 5.3. If h∞ = −g∞ = +∞, then limt→∞ u(t, x) = a
b uniformly on any

compact subset of R1.
Proof. This follows the proof of Lemma 3.2, except that now tl is chosen such

that g(tl) ≤ −l and h(tl) ≥ l, and in (3.3) instead of 0 < x < l, we now require
−l < x < l, and we replace the boundary condition (ul)x(t, 0) = 0 there by the
boundary condition ul(−l) = 0. The change for ũ0 is obvious.

Combining Lemmas 5.2 and 5.3, we obtain the following spreading-vanishing di-
chotomy for (1.4).

Theorem 5.4. Let (u(t, x), g(t), h(t)) be the solution of the free boundary problem
(1.4). Then the following alternative holds:
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Either
(i) spreading: h∞ = −g∞ = +∞ and limt→+∞ u(t, x) = a

b uniformly for x in
any bounded set of R1;

or

(ii) vanishing: h∞ − g∞ ≤ π
√

d
a and limt→+∞ ||u(t, ·)||C([g(t),h(t)]) = 0.

Moreover, Lemma 5.2 implies the following result.

Theorem 5.5. If h0 ≥ π
2

√
d
a , then h∞ = −g∞ = +∞.

To find the sharp criteria governing the alternatives in the spreading-vanishing

dichotomy for the case h0 < π
2

√
d
a , as in section 3, we need some comparison results.

Lemma 5.6. Suppose that T ∈ (0,∞), g, h ∈ C1([0, T ]), u ∈ C(DT ) ∩ C1,2(DT )
with DT = {(t, x) ∈ R

2 : 0 < t ≤ T, g(t) < x < h(t)}, and⎧⎨
⎩

ut − duxx ≥ u(a− bu), t > 0, g(t) < x < h(t),
u ≥ 0, t > 0, x = g(t),

u = 0, h
′
(t) ≥ −μux, t > 0, x = h(t).

If

g(t) ≤ g(t) in [0, T ], h0 ≤ h(0), and u0(x) ≤ u(0, x) in [−h0, h0],

then the solution (u, g, h) of the free boundary problem (1.4) satisfies

h(t) ≤ h(t) in (0, T ], u(x, t) ≤ u(x, t) for t ∈ (0, T ], and g(t) < x < h(t).

The proof of Lemma 5.6 follows the same arguments as in Lemma 3.5. We also
need a variant of Lemma 5.6, whose proof only requires some obvious modifications.

Lemma 5.7. Suppose that T ∈ (0,∞), g, h ∈ C1([0, T ]), u ∈ C(DT ) ∩ C1,2(DT )
with DT = {(t, x) ∈ R

2 : 0 < t ≤ T, g(t) < x < h(t)}, and⎧⎨
⎩

ut − duxx ≥ u(a− bu), t > 0, g(t) < x < h(t),
u = 0, g′(t) ≤ −μux, t > 0, x = g(t),

u = 0, h
′
(t) ≥ −μux, t > 0, x = h(t).

If

[−h0, h0] ⊆ [g(0), h(0)] and u0(x) ≤ u(0, x) in [−h0, h0],

then the solution (u, g, h) of the free boundary problem (1.4) satisfies

g(t) ≥ g(t), h(t) ≤ h(t) in (0, T ],

u(x, t) ≤ u(x, t) for t ∈ (0, T ] and x ∈ (g(t), h(t)).

Remark 5.8. There is a symmetric version of Lemma 5.6, where the conditions
on the left and right boundaries are interchanged. We also have a corresponding
comparison result for lower solutions in each case.

We can now prove the corresponding result of Lemma 3.7.

Lemma 5.9. Suppose h0 < π
2

√
d
a . If

μ ≥ μ0 := max

{
1,

b

a
‖u0‖∞

}
d

(
π

√
d

a
− 2h0

)(∫ h0

−h0

u0(x)dx

)−1

,
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then h∞ = −g∞ = +∞.
Proof. Only minor modifications in the proof of Lemma 3.7 are needed. Instead

of starting from

d

dt

∫ h(t)

0

u(t, x)dx,

we now start with

d

dt

∫ h(t)

g(t)

u(t, x)dx.

