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Abstract. We study the diffusive logistic equation with a free boundary in time-periodic
environment. Such a model may be used to describe the spreading of a new or invasive species,
with the free boundary representing the expanding front. For time independent environment, in
the cases of one space dimension, and higher space dimensions with radial symmetry, this free
boundary problem has been studied in [12, 9]. In both cases, a spreading-vanishing dichotomy
was established, and when spreading occurs, the asymptotic spreading speed was determined.
In this paper, we show that the spreading-vanishing dichotomy is retained in time-periodic
environment, and we also determine the spreading speed. The former is achieved by further
developing the earlier techniques, and the latter is proved by introducing new ideas and methods.

1. Introduction

We study the evolution of the positive solution u(t, r) (r = |x|, x ∈ RN , N ≥ 2), governed by
the following diffusive logistic equation with a free boundary:

ut − d∆u = u(α(t, r)− β(t, r)u), t > 0, 0 < r < h(t),
ur(t, 0) = 0, u(t, h(t)) = 0, t > 0,
h′(t) = −µur(t, h(t)), t > 0,
h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0,

(1.1)

where ∆u = urr +
N−1
r ur; r = h(t) is the free boundary to be determined; h0, µ and d are given

positive constants; u0 ∈ C2([0, h0]) is positive in [0, h0) and u′0(0) = u0(h0) = 0; the functions
α(t, r) and β(t, r) satisfy the following conditions:

(1.2)


(i) α, β ∈ Cν0/2,ν0(R× [0,∞)) for some ν0 ∈ (0, 1),

and are T -periodic in t for some T > 0;
(ii) there are positive constants κ1, κ2 such that

κ1 ≤ α(t, r) ≤ κ2, κ1 ≤ β(t, r) ≤ κ2, ∀r ∈ [0,∞), ∀t ∈ [0, T ].

Problem (1.1) may be viewed as describing the spreading of a new or invasive species with
population density u(t, |x|) over an N -dimensional habitat, which is radially symmetric but
heterogeneous. The initial function u0(|x|) stands for the population in its early stage of intro-
duction. Its spreading front is represented by the free boundary |x| = h(t), which is a sphere

1991 Mathematics Subject Classification. 35K20, 35R35, 35J60, 92B05.
Key words and phrases. Diffusive logistic equation, free boundary, spreading-vanishing dichotomy, periodic

environment, spreading speed.
This work was supported by the Australian Research Council and by NSFC of China (10871060, 10801090,

10871185, 10771032, 11271167, 11171319). R. Peng was also partially supported by the Program for New Century
Excellent Talents in University and the Priority Academic Program Development of Jiangsu Higher Education
Institutions. Y. Du thanks Prof. Xing Liang for useful discussions.

† School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
‡ Department of Mathematics, Henan Normal University, Xinxiang, 453007, China.
♯ Department of Mathematics, Jiangsu Normal University, Xuzhou, 221116, China.
Emails: ydu@turing.une.edu.au (Y. Du), gzm@htu.cn(Z. Guo), pengrui

¯
seu@163.com(R. Peng).

1



2 Y. DU, Z. GUO AND R. PENG

∂Bh(t) with radius h(t) growing at a speed proportional to the gradient of the population density
at the front: h′(t) = −µur(t, h(t)). The coefficient functions α(t, |x|) and β(t, |x|) represent the
intrinsic growth rate of the species and its intra-specific competition respectively, and d is the
random diffusion rate.

By restricting to the radially symmetric setting, we are able to avoid the difficult mathematical
problem of regularity of the free boundary, and focus on the new phenomena exhibited by the
free boundary model. The general (non-radial) case in several space dimensions was treated in
[10] and [16] by completely different techniques.

In the special case that the functions α and β are independent of time t, problem (1.1) was
studied recently in [9], and when α, β are positive constants and the space dimension is one,
this problem was considered earlier in [12]. (Actually more general situations were investigated
in [12], e.g., u0 needs not be symmetric.) In both cases, it was shown that a unique solution pair
(u, h) exists, with u(t, r) > 0 and h′(t) > 0 for t > 0 and 0 ≤ r < h(t), and a spreading-vanishing
dichotomy holds, namely, a spatial barrier r = R∗ exists, such that either

• Spreading: the free boundary breaks the barrier at some finite time (i.e., h(t0) ≥ R∗ for
some t0 ≥ 0), and then the free boundary goes to infinity as t→ ∞ (i.e., limt→∞ h(t) =
∞), and the population spreads to the entire space and stabilizes at its positive steady-
state, or

• Vanishing: the free boundary never breaks the barrier (h(t) < R∗ for all t > 0), and
the population vanishes (limt→∞ u(t, r) = 0).

Moreover, when spreading occurs, the asymptotic spreading speed can be determined (namely
limt→∞ h(t)/t exists and is uniquely determined).

The purpose of this paper is to examine (1.1) in the time-periodic case, a situation that
more closely reflects the periodic variation of the natural environment, such as daily or seasonal
changes. We will show that the above spreading-vanishing dichotomy is retained in the time-
periodic setting, and by introducing new ideas and techniques we also determine the spreading
speed.

In most spreading processes in the natural world, a spreading front can be observed. Under
the assumption of radial symmetry and logistic growth law, if a new or invasive species initially
occupies a spherical region {|x| < h0} with density u0(|x|), then as time t increases from 0, it is
natural to expect that the boundary of the initial region evolves into an invading front, which
encloses an expanding ball {|x| < h(t)} inside which the initial function u0(|x|) evolves into a
positive function governed by the logistic equation ut − d∆u = u(α− βu), with u vanishing on
{|x| = h(t)}. To determine the evolution of the front {|x| = h(t)} with time, we assume as in
[12, 9] that the front invades at a speed that is proportional to the spatial gradient of the density
function u there, which gives rise to the free boundary condition in (1.1). A deduction of this
free boundary condition based on ecological assumptions can be found in [7].

The investigation of front propagation has a long history. A considerable amount of work is
based on the following diffusive logistic equation over the entire space RN :

(1.3) ut − d∆u = u(a− bu), t > 0, x ∈ RN ,

with d, a and b positive constants. In the pioneering works of Fisher [18] and Kolmogorov et
al [23], for space dimension N = 1, traveling wave solutions have been found for (1.3). For any

c ≥ c∗ := 2
√
ad, there exists a solution u(t, x) :=W (x− ct) with the property that

W ′(y) < 0 for y ∈ R1, W (−∞) = a/b, W (+∞) = 0;

no such solution exists if c < c∗. The number c∗ is called the minimal speed of the traveling
waves. Fisher [18] claims that c∗ is the spreading speed for the advantageous gene in his research,
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and used a probabilistic argument to support his claim. The first well known ecological example
exhibiting a linear spreading rate in time is due to Skellam [31]. He considered the case of
spreading of muskrat in Europe in the early 1900s: he calculated the area of the muskrat range
from a map obtained from field data, took the square root and plotted it against years, and
found that the data points lay on a straight line. (Further ecological examples obeying this
linear spreading rule may be found in [30].) Skellam [31] used a linear model (i.e., (1.3) with
b = 0) and a probabilistic consideration to argue that c∗ should be the speed of spreading. A
clear description and rigorous proof of this fact were given by Aronson and Weinberger (see
Section 4 in [1]), who showed that for a new population u(t, x) (governed by the above logistic
equation) with initial distribution u(0, x) confined to a compact set of x (i.e., u(0, x) = 0 outside
a compact set), one has

lim
t→∞, |x|≤(c∗−ϵ)t

u(t, x) = a/b, lim
t→∞, |x|≥(c∗+ϵ)t

u(t, x) = 0

for any small ϵ > 0, where the convergence is uniform in the indicated range of x. These results
have been extended to higher dimensions in [2], and extensive further development on traveling
wave solutions and the spreading speed has been achieved in several directions, in particular, to
situations of various heterogeneous environments; see, for example, [3, 4, 5, 6, 25, 32, 33] and
the references therein for more details.

Generally speaking, the Cauchy problem is the limiting problem of the corresponding free
boundary model as µ → ∞. This was shown in [10] in a very general setting. If µ = 0,
clearly the free boundary problem reduces to a fixed boundary problem with Dirichlet boundary
conditions.

The enormous success of (1.3) nevertheless carries a shortcoming. The above conclusion for
(1.3) predicts successful spreading and establishment of the new species with any nontrivial
initial population u(0, x), regardless of its initial size and supporting area. However, this is
not supported by empirical evidences, which suggest, in the contrary, that success of spreading
is dependent on the initial size of the population; for example, the introduction of several
bird species from Europe to North America in the 1900s was successful only after many initial
attempts (cf. [30] and [26], where more examples can be found).

This defect of (1.3) can be removed if the logistic nonlinear term in the equation is replaced
by a bistable one (see, e.g., [24]), to represent an Allee effect on the growth rate of the species.
A typical bistable f(u) is u(u − θ)(1 − u) with θ ∈ (0, 1/2). It is well known that (1.3) with a
bistable nonlinearity has traveling wave solutions only for one wave speed c∗, and the unique
solution of the Cauchy problem with large nonnegative initial u0 converges to 1 with spreading
speed c∗ as t→ ∞, and for small u0 the solution converges to 0; see [2]. In one space dimension,
it was shown in [15] that as the nonnegative initial function u0 (with compact support) is varied,
exactly three types of behavior can be observed for the unique solution u of the Cauchy problem:
limt→∞ u(t, x) = 0, limt→∞ u(t, x) = 1 or limt→∞ u(t, x) = v(x), where v(x) is a ground state
solution of −dvxx = f(v) in R1, namely it is positive and decays to 0 at ±∞. Moreover, the third
type of behavior occurs as an exceptional case; roughly speaking, if the initial function u0 is
properly parameterized by a parameter λ, then this type of behavior only occurs at a threshold
value λ∗ of the parameter.

Our results in [12, 9] and in this paper indicate that the above mentioned shortcoming of (1.3)
does not appear even with the original logistic nonlinearity, if instead of the Cauchy problem,
one uses the corresponding free boundary model to describe the spreading process. However,
in contrast to the above mentioned trichotomy of [15] in one space dimension with a bistable
nonlinearity associated with the Cauchy problem, the free boundary model with a logistic type
nonlinearity exhibits a spreading-vanishing dichotomy. Furthermore, unlike the Cauchy problem
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model in which the spreading front is represented by an unspecified level set of the solution, the
free boundary model gives a precise location of the spreading front for any given time. We note
that the important feature of (1.3), namely the spreading front invades at a linear rate in time,
is retained by the free boundary model.

We now describe the main results of this paper.

Theorem 1.1. (Existence and uniqueness) Problem (1.1) admits a unique solution (u(t, r), h(t)),
which is defined for all t > 0. Moreover, h ∈ C1([0,∞)), u ∈ C1,2(D) with D = {(t, r) : t >
0, 0 ≤ r ≤ h(t)}, and u(t, r) > 0 for t > 0 and 0 ≤ r < h(t), h′(t) > 0 for t > 0.

Theorem 1.2. (Spreading-vanishing dichotomy) Let (u(t, r), h(t)) be the solution of (1.1).
Then the following alternative holds:

Either

(i) Spreading: limt→∞ h(t) = +∞ and

lim
t→∞

|u(t, r)− Û(t, r)| = 0 locally uniformly for r ∈ [0,∞),

where Û(t, |x|) is the unique positive T -periodic solution of

Ut − d∆U = U [α(t, |x|)− β(t, |x|)U ], (t, x) ∈ R1 × RN ,

or

(ii) Vanishing: limt→∞ h(t) ≤ R∗ and limt→+∞ ||u(t, ·)||C([0,h(t)]) = 0, where R∗ > 0 is the
unique value such that the following linear problem has a positive T -periodic solution
when R = R∗:{

ϕt − d∆ϕ = α(t, |x|)ϕ for t ∈ R1 and |x| < R,
ϕ = 0 for t ∈ R1 and |x| = R.

Theorem 1.3. (Spreading-vanishing criteria)

(a) If h0 ≥ R∗, then spreading always occurs.
(b) If h0 < R∗, then there exists a unique µ∗ > 0 depending on u0 such that vanishing occurs

if 0 < µ ≤ µ∗, and spreading happens if µ > µ∗.

Let us note that, when h0 < R∗, since µ∗ varies with u0, for fixed µ, whether spreading or
vanishing happens depends on the size of u0.

Theorem 1.4. (Spreading speed and profile) Suppose that

lim
r→∞

α(t, r) = α∗(t), lim
r→∞

β(t, r) = β∗(t)

uniformly for t ∈ [0, T ]. Then in the case of spreading, there exists a positive T -periodic function
k0(t) such that

lim
t→∞

h(t)

t
= k0 :=

1

T

∫ T

0
k0(t)dt.

Moreover, for any c ∈ (0, k0), we have

lim
t→∞

max
0≤r≤ct

|u(t, r)− Û(t, r)| = 0.

Remark 1.5. Clearly k0 depends on µ. If we denote k0 = k0(µ) to stress this dependence, we

will show that k0(µ) < 2
√
α∗d and limµ→+∞ k0(µ) = 2

√
α∗d, where α∗ = T−1

∫ T
0 α∗(t)dt.
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The periodic function k0(t) is uniquely determined. This will be shown by a new approach.
First, the existence of k0(t) is proved by the Schauder fixed point theorem, for a nonlinear
operator arising in the following way. Given a nonnegative T -periodic Hölder continuous function
k(t), find a positive solution U(t, r) to

(1.4)

{
Ut − dUrr + k(t)Ur = U [α∗(t)− β∗(t)U ], (t, r) ∈ R1 × (0,∞),
U(t, 0) = 0, U(t, r) = U(t+ T, r), t ∈ R1, r > 0.

If we denote by Uk such a positive solution (when exists), and define an operator A acting on
nonnegative T -periodic functions by

Ak(t) = µUk
r (t, 0),

then k0 will be a fixed point of A, and hence satisfies

(1.5) k0(t) = µUk0
r (t, 0) ∀t ∈ R1.

Second, the uniqueness of such k0(t) and its dependence on the parameter µ are established
by a new device, which turns out to be useful also for the study of the space-periodic case of
the free boundary model [11], and for the study of a seasonal succession model [29]. We believe
that these ideas may have further applications in related problems.