The rest of the changes are obvious.
It is easily seen that the lower solution constructed in the proof of Lemma 3.8 is

also a lower solution for (1.4). Therefore, the following result holds.

Lemma 5.10. Suppose h0 < π
2

√
d
a . Then there exists μ > 0 depending on u0

such that (h∞ − g∞) ≤ π
√

d
a when μ ≤ μ.

We can now use Lemmas 5.7, 5.9, and 5.10 to prove the following sharp criteria

governing the spreading-vanishing dichotomy for the case h0 < π
2

√
d
a .

Theorem 5.11. Suppose h0 < π
2

√
d
a . Then there exists μ∗ > 0 depending on u0

such that (h∞ − g∞) ≤ π
√

d
a when μ ≤ μ∗, and h∞ = −g∞ = ∞ when μ > μ∗.

Proof. We define Σ := {μ > 0 : h∞ − g∞ ≤ π
√

d
a }. For the rest of the proof we

just follow the proof of Theorem 3.9.
Finally, we consider the asymptotic spreading speed for (1.4).
Theorem 5.12. Let (u, g, h) be the unique solution of (1.4) with h∞ = −g∞ =

∞. Then

lim
t→∞

g(t)

t
= −k0, lim

t→∞
h(t)

t
= k0,

where k0 is given by Proposition 4.1.
Proof. We only prove the conclusion for h(t), since the proof for g(t) is parallel.
Examining the proof of Theorem 4.2, we find that the function v(t, x) there is

also an upper solution for (1.4), and hence

u(t+ T, x) ≤ v(t, x), h(t+ T ) ≤ ξ(t) for t ≥ 0, and g(t+ T ) ≤ x ≤ h(t+ T ).

We thus deduce

lim sup
t→∞

h(t)

t
≤ k0

in the same way.
The construction of the lower solution will be different from the proof of Theo-

rem 4.2. For l > 0 and any small ε > 0, we consider the following problem:

−dV ′′ + (1− ε)k0V
′ = aV − bV 2 in (0, l), V (0) = V (l) = 0.

As before, we know that for all large l this problem has a unique positive solution Vl

and

Vl(x) < U(1−ε)k0
(x) <

a

b
for 0 < x ≤ l.
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Moreover, as l → ∞, Vl converges to U(1−ε)k0
in C1

loc([0,∞)). From Proposition 4.1
we know that U ′

(1−ε)k0
(0) > U ′

k0
(0). Hence we can find l0 > 0 large enough such that

V ′
l0(0) > U ′

k0
(0) =

k0
μ
.

Denote V0 = Vl0 . We have max[0,l0] V0 < a/b, and hence, by Lemma 3.2, we can find
T = Tl0 > 0 such that

h(T ) > l0 and u(T, x) ≥ max
[0,l0]

V0 ∀x ∈ [0, l0].

Define

η(t) = (1− ε)k0t+ l0, t ≥ 0,

w(t, x) = V0(η(t) − x), t ≥ 0, η(t)− l0 ≤ x ≤ η(t).

Clearly, η(t)− l0 ≥ 0 > g(t) for t ≥ 0, and

−μwx(t, η(t)) = μ(1 − ε)V ′
0(0) > (1− ε)k0,

η′(t) = (1 − ε)k0 < −μwx(t, η(t)),

w(t, η(t)) = V0(0) = 0,

w(t, η(t) − l0) = V0(l0) = 0,

w(0, x) = V0(l0 − x) ≤ u(T, x) ∀x ∈ [0, l0].