Let us note that if a T -periodic function k(t) gives rise to a positive solution Uk of (1.4),
then Uk can be used to generate a family of one dimensional “semi-waves” in the following way.
Define, for each constant c ∈ R1,

K(t) =

∫ t

0
k(s)ds+ c, V (t, x1) = Uk(t,K(t)− x1).

Then V satisfies, for t ∈ R1,

Vt − dVx1x1 = V [α∗(t)− β∗(t)V ], V > 0 for x1 < K(t), V (t,K(t)) = 0.

Thus as t increases, V behaves like a wave traveling to the positive direction of x1, with the front
at x1 = K(t) moving at the T -periodic speed k(t). Since for fixed t, V (t, x1) is defined only on
the half-line x1 ≤ K(t), it makes sense to call it a semi-wave. We will also call the profile of V ,
Uk(t, r), a semi-wave. Uk clearly also generates a family of semi-waves traveling to the negative
direction of x1:

Ṽ (t, x1) = Uk(t, x1 +K(t)).

Note that the semi-wave V generated by Uk0 has the extra property that, at the front x1 =

K0(t) :=
∫ t
0 k0(s)ds+ c,

K ′
0(t) = −µVx1(t,K0(t)),

that is, the movement of the front of this particular semi-wave satisfies the 1-d free boundary
condition. This property of k0(t) will allow us to construct upper and lower solutions to (1.1)
based on suitable variations of Uk0 to determine the spreading speed.

Most of the innovations of this paper are contained in sections 2 and 4, with section 3 consisting
of extensions of earlier techniques (except Lemma 3.10), where the proofs are often brief or
omitted whenever possible. More specifically, in section 2, by introducing a completely new
approach we study the semi-waves determined by (1.4): we prove the existence and uniqueness
of k0(t), and investigate the dependence of k0(t) on a(t), b(t) and µ. Section 3 is devoted to
the proof of Theorems 1.2 and 1.3, by establishing a more general version of Theorem 1.1, and
by extending many techniques in [9]. In section 4, we prove Theorem 1.4, based on our results
established in section 2, and some new techniques.

We end this section by mentioning some recent related research. In [21], some of the results of
[12] were extended to the case that the solution satisfies a Dirichlet boundary condition at x = 0
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and a free boundary condition at x = h(t), covering monostable and bistable nonlinearities. In
[19], a competition system with free boundary conditions was investigated. In [13], the results
of [12] were extended to one-dimensional free boundary problems with general nonlinear terms,
including nonlinearities of monostable, bistable and combustion types. Sharper estimate of
the spreading speed was obtained in [17] under the general setting of [13]. In [16], a general
nonlinear Stefan problem in high space dimension without any symmetric assumption on the
initial function or the free boundary was considered, and the regularity of the free boundary and
the long-time behavior was investigated; in particular, it was shown that the spreading-vanishing
dichotomy of [12] in one-space dimension remains valid in this general high dimension setting.

2. Semi-waves

The main purpose of this section is to prove the existence and uniqueness of a positive T -
periodic function k0(t) so that (1.4) has a positive solution when k = k0, and it satisfies (1.5).
We also study how k0(t) varies as a, b and µ change.

So we consider the following problem

(2.1)

 Ut − dUrr + k(t)Ur = U [a(t)− b(t)U ], (t, r) ∈ [0, T ]× (0,∞),
U(t, 0) = 0, t ∈ [0, T ],
U(0, r) = U(T, r), r ∈ (0,∞),

where d > 0 is a given constant, and k, a, b are given T -periodic Hölder continuous functions
with a, b positive and k nonnegative. Our first result on (2.1) is the following.

Proposition 2.1. For any given positive T -periodic functions a, b ∈ Cν0/2([0, T ]) and any

nonnegative continuous T -periodic function k(t) in Cν0/2([0, T ]), problem (2.1) admits a maximal
nonnegative T -periodic solution Uk(t, r). Moreover, either Uk ≡ 0 or Uk > 0 in [0, T ]× (0,∞).
Furthermore, if Uk > 0, then it is the only positive solution of (2.1), Uk

r (t, r) > 0 in [0, T ]×[0,∞)
and Uk(t, r) → V (t) uniformly for t ∈ [0, T ] as r → +∞, where V (t) is the unique positive
solution of the problem

(2.2)
dV

dt
= V [a(t)− b(t)V ] in [0, T ], V (0) = V (T );

in addition, for any given nonnegative T -periodic function k1 in Cν0/2([0, T ]), the assumption
k1 ≤, ̸≡ k implies

Uk1
r (t, 0) > Uk

r (t, 0), Uk1(t, r) > Uk(t, r) for t ∈ [0, T ] and r ∈ (0,∞).

Proof. We divide the proof of this proposition into several steps.
Step 1. Problem (2.1) always has a maximal nonnegative solution U , and it satisfies

(2.3) U(t, r) ≤
maxt∈[0,T ] a(t)

mint∈[0,T ] b(t)
:= C0, ∀(t, r) ∈ [0, T ]× [0,∞).

Clearly 0 is always a nonnegative solution of (2.1). We show next that it has a maximal
nonnegative solution and (2.3) holds.

To this end, for any given constant ℓ > 0, we consider the following boundary blow-up
problem:

(2.4)

{
−durr = u{[maxt∈[0,T ] a(t)]− [mint∈[0,T ] b(t)]u} in (0, ℓ),
u(0) = 0, u(ℓ) = ∞.

It is easily seen from arguments similar to those in the proof of Lemma 2.3 of [14] that, for any
ℓ > 0, problem (2.4) admits a unique positive solution uℓ and uℓ decreases to u∞ uniformly over
any bounded interval [0, R] as ℓ increases to ∞. Moreover, u∞ is the unique positive solution of
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(2.4) with ℓ = ∞, and u∞ < C0 in [0,∞). By a simple moving plane consideration we also see
that u∞r (r) > 0 for r ∈ [0,∞). Clearly u∞ is an upper solution to the problem

(2.5)


wt − dwrr + k(t)wr = w[a(t)− b(t)w], (t, r) ∈ [0, T ]× (0, ℓ),
w(t, 0) = 0, t ∈ (0, T ),
w(t, ℓ) = u∞(ℓ), t ∈ [0, T ],
w(t, r) is T -periodic in t.

Since 0 is a lower solution to (2.5), we find by standard upper and lower solution argument that
(2.5) has at least one positive solution U ℓ and U ℓ ≤ u∞. Since the right hand side of the first
equation in (2.5) is concave in w, by a standard argument (along the lines of Step 4 below) we
find that U ℓ is the unique positive solution of (2.5). One may then use a simple upper and lower
solution argument to (2.5) and the monotonicity of u∞(r) to deduce that U ℓ is decreasing in ℓ
and U ℓ → U as ℓ→ ∞, where U is a nonnegative solution of (2.1). Clearly U ≤ u∞ < C0.

It remains to show that U is the maximal nonnegative solution of (2.1). Let U be an arbitrary
nonnegative solution of (2.1). If U ≡ 0 then clearly U ≤ U . Suppose now U ≥, ̸≡ 0. Then
U(t, r) > 0 in [0, T ] × (0,∞) due to the strong maximum principle of parabolic equations. We
show next that U(t, r) ≤ U(t, r) for (t, r) ∈ [0, T ]× [0,∞).

Firstly for fixed ℓ > 0 we can find M > 0 large such that Muℓ(r) ≥ U(t, r) for (t, r) ∈
[0, T ]× [0, ℓ). We claim that the above inequality also holds forM = 1. Otherwise letM0 be the
infimum of the set ofM for which this inequality holds, thenM0 > 1. SinceM0u

ℓ ≥, ̸≡ U , we can
apply the strong maximum principle to deduce that M0u

ℓ(r) > U(t, r) and M0u
ℓ
r(0) > Ur(t, 0)

for r ∈ (0, ℓ) and t > 0. Since U is periodic in t, this implies that there exists M1 < M0 such
that Muℓ ≥ U in [0, T ]× [0, ℓ) for all M ≥M1, which contradicts the definition of M0. Thus we
have proved that uℓ ≥ U in [0, T ]× [0, ℓ). Letting ℓ→ ∞ we deduce u∞ ≥ U in [0, T ]× [0,∞).
It follows that U is always a lower solution to (2.5), which implies U ≤ U ℓ in [0, T ]× [0, ℓ], due
to the uniqueness of U ℓ. Letting ℓ → ∞, we deduce U ≤ U , as we wanted. This completes the
proof of step 1.

Step 2. For any given nonnegative T -periodic and continuous function k(t), we claim that
Ur(t, r) > 0 in [0, T ]× [0,∞) whenever U is a positive solution of (2.1).

We use the moving plane argument to prove the conclusion here. It follows from the Hopf
boundary lemma for parabolic equations that Ur(t, 0) > 0 for t ∈ [0, T ]. Thus, setting

Λ =
{
λ > 0 : U(t, 2λ− r) > U(t, r) for (t, r) ∈ [0, T ]× [0, λ)

and Ur(t, r) > 0 for (t, r) ∈ [0, T ]× [0, λ]
}

we see that Λ contains all sufficiently small λ > 0. Let λ∗ := supΛ. We show that λ∗ = ∞,
which would imply our claim in this step.

Suppose by way of contradiction that λ∗ ∈ (0,∞). Then

U(t, 2λ∗ − r) ≥ U(t, r) and Ur(t, r) ≥ 0 for (t, r) ∈ [0, T ]× [0, λ∗].

Define Ṽ (t, r) = U(t, 2λ∗ − r) for r ∈ [λ∗, 2λ∗]. Then

Ṽt − dṼrr + k(t)Ṽr = Ṽ [a(t)− b(t)Ṽ ]− 2k(t)Uξ, ξ = 2λ∗ − r ∈ [0, λ∗].

Now we set

W (t, r;λ∗) =W (t, r) = Ṽ (t, r)− U(t, r) = U(t, ξ)− U(t, 2λ∗ − ξ).
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Then W ≤ 0 for (t, r) ∈ [0, T ]× [λ∗, 2λ∗], and it satisfies

(2.6)


Wt − dWrr + k(t)Wr + c(t, r)W = −2k(t)Uξ ≤ 0, (t, r) ∈ [0, T ]× [λ∗, 2λ∗],
W (t, λ∗) = 0, t ∈ [0, T ],
W (t, 2λ∗) = −U(t, 2λ∗) < 0, t ∈ [0, T ],
W (0, r) =W (T, r), r ∈ [λ∗, 2λ∗],

where c(t, r) := −[a(t)− b(t)(Ṽ (t, r)+U(t, r))] is a bounded and T -periodic function on [0, T ]×
[λ∗, 2λ∗] due to the assertion of step 1. Since W is periodic in t, the strong maximum principle
and Hopf boundary lemma then imply that

(2.7) W (t, r) < 0 ∀(t, r) ∈ [0, T ]× (λ∗, 2λ∗],

and

(2.8) Wr(t, λ
∗) < 0 for t ∈ [0, T ].

By continuity, for all small ϵ ≥ 0,

(2.9) Wr(t, λ
∗ + ϵ;λ∗ + ϵ) < 0 for t ∈ [0, T ]

and

(2.10) W (t, r;λ∗ + ϵ) < 0 ∀(t, r) ∈ [0, T ]× (λ∗ + ϵ, 2λ∗ + 2ϵ].

It follows that

U(t, 2λ∗ + 2ϵ− ξ) > U(t, ξ) for (t, ξ) ∈ [0, T ]× [0, λ∗ + ϵ),

and since Wr(t, λ
∗ + ϵ;λ∗ + ϵ) = −2Ur(t, λ

∗ + ϵ), we see from (2.9) that

Ur(t, λ
∗ + ϵ) > 0 ∀t ∈ [0, T ].

But these facts contradict the definition of λ∗. This completes the proof of step 2.
Step 3. We obtain the asymptotic behavior of positive solution U of (2.1) as r → ∞.
In view of steps 1 and 2, there exists V (t) such that

lim
r→+∞

U(t, r) = V (t) ∀t ∈ [0, T ].

Moreover, V (t) is a positive T -periodic function. For any sequence {rn} with rn → +∞ as
n → ∞, we define Un(t, r) = U(t, rn + r). Then Un solves the same equation as U but over
(0, T )× (−rn,∞). Since Un ≤ C0, the standard regularity argument allows us to conclude that
we can extract a subsequence of {Un} (still denoted by {Un}) such that

Un → Ũ locally in C1,2([0, T ]× (−∞,∞)) as n→ ∞
and Ũ is a positive solution of{

wt − dwrr + k(t)wr = w[a(t)− b(t)w], (t, r) ∈ (0, T )× (−∞,∞),
w(0, r) = w(T, r), r ∈ (−∞,∞).

On the other hand, it follows from limr→+∞ U(t, r) = V (t) that

lim
n→∞

Un(t, r) = lim
n→∞

U(t, rn + r) = V (t).

This implies that
Ũ ≡ V.

Therefore, V > 0 satisfies

(2.11)
dV

dt
= V [a(t)− b(t)V ] in [0, T ], V (0) = V (T ).

It is well known that (2.11) has a unique positive solution.
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Step 4. We show that (2.1) has at most one positive solution.
Suppose that (2.1) admits two positive T -periodic solutions U1 and U2. By the conclusions

of step 3 and the Hopf boundary lemma, we can choose M > 1 such that M−1U1 < Ui < MU1

in [0, T ] × (0,∞) for i = 1, 2. Note that (M−1U1,MU1) is a pair of sub- and supersolutions of
(2.1). By the sub- and supersolution argument similar to [22] on unbounded spatial domains,
(2.1) possesses a minimal and a maximal solution in the order interval [M−1U1,MU1], which
are denoted by U∗ and U∗ respectively. Therefore,

U∗ ≤ Ui ≤ U∗ in [0, T ]× (0,∞), i = 1, 2.

To obtain U1 ≡ U2, we only need to show

U∗ ≡ U∗.

Define

σ∗ := inf{σ ∈ R : U∗ ≤ σU∗ in [0, T ]× (0,∞)}.
Clearly σ∗ ≥ 1 and U∗ ≤ σ∗U∗. To prove U∗ = U∗, it suffices to show σ∗ = 1. Suppose for
contradiction that σ∗ > 1. Then for W (t, r) := σ∗U∗ − U∗ we have W ≥ 0, W (0, r) = W (T, r),
and

Wt − dWrr + k(t)Wr = a(t)W − b(t)[σ∗(U∗)
2 − (U∗)2] ≥ (a(t)− b(t)U∗)W

for (t, r) ∈ [0, T ] × (0,∞), and W (t, 0) = 0, W (t,∞) = (σ∗ − 1)V (t) > 0 on [0, T ]. Thus, we
can use the strong maximum principle and Hopf boundary lemma to deduce that W ≥ ϵU∗ in
[0, T ]× [0,∞) for some ϵ > 0 small, and this implies that

U∗ ≤ (1 + ϵ)−1σ∗U∗ ∀(t, r) ∈ [0, T ]× (0,∞).

This contradicts the definition of σ∗. Thus, it is necessary that σ∗ = 1, and the uniqueness is
established.

Step 5. Monotonicity in k. Assume that Uk is a positive solution of (2.1) and k1 is a T -
periodic continuous function satisfying 0 ≤ k1 ≤, ̸≡ k. Let Uk1 be the maximal nonnegative
solution of (2.1) with k = k1. The conclusion of step 1 implies that any large constant C > C0

is a supersolution for (2.1) with k = k1, and by step 2 we see that Uk is a subsolution to this
equation and Uk ≤ C0 < C. Consequently, together with the uniqueness of positive solution to
(2.1) with k = k1, we see that

Uk1 ≥ Uk ∀(t, r) ∈ [0, T ]× (0,∞).

The strong maximum principle implies that

Uk1(t, r) > Uk(t, r) ∀(t, r) ∈ [0, T ]× (0,∞).

Moreover, the Hopf boundary lemma yields

Uk1
r (t, 0) > Uk

r (t, 0) for t ∈ [0, T ].

This completes the proof of the proposition. �

Next we give a necessary and sufficient condition for the existence of a positive solution to
(2.1). We will need some results of Nadin in [27] on the principal eigenvalue of linear periodic-
parabolic operators.

For any given T -periodic functions p, q ∈ Cν0/2([0, T ]), we consider the linear periodic-
parabolic operator

Lϕ = ϕt − dϕrr + q(t)ϕr + p(t)ϕ for ϕ ∈ C1,2([0, T ]× R),
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and the corresponding generalized principal eigenvalue λ1(L) defined by

(2.12)
λ1(L) = sup{λ ∈ R : ∃ϕ ∈ C1,2([0, T ]× R), ϕ is T -periodic,

ϕ > 0 and Lϕ ≥ λϕ in [0, T ]× R}.
By Propositions 2.3 and 2.4 of [27], if we denote by λn1 (L) the principal eigenvalue of

(2.13)

 Lϕ = λϕ, (t, r) ∈ [0, T ]× (−n, n),
ϕ(t,±n) = 0, t ∈ [0, T ],
ϕ(0, r) = ϕ(T, r), r ∈ (−n, n),

then

(2.14) λn1 (L) → λ1(L) as n→ ∞,

and moreover, λ1(L) corresponds to a generalized principal eigenfunction ϕ1 ∈ C1,2([0, T ]× R)
such that ϕ1 > 0 in [0, T ]× R and

(2.15)

{
Lϕ1 = λ1(L)ϕ1, (t, r) ∈ [0, T ]× R,
ϕ1(0, r) = ϕ1(T, r), r ∈ R.

If further we assume

(2.16) q :=
1

T

∫ T

0
q(t)dt = 0,

then we can apply Theorems 2.7, 2.13 and Proposition 2.141 of [27] to obtain the following result.

Proposition 2.2. If (2.16) holds, then the principal eigenfunction of (2.15) can be chosen to
be a positive function which is T -periodic in t and independent of r.

Thus when (2.16) holds, we can choose ϕ1 = ϕ1(t), and obtain from (2.15)

ϕ′1 + p(t)ϕ1 = λ1(L)ϕ1, ϕ1(0) = ϕ1(T ).

It follows easily that

(2.17) λ1(L) = p, ϕ1(t) = ϕ1(0)e
∫ t
0 [p−p(s)]ds.

We are now ready to obtain a necessary and sufficient condition for (2.1) to have a positive
solution.

Proposition 2.3. Under the assumptions of Proposition 2.1, problem (2.1) admits a positive

solution U ∈ C1,2([0, T ]× [0,∞)) if and only if a > k
2
/(4d).

Proof. Write

k(t) = k + k̃(t), so

∫ T

0
k̃(t)dt = 0.

Then take

q(t) = k̃(t), p(t) =
k
2

4d
+

k

2d
k̃(t)− a(t)

in the operator L. Clearly Proposition 2.2 applies and thus

λ1(L) = p =
k
2

4d
− a.

1The proof of Proposition 2.14 in [27] contains a gap (the function Qi(t, x) defined at the end of page 286 in
[27] may not be a constant in general), and it is unclear whether all the conclusions in this proposition hold true
as stated. However, it is easy to use the ideas in [27] to show that the conclusions hold for the special case used
in this paper here.
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Firstly we show that when a > k
2
/(4d), (2.1) has a positive solution. In this case, we have

λ1(L) < 0. By (2.14), for all large n, λn1 (L) < 0. Let ϕn(t, r) be the corresponding positive

eigenfunction of λn1 (L), and define ψn(t, r) = e
k
2d

rϕn(t, r − n). Then a simple calculation shows

ψn
t (t, r)− dψn

rr(t, r) + k(t)ψn
r (t, r)− a(t)ψn(t, r) = e

k
2d

rLϕn(t, r − n),

and thus

(2.18)

 ψn
t − dψn

rr + k(t)ψn
r − a(t)ψn = λn1 (L)ψn, (t, r) ∈ [0, T ]× (0, 2n),

ψn(t, 0) = ψn(t, 2n) = 0, t ∈ [0, T ],
ψn(0, r) = ψn(T, r), r ∈ (0, 2n).

We now fix n such that λn1 (L) < 0, and then choose ϵ0 > 0 sufficiently small so that ϵ0ψ
n < C0

on [0, T ]× [0, 2n]. Denote

U =

{
ϵψn, (t, r) ∈ [0, T ]× [0, 2n],
0, (t, r) ∈ [0, T ]× (2n,∞).

Then U is a subsolution of (2.1) for all sufficiently small ϵ ∈ (0, ϵ0]. For every C > C0 clearly
U ≡ C is a supersolution to (2.1). Evidently

U < C ∀(t, r) ∈ [0, T ]× [0,∞).

Therefore, it follows from the sub- and supersolution argument (see, e.g. [22]) that (2.1) admits
at least one nontrivial nonnegative solution, which is the unique positive solution of (2.1) due
to Proposition 2.1.

Next we show that (2.1) does not admit a positive solution when a ≤ k
2
/(4d). In this case, we

have λ1(L) ≥ 0, and by Proposition 2.2, there is a positive T -periodic function ϕ1(t) satisfying

Lϕ1 = λ1(L)ϕ1.

Define

ψ1(t, r) = e
k
2d

rϕ1(t);

then one easily checks that

(ψ1)t − d(ψ1)rr + k(t)(ψ1)r − a(t)ψ1 = λ1(L)ψ1.

Since k ≥ 2
√
ad > 0, we have

ψ1(t, r) → +∞ uniformly on [0, T ] as r → +∞,

and

ψ1(t, r) ≥ min
t∈[0,T ]

ϕ1(t) > 0 in [0, T ]× [0,∞).

Suppose by way of contradiction that (2.1) admits a positive solution U . Then we know from
step 1 in the proof of Proposition 2.1 that

U ≤ C0 for (t, r) ∈ [0, T ]× [0,∞).

Define the set

Σ = {τ ∈ (0,∞) : τψ1(t, r) ≥ U(t, r) for (t, r) ∈ [0, T ]× [0,∞)}.

Clearly Σ ̸= ∅ and it is relatively closed in (0,∞). We are going to show that Σ is also open.
Assume that τ0 ∈ Σ. Then, τ0ψ1 ≥ U . The fact that ψ1(t, r) → +∞ as r → ∞ uniformly for
t ∈ [0, T ] enables us to find a large κ0 > 0 and a small ϵ0 > 0 such that (τ0 − ϵ)ψ1 > U for



12 Y. DU, Z. GUO AND R. PENG

(t, r) ∈ [0, T ] × [κ0,∞) for all ϵ ∈ (0, ϵ0]. Let Z = τ0ψ1 − U . Since λ1(L) ≥ 0, we see that for
(t, r) ∈ [0, T ]× (0, κ0) and τ > 0,

(τψ1)t − d(τψ1)rr + k(t)(τψ1)r − a(t)(τψ1) + b(t)(τψ1)
2 ≥ λ1(L)(τψ1) ≥ 0.

Moreover, simple calculations yield
Zt − dZrr + k(t)Zr + c̃(r, t)Z ≥ 0, (t, r) ∈ (0, T )× (0, κ0),
Z(t, 0) ≥ 0, t ∈ (0, T ),
Z(t, κ0) > 0, t ∈ (0, T ),
Z(0, r) = Z(T, r), r ∈ (0, κ0)

where c̃ = −[a(t) − b(t)(τ0ψ1 + U)] is a bounded T -periodic function on [0, T ] × [0, κ0]. Hence,
the strong maximum principle concludes that there is a positive constant ϵ1 ≤ ϵ0 such that

Z ≥ ϵ1ψ1 ∀(t, r) ∈ [0, T ]× [0, κ0].

As a consequence, we have that

(τ0 − ϵ)ψ1 ≥ U ∀(t, r) ∈ [0, T ]× [0,∞)

for all ϵ ∈ (0, ϵ1]. This clearly indicates that Σ is an open subset of (0,∞).
The above arguments imply Σ = (0,∞) and hence the inequality

τψ1(t, r) ≥ U(t, r) for (t, r) ∈ [0, T ]× [0,∞)

holds for τ ∈ (0,∞). This contradicts the fact that U is positive. The proof of Proposition 2.3
is complete. �

We are now in a position to state and prove the first main result of this section.

Theorem 2.4. Under the assumptions of Proposition 2.1, for each µ > 0, there exists a positive
continuous T -periodic function k0(t) = k0(µ, a, b)(t) > 0 such that µUk0

r (t, 0) = k0(t) on [0, T ].

Moreover, 0 < k0(µ, a, b) < 2
√
ad for every µ > 0.

Proof. Set

E = {k ∈ Cν0/2([0, T ]) : k ≥ 0, k(0) = k(T )}.
Define the operator A by

Ak = µUk
r (·, 0), k ∈ E,

where Uk is the unique maximal nonnegative solution of (2.1) proved in Proposition 2.1.
We first observe that if k ≡ 0, then U0 is a positive solution to (2.1). Indeed, when k ≡ 0,

a > 0 = k
2
/(4d) and Proposition 2.3 infers that U0 > 0. Thus, by the Hopf lemma,

A(0)(t) = µU0
r (t, 0) > 0 for t ∈ [0, T ].

We now denote k∗ = A(0) and E0 = {k ∈ E : 0 ≤ k(t) ≤ k∗(t) for t ∈ [0, T ]}. Then, by
Proposition 2.1, it is obvious that A maps E0 to itself. In the following, we are going to show
that A is a continuous operator on E0 and maps E0 into a precompact set. This will enable us
to reach a setting for applying the Schauder fixed point theorem to obtain a fixed point of A.

We first prove that A is continuous. Assume that kn ∈ E0 and kn → k in Cν0/2([0, T ]) as
n→ ∞. Clearly k ∈ E0. We need to prove

A(kn) → A(k) in Cν0/2([0, T ]) as n→ ∞.

To obtain this, we first prove

Ukn → Uk locally in C1,2([0, T ]× [0,∞)) as n→ ∞.
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Since Ukn satisfies (2.1) with k replaced by kn and 0 ≤ Ukn ≤ C0, using standard regularity
theory for parabolic equations (up to the boundary), we see that there is a subsequence of Ukn

(still denoted by {Ukn}) such that

Ukn → Z locally in C1,2([0, T ]× [0,∞)) as n→ ∞,

where Z is a nonnegative solution to (2.1).
We now claim that Z ≡ Uk. If Z > 0, then our claim is true by the uniqueness of positive

solution to (2.1). If Z ≡ 0, we will show Uk ≡ 0 and so Z ≡ Uk. We will use an indirect argument

and suppose that Uk is a positive solution of (2.1). Then, by Proposition 2.3, k
2
< 4ad and so

we can find a small ϵ∗ = ϵ∗(k, a) > 0 such that

(k + ϵ∗)2 < 4ad.

Therefore, we can apply Proposition 2.3 to conclude that (2.1) with k replaced by k+ ϵ∗ admits
a unique positive solution Uk+ϵ∗ . On the other hand, since kn → k uniformly on [0, T ], we can
find a large n∗ = n∗(k, a, ϵ∗) > 0 such that kn ≤ k+ϵ∗ for all n ≥ n∗. It follows from Proposition
2.1 that for each n ≥ n∗, (2.1) with k = kn has a unique positive solution Ukn , and

Ukn ≥ Uk+ϵ∗ for all n ≥ n∗.

This contradicts the fact that Ukn → 0 as n→ ∞ locally in C1,2([0, T ]× [0,∞)).
We have thus proved that

Ukn → Uk locally in C1,2([0, T ]× [0,∞)) as n→ ∞.

The regularity of parabolic equations then implies

Ukn → Uk locally in C1+ν0/2,2+ν0([0, T ]× [0,∞)) as n→ ∞.

This implies that

A(kn) → A(k) in C1+ν0/2([0, T ]) as n→ ∞,

and so A is continuous.
We show next that A(E0) is precompact. Let {kn} be a sequence in E0. Denote Un(t, r) =

Ukn(t, r). Then

A(kn)(t) = µUn
r (t, 0) ∀t.

Since

0 ≤ kn(t) ≤ k∗(t), 0 ≤ Un(t, r) ≤ U0(t, r),

we find that kn and Un both have an L∞ bound that is independent of n. Thus we can apply
the Lp theory to the equation of Un to conclude that for any p > 1, {Un} is a bounded set in

W 1,2
p (K) for any compact subset K of [0, T ]× [0,∞). Hence by passing to a subsequence we may

assume that Un → U∗ locally in C(1+ν0)/2,1+ν0([0, T ]× [0,∞)). In particular, A(kn) → µU∗
r (t, 0)

in Cν0([0, T ]). This shows that A(E0) is precompact in Cν0/2([0, T ]).
Let E1 denote the closed convex hull of A(E0). Then E1 is compact and convex. Since E0 is

convex and closed, and A(E0) ⊂ E0, we have E1 ⊂ E0 and hence A(E1) ⊂ A(E0) ⊂ E1.