Moreover,

wt − dwxx = (1− ε)k0V
′
0 − dV ′′

0

= aV0 − bV 2
0

= aw − bw2

for t > 0, η(t)− l0 < x < η(t). Hence, by Remark 5.8, we deduce

u(t+ T, x) ≥ w(t, x), h(t+ T ) ≥ η(t) for t ≥ 0, η(t)− l0 ≤ x ≤ η(t).

It follows that

lim inf
t→+∞

h(t)

t
≥ lim

t→+∞
η(t− T )

t
= (1− ε)k0.

Since ε > 0 can be arbitrarily small, this implies that

lim inf
t→+∞

h(t)

t
≥ k0.

The proof is now complete.

6. Discussion. We have examined the dynamical behavior of the population
u(t, x) with spreading front x = h(t) determined by (1.1), and also the dynamical
behavior of the population u(t, x) with double spreading fronts x = g(t) and x = h(t)
modeled by (1.4).

We have proved that for both problems, a spreading-vanishing dichotomy holds
(Theorems 3.3 and 5.4), and when spreading occurs the spreading fronts expand at
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a nearly constant speed for large time (Theorems 4.2 and 5.12). These phenomena
are in agreement with numerous documented observations for the spreading of species
in ecology (cf. [26, 19]), but differ from the mathematical conclusions obtained from
(1.3), which predicts successful spreading for all initial data.

If we use “spreading radius” to mean the time-dependent distance between the
fixed boundary x = 0 and the expanding front x = h(t) for (1.1), or half the distance
between the two expanding fronts for (1.4), then our spreading-vanishing dichotomy
reveals a critical spreading radius, which may be called a “spreading barrier”,

l∗ =
π

2

√
d

a
,

such that the population will spread to all the new environments and successfully es-
tablish itself if its spreading radius can break through this barrier l∗ in some finite time,
or the spreading never breaks through this barrier and the population vanishes in the
long run. We note that once the spreading breaks through this barrier, the population
will definitely establish and spread to the entire available space regardless of its size
at the time the barrier is broken through, though according to our comparison results
(Lemmas 3.5 and 5.7, and Remarks 3.6 and 5.8), when the initial spreading radius l0 is
below l∗, the initial population size u0 has a significant positive influence on whether
the spreading can break through the barrier at some later time. This feature of the dy-
namical behavior of our models seems to agree with the empirical evidence discussed
in Chapter 4 of [19], where in particular a comprehensive experiment on an insect
biocontrol agent in New Zealand (reported in Memmott et al. [20]) is reviewed. The
observed data in this experiment during the six years after the introduction of 55 orig-
inal populations show that the probability of establishment was significantly and pos-
itively related to the initial population size, but only during the first year in the field.
Populations surviving after the initial year were not significantly related to the initial
population size, as shown in Figure 4.3 of [19], which also reveals that the population
size after year one of the introduction was mostly smaller than the introduction size.

Another fact revealed in our models which does not agree with (1.3) is about
the spreading speed (also called spreading rate). The latter gives a spreading speed
proportional to the square root of the dispersal rate d (namely c∗ = 2

√
ad), while

Proposition 4.3 shows that the spreading speed k0 for (1.1) and (1.4) is not increasing
in d (at least for large d). Moreover, in the course of the proof of Proposition 4.3, we
have demonstrated that k0 can be expressed in the form k0 = λ0

√
d, with λ0 = λ0(d)

determined as in Figure 2. Since λ0(d) → 0 as d → ∞, and λ0(d) → ∞ as d → 0, the
expression k0 = λ0

√
d suggests that, if k0 is a good estimate for the real spreading

rate, then the formula c∗ = 2
√
ad would underestimate the real spreading rate for

small d, and overestimate this rate for large d. This turns out to be in agreement
with the figures in Table 3.1 of [26], where the observed spreading rates are compared
with the theoretically predicted rates based on the formula c∗ = 2

√
ad, and the same

trend is revealed there.
We feel it is reasonable to conclude that (1.1) and (1.4) are promising alternatives

to (1.3) for the modeling of population spreading, and worth further investigation.
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