Now E1 is a compact convex subset of Cν0/2([0, T ]), A maps E1 into itself and is continuous.
Thus we can apply the Schauder fixed point theorem to conclude that there exists k0 ∈ E1 such
that A(k0) = k0. Since A(0) = µU0

r (t, 0) > 0, we find that k0 ̸= 0. Thus Uk0 must be a positive
solution and by the Hopf boundary lemma, k0(t) = Uk0

r (t, 0) > 0 on [0, T ]. By Proposition 2.3,

we deduce k0 < 2
√
ad. This completes the proof. �

Theorem 2.5. The T -periodic function k0(t) given in Theorem 2.4 is uniquely determined by
a(t), b(t) and µ.
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Proof. Using the notations of the proof of Theorem 2.4, for fixed a, b and µ > 0, we assume
that

ki0(t) = µU
ki0
r (t, 0) in [0, T ] for i = 1, 2.

We will show that k10 = k20 implies k10 ≡ k20, and k
1
0 ̸= k20 leads to a contradiction. This will be

done in three steps below, with the above two facts proved in steps 1 and 2 respectively, under
the assumption of a fact to be proved in step 3.

Step 1. k10 = k20 implies k10 ≡ k20.

Denote Ki(t) =
∫ t
0 k

i
0(s)ds and suppose that k10 = k20. Then K̃(t) := K1(t) − K2(t) is a

T -periodic function satisfying K̃(0) = K̃(T ) = 0. If K̃ ≡ 0, then clearly k10 ≡ k20, as we wanted.

If K̃ ̸≡ 0, we are going to derive a contradiction. In such a case, clearly there exists t0 ∈ (0, T )

such that C0 := maxt∈R K̃(t) = K̃(t0 + nT ) > 0, where n = 0,±1,±2, .... It follows that
K1(t) ≤ K2(t) + C0 for all t ∈ R and K1(t0 + nT ) = K2(t0 + nT ) + C0. Hence

(2.19) k10(t0 + nT ) = k20(t0 + nT ).

To derive a contradiction, we consider the functions

V 1(t, r) := Uk10(t,K1(t)− r) and V 2(t, r) := Uk20(t,K2(t) + C0 − r).

One easily checks that

(2.20)

{
V 1
t − dV 1

rr = a(t)V 1 − b(t)(V 1)2, V 1 > 0, t ∈ R, r ∈ (−∞,K1(t)),
V 1(t,K1(t)) = 0, k10(t) = −µV 1

r (t,K
1(t)), t ∈ R,

and

(2.21)

 V 2
t − dV 2

rr = a(t)V 2 − b(t)(V 2)2, V 2 > 0, t ∈ R, r ∈ (−∞,K2(t) + C0),
V 2(t,K2(t) + C0) = 0, t ∈ R,
k20(t) = −µV 2

r (t,K
2(t) + C0), t ∈ R.

Set W (t, r) := V 2(t, r)− V 1(t, r) for (t, r) ∈ D := {(t, r) ∈ R2 : t ∈ R, r ∈ (−∞,K1(t))}. Then
clearly W (t, r) ≥, ̸≡ 0 on ∂D with W (t0,K

1(t0)) = 0. We will show in Step 3 that this implies
W > 0 in D, and Wr(t0,K

1(t0)) < 0, that is

V 1
r (t0,K

1(t0)) > V 2
r (t0,K

2(t0) + C0), which leads to k10(t0) < k20(t0),

a contradiction to (2.19). Thus the conclusion of Step 1 will follow if we can show that
Wr(t0,K

1(t0)) < 0. This will be done in Step 3 below.

Step 2. k10 ̸= k20 leads to a contradiction.

Without loss of generality, we assume that k10 > k20. Then

(2.22) lim
t→±∞

K1(t)

t
= k10 > lim

t→±∞

K2(t)

t
= k20.

This, together with K1(0) = K2(0) = 0, implies that the curves r = K1(t) and r = K2(t) has
an intersection point (t0, r0) with the smallest t0 value, namely

K1(t) < K2(t) for t < t0, K
1(t0) = K2(t0).

It follows that

(2.23) (K1)′(t0) ≥ (K2)′(t0).

Define V 1 as in Step 1, and let V 2(t, r) := Uk20(t,K2(t) − r), W (t, r) := V 2(t, r) − V 1(t, r)
for (t, r) ∈ D0 := {(t, r) ∈ R2 : t ∈ (−∞, t0], r ∈ (−∞,K1(t))}. Then it is easily seen that V 1

and V 2 satisfies (2.20) and (2.21) respectively, except that in (2.21), C0 should be replaced by
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0. Moreover, W > 0 on ∂D0 \ {(t, r) : t = t0} and W (t0, r0) = W (t0,K
1(t0)) = 0. By Step 3

below, we have W > 0 in D0 and Wr(t0, r0) < 0, which implies that

(K1)′(t0) < (K2)′(t0).

But this is in contradiction to (2.23). This completes the proof of the conclusion in Step 2,
except that it remains to prove Step 3.

Step 3. Let W be as in Steps 1 and 2, then W > 0 in D and D0 respectively, and
Wr(t0,K

1(t0)) < 0.

We consider the case in Step 1 first. To simplify notations we write U1 = Uk10 and U2 = Uk20 .
Let us recall that, by Proposition 2.1, for i = 1, 2, (Ui)r(t, 0) > 0 in [0, T ], Ui(t, r) increases in
r and Ui(t, r) → V (t) uniformly in t ∈ [0, T ] as r → ∞, where V (t) is a positive T -periodic
function. Hence we can find a positive constant c0 > 0 such that U2(t, r) ≥ c0U1(t, r). From
K2(t) + C0 ≥ K1(t) and the monotonicity of U2 in r, we thus deduce

V 2(t, r) ≥ c0V
1(t, r) for all t ∈ R, r ≤ K1(t).

Define

c∗ := sup{c > 0 : V 2(t, r) ≥ cV 1(t, r) ∀t ∈ R, ∀r < K1(t)}.
We clearly have c∗ ≥ c0 > 0. Since V i(t, r) → V (t) as r → −∞, we also have c∗ ≤ 1. Thus
0 < c∗ ≤ 1 and

W ∗(t, r) := V 2(t, r)− c∗V 1(t, r) ≥ 0 ∀t ∈ R, ∀r ≤ K1(t).

Using 0 < c∗ ≤ 1, we easily deduce from (2.20) and (2.21) that

(2.24)

{
W ∗

t − dW ∗
rr + c(t, r)W ∗ ≥ 0, t ∈ R, r < K1(t),

W ∗(t,K1(t)) ≥, ̸≡ 0, t ∈ R,

where c(t, r) = −a(t) + b(t)[V 2(t, r) + c∗V 1(t, r)]. Thus we can apply the strong maximum
principle to (2.24) to conclude that the nonnegative function W ∗ is positive in D = {(t, r) :
t ∈ R, r < K1(t)}. Since W ∗(t0,K

1(t0)) = W (t0,K
1(t0)) = 0, the Hopf lemma infers that

W ∗
r (t0,K

1(t0)) < 0. If we can show that c∗ = 1, then W ∗ =W and the required fact is proved.
We use an indirect argument to show that c∗ = 1. Suppose by way of contradiction that

0 < c∗ < 1. Then by the definition of c∗, for any sequence of positive numbers ϵn → 0, there
exists (tn, rn) ∈ D such that

(2.25) V 2(tn, rn) ≤ (c∗ + ϵn)V
1(tn, rn) ∀n ≥ 1.

We may write tn = mnT + t̃n with mn an integer and t̃n ∈ [0, T ]. By passing to a subsequence,
we may assume that t̃n → t̃ ∈ [0, T ]. We claim that K1(tn)−rn has an upper bound independent
of n. Otherwise by passing to a subsequence we may assume that K1(tn)− rn → ∞ as n→ ∞.
Then

K2(tn) + C0 − rn ≥ K1(tn)− rn → ∞
and hence, for i = 1, 2,

V i(tn, rn) → V (t̃)

as n→ ∞. It follows that

V (t̃) ≤ c∗V (t̃) < V (t̃).

This contradiction proves our claim. Thus by passing to a subsequence we may assume that
K1(tn)− rn → r̃ ∈ [0,∞). Then

K2(tn) + C0 − rn = K1(tn)− rn − K̃(t̃n) + C0 → r̃ − K̃(t̃) + C0
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and from (2.25), we deduce

U2(t̃, r̃ − K̃(t̃) + C0) ≤ c∗U1(t̃, r̃),

that is, W ∗(t̃, K1(t̃)− r̃) ≤ 0. Since W ∗ > 0 in D, we necessarily have r̃ = 0, W ∗(t̃, K1(t̃)) = 0
and W ∗

r (t̃, K
1(t̃)) < 0. By continuity we can find positive constants ϵ0 and δ0 such that

W ∗
r (t,K

1(t)) < −2δ0 ∀t ∈ [t̃− ϵ0, t̃+ ϵ0].

This implies that

W ∗(tn, rn) =W ∗(t̃n, r̃n) ≥ δ0[K
1(t̃n)− r̃n] for all large n,

where

r̃n := K1(t̃n) + rn −K1(tn) → K1(t̃) as n→ ∞,

due to r̃ = 0 and t̃n → t̃. On the other hand, from V 1(t,K1(t)) = 0 and V 1
r (t,K1(t)) =

−(U1)r(t, 0) < 0 we find that

V 1(tn, rn) = V 1(t̃n, r̃n) ≤M0[K
1(t̃n)− r̃n] for all large n,

where M0 = maxt∈[0,T ](U1)r(t, 0). Thus for all large n,

V 2(tn, rn) ≥ c∗V 1(tn, rn) + δ0[K
1(t̃n)− r̃n] ≥

(
c∗ +

δ0
M0

)
V 1(tn, rn).

But this is in contradiction to (2.25). This proves c∗ = 1 and thusW > 0 inD andWr(t0,K
1(t0)) <

0, as required in Step 1.
The proof of the conclusion required in Step 2 follows a similar consideration. This time we

define

c∗ := sup{c > 0 : V 2(t, r) ≥ cV 1(t, r) ∀t ≤ t0, ∀r < K1(t)}.
We similarly have c∗ ≥ c0 > 0 and c∗ ≤ 1. Thus

W ∗(t, r) := V 2(t, r)− c∗V 1(t, r) ≥ 0 ∀t ≤ t0, ∀r ≤ K1(t).

Using 0 < c∗ ≤ 1 and K2(t) > K1(t) for t < t0, we easily deduce

(2.26)

{
W ∗

t − dW ∗
rr + c(t, r)W ∗ ≥ 0, t ≤ t0, r < K1(t),

W ∗(t,K1(t)) > 0, t < t0,

where c(t, r) = −a(t) + b(t)[V 2(t, r) + c∗V 1(t, r)]. Thus we can apply the strong maximum
principle to (2.26) to conclude that the nonnegative function W ∗ is positive in D0 = {(t, r) :
t ≤ t0, r < K1(t)}. Since W ∗(t0,K

1(t0)) = W (t0,K
1(t0)) = 0, the Hopf lemma infers that

W ∗
r (t0,K

1(t0)) < 0. If we can show that c∗ = 1, then W ∗ =W and the required fact is proved.
Suppose by way of contradiction that 0 < c∗ < 1. Then by the definition of c∗, for any

sequence of positive numbers ϵn → 0, there exists (tn, rn) ∈ D0 such that (2.25) holds. We may
write tn = mnT + t̃n with mn an integer and t̃n ∈ [0, T ]. By passing to a subsequence, we may
assume that t̃n → t̃ ∈ [0, T ]. We claim that tn has a lower bound that is independent of n.
Otherwise, by passing to a subsequence we may assume that tn → −∞ as n → ∞. Then from
(2.22) we deduce K2(tn)−K1(tn) → +∞ as n→ ∞. It follows that

V 2(tn, rn) = U2(t̃n,K
2(tn)− rn) ≥ U2(t̃n,K

2(tn)−K1(tn)) → V (t̃)

as n→ ∞. On the other hand

V 1(tn, rn) = U1(t̃n,K
1(tn)− rn) ≤ V (t̃n) → V (t̃)

as n → ∞. Thus letting n → ∞ in (2.25) we deduce V (t̃) ≤ c∗V (t̃) < V (t̃). This contradiction
proves our claim. Hence we may assume, by passing to a subsequence, that tn → t̂ ∈ (−∞, t0].
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We can now easily see that rn has a lower bound independent of n, for otherwise we may assume
that rn → −∞, which leads to

V i(tn, rn) → V (t̂), V (t̂) ≤ c∗V (t̂) < V (t̂).

Thus we may assume that rn → r̂ ∈ (−∞,K1(t̂)] as n→ ∞. Letting n→ ∞ in (2.25), we deduce
V 2(t̂, r̂) ≤ c∗V 1(t̂, r̂), that is W ∗(t̂, r̂) ≤ 0. Since W ∗ > 0 in D ∪ {(t, r) : r = K1(t), t < t0},
we necessarily have (t̂, r̂) = (t0,K

1(t0)) and W ∗(t0,K
1(t0)) = 0. By the Hopf lemma we have

W ∗
r (t0,K

1(t0)) < 0, and we can then derive a contradiction to (2.25) as before.
The proof is now complete. �

Theorem 2.6. The unique positive T -periodic function k0(t) = k0(µ, a, b)(t) in Theorem 2.5 de-

pends continuously on a(t), b(t) and µ; namely, if an → a in Cν0/2([0, T ]), bn → b in Cν0/2([0, T ])
and µn → µ as n→ ∞, with a, b, µ as in Theorem 2.4, then k0(µn, an, bn)(t) → k0(µ, a, b)(t) in

Cν0/2([0, T ]).

Proof. Let an → a, bn → b and µn → µ be as given in the theorem. To simplify notations we
write kn(t) = k0(µn, an, bn)(t), U

n(t, r) = Ukn(t, r). Thus

kn(t) = µnU
n
r (t, 0) ∀t.

From the proof of Theorem 2.4 we know that

kn(t) ≤ µnU
0
r (t, 0), U

n(t, r) ≤ U0(t, r).

It follows that kn and Un both have an L∞ bound that is independent of n. Thus we can apply
the Lp theory to the equation of Un to conclude that for any p > 1, {Un} is a bounded set in

W 1,2
p (K) for any compact subset K of [0, T ]× [0,∞). Hence by passing to a subsequence we may

assume that Un → U∗ locally in C(1+ν0)/2,1+ν0([0, T ] × [0,∞)). We may also assume kn → k∗
weakly in L2([0, T ]). Then it is easily seen that U∗ is a weak solution of (2.1) with k replaced
by k∗. Clearly U∗ is nonnegative, and by the strong maximum principle it is either identically
0 or is a positive solution. We also have

kn(t) = µnU
n
r (t, 0) → µU∗

r (t, 0) in C
ν0/2([0, T ]).

Thus k∗(t) = µU∗
r (t, 0) and kn → k∗ in Cν0/2([0, T ]). If U∗ = 0, then k∗ = 0 and hence kn → 0

in Cν0/2([0, T ]). Hence for all large n, kn ≤ ϵ, where ϵ > 0 satisfies ϵ < 2
√

(a/2)d. We may also
assume that an(t) > a(t)/2 and bn(t) < 2b(t) for all such n. It then follows from the comparison
principle that for all large n, Un ≥ U∗, where U∗ denotes the unique positive solution of (2.1)
with (k, a, b) replaced by (ϵ, a/2, 2b). It follows that

kn(t) = µnU
n
r (t, 0) ≥ µn(U∗)r(t, 0) → µ(U∗)r(t, 0) > 0.

This contradiction shows that U∗ = 0 cannot happen. Therefore U∗ > 0 and k∗ = µU∗
r (t, 0).

By Theorem 2.5, we necessarily have k∗(t) = k0(µ, a, b)(t). Thus kn(t) → k0(µ, a, b)(t) in

Cν0/2([0, T ]). This implies the continuity of k0(µ, a, b) on (µ, a, b). �

Finally in this section, we study the dependence of k0(µ, a, b)(t) on µ. Since a(t) and b(t) are

fixed, we write k0(µ) = k0(µ, a, b). We will show that k0(µ) is increasing in µ and

(2.27) lim
µ→∞

k0(µ) = 2
√
ad.

In order to prove (2.27), we consider the following variant of (2.1):

(2.28)

 Ut − dUrr +min{k(t),M}Ur = U [a(t)− b(t)U ], (t, r) ∈ [0, T ]× (0,∞),
U(t, 0) = 0, t ∈ [0, T ],
U(0, r) = U(T, r), r ∈ (0,∞),



18 Y. DU, Z. GUO AND R. PENG

where d and M are given positive constants, and k, a, b are given T -periodic Hölder continuous
functions with a, b positive and k nonnegative. For convenience, in the following we will use the
notation

kM (t) := min{k(t),M}.

Recall that (2.28) has a unique maximal nonnegative solution UkM , and it is positive if and only

if kM < 2
√
ad.

We have the following result.

Proposition 2.7. Under the above assumptions for (2.28), for each µ > 0 and M > 0, there

exists a positive continuous T -periodic function k̂(t) = k̂µ(t) such that µU k̂M
r (t, 0) = k̂(t) on

[0, T ]. Moreover,

0 < k̂Mµ < 2
√
ad, and when M > 2

√
ad, lim

µ→∞
k̂Mµ = 2

√
ad.

Proof. The existence of k̂ can be proved by a simple variation of the proof of Theorem 2.4.
We define the set E as before but replace the operator A there by

AMk = µUkM

r (·, 0), k ∈ E.

Since kn → k in Cν0/2([0, T ]) implies kMn → kM in Cν0/2([0, T ]), one easily sees that all the
arguments in the proof of Theorem 2.4 for the operator A carry over to AM . Thus AM has a

fixed point k̂(t). By Proposition 2.3 we know that k̂M < 2
√
ad.

To find the limit of k̂M as µ→ ∞, we let µn be a sequence of positive numbers increasing to

∞ as n → ∞, and k̂n a corresponding T -periodic function satisfying k̂n(t) = µnU
k̂Mn
r (t, 0). To

simplify notations, we will write

kn = k̂n and Un = U k̂Mn .

Since kMn and Un both have an L∞ bound that is independent of n, we can apply the Lp theory

to conclude that for any p > 1, {Un} is a bounded set in W 1,2
p (K) for any compact subset K

of [0, T ] × [0,∞). Hence by passing to a subsequence we may assume that Un → U∗ locally in

C(1+ν0)/2,1+ν0([0, T ] × [0,∞)). We may also assume kMn → k∗ weakly in L2([0, T ]). Then it is
easily seen that U∗ is a weak solution of (2.28) with kM replaced by k∗. Clearly U

∗ is nonnegative,
and by the strong maximum principle it is either identically 0 or is a positive solution. If U∗

is a positive solution, then we can use the Hopf lemma again to deduce U∗
r (t, 0) > 0, and

hence kn(t)/µn = Un
r (t, 0) → U∗

r (t, 0) uniformly in [0, T ], which implies that kMn ≡ M for all

large n. Since M > 2
√
ad, we can apply Proposition 2.3 to conclude that Un ≡ 0 for all

such n. This contradiction shows that we necessarily have U∗ ≡ 0. Thus Un → 0 locally
in C(1+ν0)/2,1+ν0([0, T ] × [0,∞)). We will show in the following that this fact implies that

k∗ = 2
√
ad, and it is clear that the required limit for kMn is an easy consequence of this fact.

Set

V n(t, r) = Un(t, r)/Un(T/2, 1).

Clearly V n(T/2, 1) = 1, V n(t, r) > 0 in [0, T ]× (0,∞), and V n
t − dV n

rr + kMn V
n
r = (a− bUn)V n, (t, r) ∈ [0, T ]× (0,∞),

V n(t, 0) = 0, t ∈ [0, T ],
V n(0, r) = V n(T, r), r ∈ (0,∞).
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Since kMn and (a − bUn) both have an L∞ bound that are independent of n, we can apply the
Harnack inequality to V n, noting that it is T -periodic in t, to obtain

V n(t, r) ≤ CR for (t, r) ∈ [0, T ]× [1/2, 1 +R],

where CR is a constant depending on R but independent of n. By Proposition 2.3 we know
that Un and hence V n is monotone increasing in r, and hence the above estimate also hold
in [0, T ] × [0, 1/2]. Thus we may apply the Lp estimates to the above equation for V n and
the embedding theorem to conclude that, by passing to a subsequence, V n → V locally in
C(1+ν0)/2,1+ν0([0, T ]× [0,∞)), and V satisfies V ≥ 0, V (T/2, 1) = 1 and Vt − dVrr + k∗Vr = aV, (t, r) ∈ [0, T ]× (0,∞),

V (t, 0) = 0, t ∈ [0, T ],
V (0, r) = V (T, r), r ∈ (0,∞).

By the strong maximum principle we must have V > 0 in [0, T ] × (0,∞), and hence Vr(t, 0) is
a positive T -periodic function in Cν0([0, T ]).

Denote ξn = [µnU
n(T/2, 1)]−1. Then

(2.29) ξnkn(t) = ξnµnU
n
r (t, 0) = V n

r (t, 0) → Vr(t, 0)

in Cν0([0, T ]). By passing to a further subsequence, we have three possibilities for the sequence
{ξn}: (i) ξn → 0, (ii) ξn → ∞, (iii) ξn → c0 > 0.

If case (i) happens, by (2.29) we deduce

kn(t) = ξ−1
n V n

r (t, 0) → +∞ uniformly in [0, T ],

which implies that kMn ≡ M for all large n, and hence Un ≡ 0 for such n, a contradiction. If
(ii) happens we deduce kn → 0 in Cν0([0, T ]) and if (iii) happens we deduce kn(t) → c−1

0 Vr(t, 0)
in Cν0([0, T ]). Thus in either case (ii) or (iii), we have kMn → k∗ in Cν0([0, T ]). We may now
use the argument leading to the continuity of the operator A in the proof of Theorem 2.4 to see
that Un → Uk∗ locally in C1,2([0, T ] × [0,∞)). Since we already know that this limit is 0, we

thus have Uk∗ ≡ 0, and by Proposition 2.3, we deduce k∗ ≥ 2
√
ad. On the other hand, from

kMn < 2
√
ad we deduce k∗ ≤ 2

√
ad. Thus we necessarily have k∗ = 2

√
ad, as we wanted. The

proof is now complete. �
We are now ready for the last main result of this section.

Theorem 2.8. The unique positive T -periodic function k0(t) = k0(µ)(t) in Theorem 2.5 has the
following properties:

k0(µ) is increasing in µ and lim
µ→∞

k0(µ) = 2
√
ad.

Proof. We first prove that µ1 < µ2 implies k0(µ1) < k0(µ2).

Arguing indirectly we assume that k0(µ1) ≥ k0(µ2). To simplify notations, we write

k10(t) = k0(µ1)(t), k
2
0(t) = k0(µ2)(t).

To derive a contradiction, we can now argue exactly as in the proof of Theorem 2.5, the only
minor difference occurs in the reasoning from Wr(t0,K

1(t0)) < 0 to k10(t0) < k20(t0). We now
argue as follows.

From Wr(t0,K
1(t0)) < 0 we obtain

U
k20
r (t0, 0) > U

k10
r (t0, 0).

Hence, due to µ1 < µ2, we have

k20(t0) = µ2U
k20
r (t0, 0) > µ1U

k20
r (t0, 0) > µ1U

k10
r (t0, 0) = k10(t0).
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Next we prove that for any fixed µ > 0 and M > 0,

(2.30) k̂Mµ ≤ k0(µ),

where k̂µ(t) is given by Proposition 2.7. Since we always have k0(µ) < 2
√
ad, the required limit

for k0(µ) is a consequence of (2.30) and Proposition 2.7.

We again argue by contradiction. Suppose that k̂Mµ > k0(µ). For convenience we write

k̂(t) = k̂µ(t), k0(t) = k0(µ)(t), Û(t, r) = U k̂M (t, r), U0(t, r) = Uk0(t, r).

Define

K̂(t) =

∫ t

0
k̂M (s)ds, K0(t) =

∫ t

0
k0(s)ds.

Then from k̂M > k0 we find, as in Step 2 of the proof of Theorem 2.5, that there exists t0 such
that

K̂(t) < K0(t) for t < t0, K̂(t0) = K0(t0).

It follows that

(2.31) K̂ ′(t0) ≥ K ′
0(t0).

We now follow the proof of Theorem 2.5 again to derive a contradiction. Define

V 1(t, r) = Û(t, K̂(t)− r), V 2(t, r) = U0(t,K0(t)− r),

and

W (t, r) = V 2(t, r)− V 1(t, r).

Then the same arguments used in Steps 2 and 3 of the proof of Theorem 2.5 yield

Wr(t0, K̂(t0)) < 0,

that is

Ûr(t0, 0) < (U0)r(t0, 0).

Since

K̂ ′(t0) = k̂M (t0) ≤ k̂(t0) = µÛr(t0, 0)

and

K ′
0(t0) = k0(t0) = µ(U0)r(t0, 0),

we immediately deduce

K̂ ′(t0) < K ′
0(t0).

But this contradicts (2.31). Therefore (2.30) holds, and the proof is complete. �

3. The spreading-vanishing dichotomy

In this section we establish the spreading-vanishing dichotomy. The approach follows [9]. So
some of the proofs are sketchy or omitted. For future applications, sometimes we consider a
more general class of problems by replacing the special nonlinear term in (1.1) by a function
g(t, r, u) with the following properties:

(3.1)


(i) g(t, r, u) is Hölder continuous for (t, r, u) ∈ [0,∞)× [0,∞)× [0,∞),
(ii) g(t, r, u) is locally Lipschitz in u uniformly for (t, r) ∈ [0, T ]× [0,∞),
(iii) there exists c∗ > 0 such that

g(t, r, u) ≤ c∗u ∀(t, r, u) ∈ [0, T ]× [0,∞)× [0,∞).
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We consider the radially symmetric free boundary problem

(3.2)


ut − d∆u = g(t, r, u), t > 0, 0 < r < h(t),
ur(t, 0) = 0, u(t, h(t)) = 0, t > 0,
h′(t) = −µur(t, h(t)), t > 0,
h(0) = R, u(0, r) = u0(r), 0 ≤ r ≤ R,

where ∆u = urr +
N−1
r ur, u0 ∈ C2([0, R]) and u0(r) > 0 in [0, R), u′0(0) = u0(R) = 0. We have

the following theorem:

Theorem 3.1. For any given g satisfying the conditions in (3.1), problem (3.2) admits a unique
solution (u, h) defined for all t > 0. Moreover h ∈ C1([0,∞)), u ∈ C1,2(D) with D = {(t, r) :
t > 0, 0 ≤ r ≤ h(t)}, and h′(t) > 0 for t > 0, u(t, r) > 0 for t > 0 and 0 ≤ r < h(t).

Proof. The proof is a simple modification of that for Theorem 4.1 in [9]. So we only briefly
describe the main steps.

Step 1. The local existence and uniqueness of positive solution of (3.2).
This step can be obtained by exactly the same argument used in the proof of Theorem 4.1 in

[9], as the special nonlinearity in [9] was not needed in the proof there.
Step 2. The local solution can be extended to all t > 0.
To show this conclusion, we need the following estimates: if (u, h) is a solution of (3.2) defined

for t ∈ (0, T0) for some T0 ∈ (0,∞), then for any given T > T0, there exist constants C1 and C2

depending on T but independent of T0 ∈ (0, T ) such that

(3.3) 0 < u(t, r) ≤ C1, 0 < h′(t) ≤ C2 for 0 < t < T0, 0 ≤ r < h(t).

To find C1, we use g(t, r, u) ≤ c∗u and the comparison principle to obtain

(3.4) u(t, r) < û(t) := ∥u0∥∞ec
∗t,

and hence we may take C1 := ∥u0∥∞ec
∗T .

To find C2, we use the same construction as in the proof of Lemma 4.2 in [9], with some
obvious modifications.

The rest of the proof is the same as in [9].
Step 3. The solution of (3.2) exists and is unique for all t > 0.
This conclusion can be proved by exactly the same argument used in the proof of Theorem

4.3 in [9]. �
Clearly, Theorem 3.1 implies that r = h(t) is increasing in t, and thus there exists h∞ ∈

(0,+∞] such that limt→+∞ h(t) = h∞.

For a given positive T -periodic function α ∈ Cν0/2,ν0(R × [0,∞)), it is well-known that the
eigenvalue problem

(3.5)

 ϕt − d∆ϕ = λα(t, |x|)ϕ in [0, T ]×BR,
ϕ = 0 on [0, T ]× ∂BR,

ϕ(0, x) = ϕ(T, x) for x ∈ BR

possesses a unique positive principal eigenvalue λ = λ1(d, α,R, T ), which corresponds to a pos-
itive eigenfunction φ ∈ C1,2([0, T ]×BR) (see, for example, Proposition 14.4 of [20]). Moreover,
φ(t, x) is radially symmetric in x and this fact is a consequence of the moving-plane argument
in [8].

In what follows, we present some further properties of λ = λ1(d, α,R, T ).

Lemma 3.2. Let α(t, r) be a function satisfying (1.2). Then λ1(d, α, ·, T ) is a strictly decreasing
continuous function in (0,∞) for fixed d, α, T , and λ1(d, ·, R, T ) is a strictly decreasing function
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in the sense that, λ1(d, α1, R, T ) < λ1(d, α2, R, T ) if the two positive T -periodic continuous
functions α1, α2 satisfy α1 ≥, ̸≡ α2 on [0, T ]×BR. Moreover,

(3.6) lim
R→0+

λ1(d, α,R, T ) = +∞, lim
R→+∞

λ1(d, α,R, T ) = 0.

Proof. The continuity of λ1(d, α, ·, T ) with fixed d, α and T can be obtained by using a simple
re-scaling argument of the spatial variable r, which also gives the monotonicity of λ1(d, α, ·, T ).
The proof of the monotonicity of λ1(d, ·, R, T ) is folklore. We present a proof for completeness.

Assume that α1, α2 are given positive T -periodic continuous functions and satisfy α1 ≥, ̸≡ α2

on [0, T ]×BR. Let ϕ1 be the corresponding eigenfunction of λ1(d, α1, R, T ). From [20], it follows
that λ1(d, α2, R, T ) is the principal eigenvalue of the adjoint problem

(3.7)

 −ψt − d∆ψ = λα2(t, |x|)ψ in [0, T ]×BR,
ψ = 0 on [0, T ]× ∂BR,

ψ(0, x) = ψ(T, x) in BR.

Furthermore, (3.7) has a T -periodic positive eigenfunction ψ2 corresponding to λ1(d, α2, R, T ).
Now, we multiply the equation of ϕ1 by ψ2 and the equation of ψ2 by ϕ1, integrate over (0, T )×BR

and then subtract the resulting identities to obtain that

λ1(d, α1, R, T )

∫ T

0

∫
BR

α1ϕ1ψ2 = λ1(d, α2, R, T )

∫ T

0

∫
BR

α2ϕ1ψ2,

which obviously implies

(3.8) λ1(d, α1, R, T ) < λ1(d, α2, R, T ).

We now prove (3.6). It follows from condition (ii) in (1.2) and (3.8) that

(3.9) λ1(d,max
[0,T ]

κ2, R, T ) ≤ λ1(d, α,R, T ) ≤ λ1(d,min
[0,T ]

κ1, R, T ).

It is also easy to see that λ1(d,min[0,T ] κ1, R, T ) and λ1(d,max[0,T ] κ2, R, T ) are the principal
eigenvalues of the elliptic problems

−d∆ψ = λ[min
[0,T ]

κ1]ψ in BR, ψ = 0 on ∂BR

and
−d∆ψ = λ[max

[0,T ]
κ2]ψ in BR, ψ = 0 on ∂BR

respectively. It is well known that

(3.10) lim
R→+∞

λ1(d,min
[0,T ]

κ1, R, T ) = 0, lim
R→0+

λ1(d,min
[0,T ]

κ1, R, T ) = +∞

and

(3.11) lim
R→+∞

λ1(d,max
[0,T ]

κ2, R, T ) = 0, lim
R→0+

λ1(d,max
[0,T ]

κ2, R, T ) = +∞.

Clearly (3.6) follows from (3.9)-(3.11). �
In view of Lemma 3.2, for any fixed d > 0 and α ∈ Cν0/2,ν0(R× [0,∞)) satisfying (1.2), there

is a unique R∗ := R∗(d, α, T ) such that

(3.12) λ1(d, α,R
∗, T ) = 1

and

(3.13) 1 > λ1(d, α,R, T ) for R > R∗, 1 < λ1(d, α,R, T ) for R < R∗.

Let (u, h) be the unique solution of (1.1), and h∞ = limt→∞ h(t). The spreading-vanishing
dichotomy is a consequence of the following two lemmas.



THE DIFFUSIVE LOGISTIC MODEL WITH A FREE BOUNDARY 23

Lemma 3.3. If h∞ < +∞, then h∞ ≤ R∗ and

lim
t→+∞

∥u(t, ·)∥C([0,h(t)]) = 0.

Proof. The proof of this lemma follows that of Lemma 2.2 in [9].

We first show that h∞ < ∞ implies h∞ ≤ R∗. Otherwise h∞ ∈ (R∗,∞) and there is T̃ > 0

such that h(t) > h∞ − ε > R∗ for all t ≥ T̃ and some small ε > 0. Thus,

λ1(d, α, h(t), T ) < 1 for all t ≥ T̃ .

Consider the problem

(3.14)


wt − d∆w = w(α(t, r)− β(t, r)w), t ≥ T̃ , r ∈ [0, h∞ − ε],

wr(t, 0) = 0, w(t, h∞ − ε) = 0, t ≥ T̃ ,

w(T̃ , r) = u(T̃ , r), r ∈ [0, h∞ − ε].

It is well known that this logistic problem admits a unique positive solution w = wε(t, r).
Moreover, the fact λ1(d, α, h∞ − ε, T ) < 1 implies that the trivial steady state 0 of (3.14) is
linearly unstable. Therefore, it follows from Theorem 28.1 in [20] that

(3.15) w(t+ nT, r) → Vh∞−ε(t, r) in C1,2([0, T ]× [0, h∞ − ε]) as n→ ∞
where Vh∞−ε(t, r) is the unique positive T -periodic solution of the problem

(3.16)


Vt − d∆V = V

[
α(t, r)− β(t, r)V

]
, (t, r) ∈ [0, T ]× [0, h∞ − ε),

Vr(t, 0) = V (t, h∞ − ε) = 0, t ∈ [0, T ],
V (0, r) = V (T, r), r ∈ [0, h∞ − ε].

Using the comparison principle for parabolic equations, we obtain

(3.17) u(t, r) ≥ w(t, r) for t > T̃ , r ∈ [0, h∞ − ε].

This implies that

(3.18) limn→+∞u(t+ nT, r) ≥ Vh∞−ϵ(t, r) for (t, r) ∈ [0, T ]× [0, h∞ − ε].

On the other hand, consider the problem

(3.19)


wt − d∆w = w(α(t, r)− β(t, r)w), t ≥ T̃ , r ∈ [0, h∞],

wr(t, 0) = 0, w(t, h∞) = 0, t ≥ T̃ ,

w(T̃ , r) = ũ(T̃ , r), r ∈ [0, h∞]

where

ũ(T̃ , r) =

{
u(T̃ , r) for r ∈ [0, h(T̃ )],

0 for r ∈ (h(T̃ ), h∞].

Similarly, (3.19) admits a unique positive solution w(t, r) with

(3.20) w(t+ nT, r) → Vh∞(t, r) in C1,2([0, T ]× [0, h∞]) as n→ ∞
where Vh∞ is the unique positive T -periodic solution of the problem

(3.21)


Vt − d∆V = V

[
α(t, r)− β(t, r)V

]
, (t, r) ∈ [0, T ]× [0, h∞],

Vr(t, 0) = V (t, h∞) = 0, t ∈ [0, T ],
V (0, r) = V (T, r), r ∈ [0, h∞].

The comparison principle implies that

(3.22) u(t, r) ≤ w(t, r) for t > T̃ , r ∈ [0, h(t)]



24 Y. DU, Z. GUO AND R. PENG

and hence

(3.23) limn→+∞u(t+ nT, r) ≤ Vh∞(t, r) for (t, r) ∈ [0, T ]× [0, h∞].

For any 0 < ε1 < ε2, we easily see from the comparison principle that

Vh∞−ε1 ≥ Vh∞−ε2 for (t, r) ∈ [0, T ]× [0, h∞ − ε2].

Then it follows that

Vh∞−ε → Vh∞ in [0, T ]× [0, h∞) as ϵ→ 0+

since Vh∞ is the unique positive solution of (3.21). Thus, (3.18), (3.23) and the arbitrariness of
ε imply

lim
n→∞

u(t+ nT, r) = Vh∞(t, r) for (t, r) ∈ [0, T ]× [0, h∞),

or equivalently,

(3.24) lim
t→∞

[u(t, r)− Vh∞(t, r)] = 0 for r ∈ [0, h∞).

As in the proof of Lemma 2.2 in [9], we may straighten the free boundary and use parabolic
regularity for the new problem to obtain

∥ũ(t, ·)− Ṽh∞∥C2([0,h0]) → 0 as t→ ∞,

where ũ denotes the transformed u, and Ṽh∞ denotes the transformed Vh∞ under the transfor-
mation which changes [0, h(t)] into [0, h0], as indicated in [9]. Changing back to u and Vh∞ we
obtain

∥u(t, ·)− Vh∞∥C2([0,h(t)]) → 0 as t→ ∞.

It follows that

lim
t→∞

[h′(t) + µ(Vh∞)r(t, h∞)] = − lim
t→∞

µ[ur(t, h(t))− (Vh∞)r(t, h(t))] = 0.

Hence h′(t) ≥ δ > 0 for all large t and some fixed δ > 0. But this implies h∞ = ∞, a
contradiction. Thus we must have h∞ ≤ R∗.

We are now ready to show that ∥u(t, ·)∥C([0,h(t)]) → 0 as t→ ∞. Let u(t, r) denote the unique
positive solution of the problem

(3.25)

 ut − d∆u = u[α(t, r)− β(t, r)u], t > 0, 0 < r < h∞,
ur(t, 0) = 0, u(t, h∞) = 0, t > 0,
u(0, r) = ũ0(r), 0 ≤ r ≤ h∞

where

ũ0(r) =

{
u0(r), 0 ≤ r ≤ h0,
0, r ≥ h0.

The comparison principle implies that

0 ≤ u(t, r) ≤ u(t, r) for t > 0 and r ∈ [0, h(t)].

Since h∞ ≤ R∗, we see that 1 ≤ λ1(d, α, h∞, T ), and it follows from Theorem 28.1 of [20] that
u(t, r) → 0 uniformly for r ∈ [0, h∞] as t→ +∞. Hence,

lim
t→+∞

∥u(t, ·)∥C([0,h(t)]) = 0.

�
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Lemma 3.4. If h∞ = +∞, then

(3.26) lim
n→+∞

u(t+ nT, r) = Û(t, r) locally uniformly for (t, r) ∈ [0, T ]× [0,+∞)

where Û(t, |x|) is the unique positive T -periodic (radial) solution of the equation

(3.27)

{
Ut − d∆U = U [α(t, |x|)− β(t, |x|)U ], (t, x) ∈ [0, T ]× RN ,
U(0, x) = U(T, x), x ∈ RN .

Proof. Existence and uniqueness of a positive solution Û of (3.27) follows from Theorem 1.3
of [28] (by choosing both γ and τ there to be 0). It must be radially symmetric since (3.27) is
invariant under rotations with respect to the spatial variables around the origin of RN . (Under
the extra condition inf U > 0, the above conclusions also follow from Proposition 1.7 of [3].)

To show (3.26), we use a squeezing argument similar in spirit to [14]. We first consider the
T -periodic Dirichlet problem

(3.28)

 vt − d∆v = v[α(t, |x|)− β(t, |x|)v], (t, x) ∈ [0, T ]×BR,
v(t, x) = 0, (t, x) ∈ [0, T ]× ∂BR,
v(0, x) = v(T, x), x ∈ BR

and the T -periodic boundary blow-up problem

(3.29)

 wt − d∆w = w[α(t, |x|)− β(t, |x|)w], (t, x) ∈ [0, T ]×BR,
w(t, x) = ∞, (t, x) ∈ [0, T ]× ∂BR,
w(0, x) = w(T, x), x ∈ BR.

When R is large, it is known from [28] that these problems admit unique T -periodic positive
solutions vR(t, x) and wR(t, x) respectively. Moreover, vR(t, ·) and wR(t, ·) are radially symmetric
for fixed t ∈ [0, T ]. Furthermore, the proof of Theorem 1.3 in [28] implies that

vR ↗ Û locally uniformly for (t, r) ∈ [0, T ]× [0,+∞) as R→ +∞,

wR ↘ Û locally uniformly for (t, r) ∈ [0, T ]× [0,+∞) as R→ +∞.

By Lemma 3.2, we can choose an increasing sequence of positive numbers Rm with Rm → +∞
as m→ ∞ such that λ1(d, α,Rm, T ) < 1 for all m ≥ 1. Since both vRm and wRm converge to Û

locally uniformly in [0, T ]× RN , we can find T̂m > 0 such that h(t) ≥ Rm for t ≥ T̂m. Arguing
as in the proof of Lemma 3.3, we see that the problem

(3.30)


wt − d∆w = w[α(t, r)− β(t, r)w], t ≥ T̂m, r ∈ [0, Rm],

wr(t, 0) = 0, w(t, Rm) = 0, t ≥ T̂m,

w(T̂m, r) = u(T̂m, r), r ∈ [0, Rm]

admits a unique positive solution wm(t, r), which satisfies that

(3.31) wm(t+ nT, r) → vRm(t, r)

uniformly for (t, r) ∈ [0, T ]× [0, Rm] as n→ +∞.
By the comparison principle, we have

wm(t, r) ≤ u(t, r) for t ≥ T̂m and r ∈ [0, Rm].

Therefore,

limn→+∞u(t+ nT, r) ≥ vRm(t, r) uniformly for (t, r) ∈ [0, T ]× [0, Rm].

Sending m→ ∞, we obtain

(3.32) limn→+∞u(t+ nT, r) ≥ Û(t, r) locally uniformly for (t, r) ∈ [0, T ]× [0,∞).
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Analogously, by arguments similar to those in the proof of Theorem 1.3 of [28], we see that

limn→+∞u(t+ nT, r) ≤ wRm(t, r) uniformly for (t, r) ∈ [0, T ]× [0, Rm],

which implies (by sending m→ ∞)

(3.33) limn→+∞u(t+ nT, r) ≤ Û(t, r) locally uniformly for (t, r) ∈ [0, T ]× [0,∞).

Clearly (3.26) is a consequence of (3.32) and (3.33). �
Combining Lemmas 3.3 and 3.4, we immediately obtain the following spreading-vanishing

dichotomy:

Theorem 3.5. Let (u(t, r), h(t)) be the solution of the free boundary problem (3.2). Then the
following alternative holds:

Either

(i) Spreading: h∞ = +∞ and

lim
t→∞

[u(t, r)− Û(t, r)] = 0 locally uniformly for r ∈ [0,∞)

or

(ii) Vanishing: h∞ ≤ R∗ and limt→+∞ ||u(t, ·)||C([0,h(t)]) = 0.

We now determine when each of the two alternatives occurs. We divide the discussion into
two cases: (a) h0 ≥ R∗, (b) h0 < R∗.

For case (a), due to h′(t) > 0 for t > 0, we must have h∞ > R∗. Then from Lemma 3.3 we
immediately obtain the following result.

Theorem 3.6. If h0 ≥ R∗, then h∞ = +∞. Thus spreading always occurs in this case.

In order to study case (b), and also for later applications, we need a comparison principle which
can be used to estimate both u(t, r) and the free boundary r = h(t). For future applications, we
also include a more general class of problems by replacing the special nonlinear term of (1.1) by
the function g(t, r, u) in (3.2).

Lemma 3.7. Suppose that T ∈ (0,∞), k ∈ C1([0, T ]), v ∈ C1,2(D∗
T ) with D∗

T = {(t, r) ∈ R2 :

0 ≤ t ≤ T , 0 ≤ r ≤ k(t)}, and
vt − d∆v ≥ g(t, r, v), t > 0, 0 < r < k(t),

vr(t, 0) ≤ 0, v(t, k(t)) = 0, t > 0,

k
′
(t) ≥ −µvr(t, k(t)), t > 0.

If k0 ≤ k(0) and v0(r) ≤ v(0, r) for r ∈ [0, k0], then the solution (v, k) of the free boundary
problem

(3.34)


vt − d∆v = g(t, r, v), t > 0, 0 < r < k(t),
vr(t, 0) = 0, v(t, k(t)) = 0, t > 0,
k′(t) = −µvr(t, k(t)), t > 0,
v(0, r) = v0(r), 0 ≤ r ≤ k0

satisfies

k(t) ≤ k(t) ∀t ∈ [0, T ], v(t, r) ≤ v(t, r) for t ∈ [0, T ] and r ∈ [0, k(t)].

Proof. The proof of this lemma is similar to that of Lemma 3.5 in [12] and Lemma 2.6 in [9].
So we omit the details. �
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Remark 3.8. The pair (v, k) in Lemma 3.7 is usually called an upper solution of the free
boundary problem (3.34). We can define a lower solution by reversing all the inequalities in the
obvious places. Moreover, one can easily prove an analogue of Lemma 3.7 for lower solutions.

Now we consider case (b), where h0 < R∗. We first examine the case that µ is large, then we
look at the case that µ > 0 is small, and finally we use Lemma 3.7 and Remark 3.8 to show the
existence of a critical µ∗ so that spreading occurs if µ > µ∗ and vanishing happens if µ ∈ (0, µ∗].

Firstly, using Lemma 3.7 and exactly the same arguments as those in the proof of Lemma 2.8
of [9], we have

Lemma 3.9. Suppose h0 < R∗. Then there exists µ0 > 0 depending on u0 such that spreading
occurs if µ ≥ µ0.

On the other hand, we also have the following assertion.

Lemma 3.10. Suppose h0 < R∗. Then there exists µ0 > 0 depending on u0 such that vanishing
happens if µ ≤ µ0.

Proof. We are going to construct a suitable upper solution to (1.1) and then apply Lemma
3.7.

For t > 0 and r ∈ [0, σ(t)], where

σ(t) = h0τ(t), τ(t) = (1 + δ − δ

2
e−γt),

we define

w(t, r) =Me−γtV
(∫ t

0
τ−2(s)ds,

h0
σ(t)

r
)
,

where M , δ, γ are positive constants to be chosen later and V (t, |x|) is the first eigenfunction of
the problem  Vt − d∆V = λ1(d, α, h0, T )α(t, |x|)V, (t, x) ∈ [0, T ]×Bh0 ,

V = 0, (t, x) ∈ [0, T ]× ∂Bh0 ,
V (t, x) is T -periodic in t,

with V > 0 and ∥V ∥L∞((0,T )×Bh0
) = 1. Since h0 < R∗, we have

λ1(d, α, h0, T ) > 1.

Moreover, by the moving-plane argument in [8] we have

Vr(t, r) < 0 for 0 < r ≤ h0 and t ∈ [0, T ).

(Since V (·, r) is a periodic function, w(t, r) is defined for all t > 0.)
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In the following calculations, we will use the notations ξ =
∫ t
0 τ

−2(s)ds, η = rτ−1(t) and

V = V (ξ, η). Thus w(t, r) =Me−γtV (ξ, η) and

wt − d∆w − w[α(t, |x|)− β(t, |x|)w]

=Me−γt[−γV + Vξτ
−2(t)− rVητ

−2(t)τ ′(t)− dτ−2(t)Vηη −
d(N − 1)

rτ(t)
Vη

−V (α(t, r)− β(t, r)Me−γtV )]

=Me−γt[−γV − rVητ
−2(t)τ ′(t) + τ−2(t)λ1(d, α, h0, T )α(ξ, η)V

−V (α(t, r)− β(t, r)Me−γtV )]

≥Me−γtV [−γ + τ−2(t)λ1(d, α, h0, T )α(ξ, η)− α(t, r)]

≥Me−γtV [−γ +
λ1(d, α, h0, T )

(1 + δ)2
α(ξ, η)− α(t, r)]

=Me−γtV
[
− γ +

(λ1(d, α, h0, T )
(1 + δ)2

α(ξ, η)

α(t, r)
− 1

)
α(t, r)

]
.

Clearly

1 +
δ

2
≤ τ(t) ≤ 1 + δ, h0(1 +

δ

2
) ≤ σ(t) ≤ h0(1 + δ).

Therefore, (
1 +

δ

2

)−2

t ≥ ξ ≥ (1 + δ)−2t,

(
1 +

δ

2

)−1

r ≥ η ≥ (1 + δ)−1r.

Hence, due to 1 < λ1(d, α, h0, T ), we can choose δ > 0 sufficiently small such that

(3.35) ϱ := min
t>0,r∈[0,σ(t)]

λ1(d, α, h0, T )

(1 + δ)2
α(ξ, η)

α(t, r)
− 1 > 0.

Setting γ = ϱκ1, we deduce

wt − d∆w − w[α(t, r)− β(t, r)w] ≥ 0 for t > 0, r ∈ [0, σ(t)].

We now choose M > 0 sufficiently large such that

u0(r) ≤MV
(
0,

r

(1 + δ/2)

)
= w(0, r) for r ∈ [0, h0].

Then

σ′(t) =
1

2
h0γδe

−γt,

−µwr(t, σ(t)) = µMe−γt
∣∣∣Vη(∫ t

0
τ−2(s)ds, h0

)∣∣∣τ−1(t) ≤ C0µM

1 + δ
2

e−γt,

where

C0 = max
t∈[0,∞)

∣∣∣Vη(∫ t

0
τ−2(s)ds, h0

)∣∣∣.
Thus, if we choose

µ0 =
δ(1 + δ/2)γh0

2MC0
,

then

σ′(t) ≥ −µwr(t, σ(t)) for 0 < µ ≤ µ0
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and thus (w(t, r), σ(t)) satisfies
wt − d∆w ≥ w[α(t, r)− β(t, r)w], t > 0, 0 < r < σ(t),
w(t, σ(t) = 0, σ′(t) ≥ −µwr(t, σ(t)), t > 0,
wr(t, 0) = 0, t > 0,

σ(0) = (1 + δ
2)h0 > h0.

Applying Lemma 3.7, we obtain that h(t) ≤ σ(t) and u(t, r) ≤ w(t, r) for 0 ≤ r ≤ h(t) and
t > 0. These imply that h∞ ≤ limt→∞ σ(t) = h0(1 + δ) <∞. �

Based on Lemmas 3.9 and 3.10, we can apply the same arguments as those in the proof of
Theorem 2.10 of [9] to obtain a threshold value µ∗ > 0 of µ such that the alternatives in the
spreading-vanishing dichotomy are determined by µ∗ for the case h0 < R∗, as stated in the
following theorem.

Theorem 3.11. If h0 < R∗, then there is µ∗ > 0 depending on u0 such that vanishing occurs if
0 < µ ≤ µ∗, and spreading happens if µ > µ∗.

4. Spreading speed

In this section we study the spreading speed of the expanding front r = h(t) when spreading
occurs. By (1.2), we have that

α∞(t) := limr→+∞α(t, r) ≤ κ2, α∞(t) := limr→+∞α(t, r) ≥ κ1,

β∞(t) := limr→+∞β(t, r) ≤ κ2, β∞(t) := limr→+∞β(t, r) ≥ κ1,

and α∞(t), α∞(t), β∞(t), β∞(t) are T -periodic functions. We assume that these functions are
Hölder continuous.

We will need some simple variants of Lemma 3.7 and Remark 3.8, whose proofs are similar
to the original ones and therefore omitted.

Lemma 4.1. Let d1(s), d2(s) and l(s) be Hölder continuous functions for s ≥ 0, all positive
except possibly d2(s). Let g(t, r, u) be a function satisfying (3.1). Suppose that T ∈ (0,∞),
h ∈ C1([0, T ]), u ∈ C1,2(D∗

T ) with D
∗
T = {(t, r) ∈ R2 : 0 ≤ t ≤ T , 0 ≤ r ≤ h(t)}, and

ut − d1(r)urr − d2(r)ur ≥ g(t, r, u), t ∈ (0, T ], 0 < r < h(t),

u(t, h(t)) = 0, h
′
(t) ≥ −µur(t, h(t)), t ∈ (0, T ],

u(t, 0) ≥ l(t), t ∈ (0, T ].

If h ∈ C1([0, T ]) and u ∈ C1,2(DT ) with DT = {(t, r) ∈ R2 : 0 ≤ t ≤ T , 0 ≤ r ≤ h(t)} satisfy

0 < h(0) ≤ h(0), 0 < u(0, r) ≤ u(0, r) for 0 ≤ r ≤ h(0),

and

(4.1)

 ut − d1(r)urr − d2(r)ur = g(t, r, u), t ∈ (0, T ], 0 < r < h(t),
u(t, h(t)) = 0, h′(t) = −µur(t, h(t)), t ∈ (0, T ],
u(t, 0) = l(t), t ∈ (0, T ],

then

h(t) ≤ h(t) for t ∈ (0, T ], u(t, r) ≤ u(t, r) for (t, r) ∈ (0, T ]× (0, h(t)).

Similar to Remark 3.8, we have the following analogue of Lemma 4.1:



30 Y. DU, Z. GUO AND R. PENG

Lemma 4.2. Let d1(s), d2(s), l(s), and g(t, r, u) be as in Lemma 4.1. Suppose that T ∈ (0,∞),

h ∈ C1([0, T ]), u ∈ C1,2(D†
T ) with D

†
T = {(t, r) ∈ R2 : 0 ≤ t ≤ T , 0 ≤ r ≤ h(t)}, and ut − d1(r)urr − d2(r)ur ≤ g(t, r, u), t ∈ (0, T ], 0 < r < h(t),

u(t, h(t)) = 0, h′(t) ≤ −µur(t, h(t)), t ∈ (0, T ],
u(t, 0) ≤ l(t), t ∈ (0, T ].

If h ∈ C1([0, T ]), u ∈ C1,2(D†
T ) satisfy (4.1) and

h(0) ≥ h(0), u(0, r) ≥ u(0, r) ≥ 0 for 0 ≤ r ≤ h(0),

then

h(t) ≥ h(t) in [0, T ], u(r, t) ≥ u(r, t) for t ∈ [0, T ] and r ∈ (0, h(t)).

We also need the following result.

Lemma 4.3. Suppose that d > 0, c(s) and l(s) are Hölder continuous functions for s ≥ 0
with l(s) positive, and a(t), b(t) are Hölder continuous positive T -periodic functions. Let v ∈
C1,2(D) (D = {(t, r) : 0 ≤ r ≤ σ(t), t ≥ 0}) be a solution of

(4.2)

 vt − dvrr + c(r)vr = v(a(t)− b(t)v), t > 0, 0 < r < σ(t),
v(t, 0) = l(t), v(t, σ(t)) = 0, t > 0,
v(0, r) = v0(r) ≥ 0, 0 < r < σ(0).

Suppose that

lim
r→∞

c(r) = 0, lim
t→∞

σ(t) = ∞

and

lim
n→∞

l(t+ nT ) = ℓ(t) ≥ V (t) uniformly for t ∈ [0, T ],

where ℓ(t) is a T -periodic function and V (t) is the unique positive solution of (2.11). Then

limn→∞v(t+ nT, r) ≥ V (t) locally uniformly for (t, r) ∈ [0, T ]× [0,∞).

Proof. By the maximum principle, v(t, r) > 0 for t > 0 and 0 ≤ r < σ(t). For any given
R > 0 and small ϵ > 0, we can find TR > 0 such that σ(t) > R and l(t) ≥ ℓ(t) − ϵ > 0 for all
t ≥ TR. We now consider the auxiliary problem

(4.3)

 wt − dwrr + c(r)wr = w(a(t)− b(t)w), t > TR, 0 < r < R,
w(t, 0) = ℓ(t)− ϵ, w(t, R) = 0, t > TR,
w(TR, r) = v(TR, r), 0 < r < R.

It is well known that the logistic equation (4.3) admits a unique positive solution w(t, r). By
the comparison principle we see

w(t, r) ≤ v(t, r) for t > TR and 0 ≤ r ≤ R.

Clearly w ≡ 0 is a lower solution to (4.3), and for any large positive constant M , w ≡ M is an
upper solution to (4.3). Thus the unique solution of problem (4.3) with initial function v(TR, r)
replaced by 0, which we denote by w∗(t, r), is increasing in t, and the solution w∗(t, r) of the
same problem with initial function v(TR, r) replaced by M is decreasing in t. Moreover,

(4.4) lim
n→∞

w∗(t+ nT, r) = w(t, r) ∀(t, r) ∈ [0, T ]× [0, R],

(4.5) lim
n→∞

w∗(t+ nT, r) = w(t, r) ∀(t, r) ∈ [0, T ]× [0, R],
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with w ≤ w, and both w and w are positive solutions of the problem

(4.6)

 wt − dwrr + c(r)wr = w(a(t)− b(t)w), (t, r) ∈ [0, T ]× [0, R],
w(t, 0) = ℓ(t)− ϵ, w(t, R) = 0, t ∈ [0, T ],
w(0, r) = w(T, r), r ∈ [0, R].

Since the nonlinear term in (4.6) is concave, it is well known (see [20]) that w ≡ w ≡ wϵ
R, the

unique positive solution of (4.6). Hence

lim
n→∞

w∗(t+ nT, r) = lim
n→∞

w∗(t+ nT, r) = wϵ
R(t, r).

By the comparison principle, the solution of (4.3) satisfies

w∗(t, r) ≤ w(t, r) ≤ w∗(t, r) for t ≥ TR and 0 ≤ r ≤ R.

This implies that

lim
n→∞

w(t+ nT, r) = wϵ
R(t, r) uniformly in [0, T ]× [0, R].

Thus,

limn→∞v(t+ nT, r) ≥ wϵ
R(t, r) uniformly for (t, r) ∈ [0, T ]× [0, R].

Letting ϵ→ 0 we deduce

limn→∞v(t+ nT, r) ≥ w0
R(t, r) for (t, r) ∈ [0, T ]× [0, R],

where w0
R(t, r) is the unique positive solution of (4.6) with ϵ = 0. (The uniqueness of positive

solutions to (4.6) implies the continuous dependence of wϵ
R on ϵ.)

A simple upper and lower solution argument shows that w0
R(t, r) is increasing in R, and

it has a constant upper bound independent of R. Using this fact and a standard regularity
consideration, we find that as R increases to infinity, w0

R(t, r) increases to the minimal positive
solution W (t, r) of

(4.7)

 Wt − dWrr + c(r)Wr =W (a(t)− b(t)W ), (t, r) ∈ [0, T ]× (0,∞),
W (t, 0) = ℓ(t), t ∈ [0, T ],
W (0, r) =W (T, r), r ∈ [0,∞).

Thus,

(4.8) limn→∞v(t+ nT, r) ≥W (t, r) locally uniformly for (t, r) ∈ [0, T ]× [0,∞).

We show next that

W (t, r) ≥ V (t) for (t, r) ∈ [0, T ]× [0,∞).

Let Rn be a positive sequence increasing to ∞ as n→ ∞, and then define cn(r) = c(Rn + r).
Since c(r) → 0 as r → ∞, clearly cn(r) → 0 locally uniformly in R. It follows that the first
eigenvalue λn1 (R) of

−durr + cn(r)ur = λu in [−R,R], u(−R) = u(R) = 0

converges to dπ2/(4R2) as n → ∞. Fix R > 0 large enough such that dπ2/(4R2) < a =
mint∈R a(t), then the logistic problem

−durr + cn(r)ur = au− ∥b∥∞u2 in (−R,R), u(−R) = u(R) = 0

has a unique positive solution un for all large n, and a simple regularity argument shows that
un → u0 as n→ ∞ uniformly in [−R,R], where u0 is the unique positive solution of

−durr = au− ∥b∥∞u2 in (−R,R), u(−R) = u(R) = 0.
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We now define Wn(t, r) = W (t, Rn + r) for r ∈ [−Rn, Rn]. Clearly Wn a positive solution of
the problem

(4.9)

 wt − dwrr + cn(r)wr = w(a(t)− b(t)w), (t, r) ∈ [0, T ]× (−Rn, Rn),
w(t,−Rn) = ℓ(t), w(t, Rn) =W (t, 2Rn), t ∈ [0, T ],
w(0, r) = w(T, r), r ∈ [−Rn, Rn].

On the other hand, un extended to 0 outside [−R,R] is a lower solution of (4.9), and any large
positive constant is an upper solution of (4.9). Moreover, as before, since the nonlinear term in
(4.9) is concave, it has a unique positive solution. Thus Wn(t, r) ≥ un(r) in [−R,R].

Applying the Lp estimate to (4.9) we find that {Wn} is bounded inW 1,2
p ([0, T ]× [−M,M ]) for

any p > 1 and any M > 0. Hence by passing to a subsequence we may assume that Wn → W ∗

in C1,2
loc ([0, T ]× R), and W ∗ is a weak solution of

(4.10)

{
wt − dwrr = w(a(t)− b(t)w), (t, r) ∈ [0, T ]× R,
w(0, r) = w(T, r), r ∈ R.

Since Wn ≥ un we deduce by letting n → ∞ that W ∗ ≥ u0 in [0, T ]× [−R,R]. Thus W ∗ must
be a positive solution of (4.10). However, by [28], w ≡ V (t) is the unique positive solution of
(4.10). Thus we must have W ∗ ≡ V (t). It follows that Wn(t, r) → V (t) locally uniformly in
(t, r) ∈ [0, T ] × R. In particular, W (t, Rn) = Wn(t, 0) → V (t) uniformly in t ∈ [0, T ]. This
implies that W (t, r) → V (t) uniformly in t ∈ [0, T ] as r → ∞.

For any σ ∈ (0, 1), we can find Rσ > 0 large such that W (t, r) > σV (t) for r ≥ Rσ. Fix an
arbitrary R > Rσ and consider the problem

(4.11)

 wt − dwrr + c(r)wr = w(a(t)− b(t)w), (t, r) ∈ [0, T ]× (0, R),
w(t, 0) = ℓ(t), w(t, R) =W (t, R) t ∈ [0, T ],
w(0, r) = w(T, r), r ∈ [0, R].

Clearly W is the unique positive solution of (4.11). On the other hand, it is easily seen that
σV (t) is a lower solution of (4.11), and any large constant is an upper solution of (4.11). It
follows that W (t, r) ≥ σV (t) in [0, T ] × [0, R]. Since R ≥ Rσ is arbitrary, this implies that
W (t, r) ≥ σV (t) in [0, T ]× [0,∞). Letting σ → 1, we deduce W (t, r) ≥ V (t) in [0, T ]× [0,∞).

We may now use (4.8) to obtain

limn→∞v(t+ nT, r) ≥ V (t) locally uniformly for (t, r) ∈ [0, T ]× [0,∞).

This completes the proof. �
We are now ready to prove the first main result of this section.

Theorem 4.4. Suppose that (u, h) is the unique solution of (1.1) and h∞ = +∞; then

(4.12) limt→∞
h(t)

t
≤ 1

T

∫ T

0
k0(µ, α

∞, β∞)(t)dt,

(4.13) limt→∞
h(t)

t
≥ 1

T

∫ T

0
k0(µ, α∞, β

∞)(t)dt,

where k0(µ, ·, ·) is given in Theorems 2.4 and 2.5.

Proof. We divide the proof into three steps.
Step 1. The unique positive (radial) solution Û of (3.27) satisfies

(4.14) limr→∞Û(t, r) ≤ V (t), limr→∞Û(t, r) ≥ V (t) for t ∈ [0, T ],
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where V (t) and V (t) are, respectively, the unique positive T -periodic solutions of

(4.15)
dV

dt
= V [α∞(t)− β∞(t)V ] in [0, T ], V (0) = V (T )

and

(4.16)
dV

dt
= V [α∞(t)− β∞(t)V ] in [0, T ], V (0) = V (T ).

For any small ε > 0, there is R∗ := R(ε) > 1 such that for r ≥ R∗,

α(t, r) ≤ α∞
ε (t) := α∞(t) + ε, α(t, r) ≥ αε

∞(t) := α∞(t)− ε,

β(t, r) ≤ β∞ε (t) := β∞(t) + ε, β(t, r) ≥ βε∞(t) := β∞(t)− ε.

For R > R∗, we consider the problem

(4.17)


zt − d

[
zrr +

N−1
r zr

]
= z[α∞

ε (t)− βε∞(t)z], (t, r) ∈ (0, T )× (R∗, R),

z(t, R∗) = vR(t, R∗), z(t, R) = 0, t ∈ [0, T ],
z(0, r) = z(T, r), r ∈ [R∗, R],

where vR is the unique solution of (3.28). Clearly vR is a lower solution of (4.17) and any large
constant M is an upper solution of (4.17). Hence it has a positive solution. Since the nonlinear
term is concave, the positive solution is unique, which we denote by zεR. Therefore,

vR(t, r) ≤ zεR(t, r) ≤M ∀(t, r) ∈ [0, T ]× [R∗, R].

Much as before (see also the proof of Theorem 1.3 of [28]),

zεR ↗ Ẑε locally uniformly in [0, T ]× [R∗,∞) as R→ ∞,

where Ẑε satisfies
zt − d

[
zrr +

N−1
r zr

]
= z[α∞

ε (t)− βε∞(t)z], (t, r) ∈ (0, T )× (R∗,∞),

z(t, R∗) = Û(t, R∗), t ∈ [0, T ],
z(0, r) = z(T, r), r ∈ [R∗,∞).

Recalling that vR → Û as R→ ∞, we deduce

(4.18) Û(t, r) ≤ Ẑε(t, r) ∀(t, r) ∈ [0, T ]× [R∗,∞).

Making use of Lemma 3.2 in [28] we easily deduce that

lim
r→∞

Ẑε(t, r) = V ε(t) uniformly for t ∈ [0, T ],

where V ε is the unique positive T -periodic solution of the problem

(4.19)
dV

dt
= V [α∞

ε (t)− βε∞(t)V ] in [0, T ], V (0) = V (T ).

Thus,

(4.20) limr→∞Û(t, r) ≤ V ε(t) for t ∈ [0, T ].

Since V ε varies continuously in ε, letting ε→ 0 we obtain

limr→∞Û(t, r) ≤ V (t) for t ∈ [0, T ].
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This proves the first inequality in (4.14). The second inequality in (4.14) can be obtained
similarly by considering the problem

(4.21)


zt − d

[
zrr +

N−1
r zr

]
= z[αε

∞(t)− β∞ε (t)z], (t, r) ∈ (0, T )× (R∗, R),

z(t, R∗) = vR(t, R∗), z(t, R) = 0, t ∈ [0, T ],
z(0, r) = z(T, r), r ∈ [R∗, R],

from which we obtain

(4.22) limr→∞Û(t, r) ≥ V ε(t) for t ∈ [0, T ],

where V ε is the unique positive solution of (4.19) but with (α∞
ε , β

ε
∞) replaced by (αε

∞, β
∞
ε ).

Letting ε→ 0 one gets

limr→∞Û(t, r) ≥ V (t) for t ∈ [0, T ].

Step 2. We prove (4.12).
By (4.14) there exists R⋆ := R⋆(ε) > R∗ > 1 such that

V ε
2
(t) ≤ Û(t, r) ≤ V ε

2
(t) ∀(t, r) ∈ [0, T ]× [R⋆,∞).

Since h∞ = +∞ and limn→∞ u(t+ nT, r) = Û(t, r), there exists a positive integer N = N(R⋆)
such that with T := NT ,

h(T ) > 3R⋆ and u(t+ T , 2R⋆) < V ε(t) for all t ≥ 0.

Setting

ũ(t, r) = u(t+ T , r + 2R⋆) and h̃(t) = h(t+ T )− 2R⋆

and denoting

∆̃u = urr +
N − 1

r + 2R⋆
ur,

we obtain

(4.23)


ũt − d∆̃ũ = ũ

[
α(t, r + 2R⋆)− β(t, r + 2R⋆)ũ

]
, t > 0, 0 < r < h̃(t),

ũ(t, 0) = u(t+ T , 2R⋆), ũ(t, h̃(t)) = 0, t > 0,

h̃′(t) = −µũr(t, h̃(t)), t > 0,

ũ(0, r) = u(T , r + 2R⋆), 0 < r < h̃(0).

By our choice of R⋆, for r ≥ 0,

α(t, r + 2R⋆) ≤ α∞
ε (t), β(t, r + 2R⋆) ≥ βε∞(t).

Let u∗(t) be the unique solution of the problem

(4.24)
du∗

dt
= u∗(α∞

ε (t)− βε∞(t)u∗) for t > 0; u∗(0) = max{V ε, ||ũ(0, ·)||∞}.

Then
u∗(t) ≥ V ε(t) for all t ≥ 0 and lim

n→∞
u∗(t+ nT ) = V ε(t).

Now we have

u∗(0) ≥ ũ(0, r), ũ(t, 0) ≤ V ε(t) ≤ u∗(t), ũ(t, h̃(t)) = 0 ≤ u∗(t),

and
u∗t − d∆̃u∗ = u∗(α∞

ε (t)− βε∞(t)u∗) ≥ u∗[α(t, r + 2R⋆)− β(t, r + 2R⋆)u∗].

Hence we can apply the comparison principle to deduce

(4.25) ũ(t, r) ≤ u∗(t) for 0 < r < h̃(t), t > 0.
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As a consequence, there exists T̃ = T̃ε = ÑT > 0 (with an integer Ñ) such that

ũ(t, r) ≤ V ε(t)(1− ε)−1, ∀t ≥ T̃ , r ∈ [0, h̃(t)].

Let Uε = Uα∞
ε ,βε

∞,kε denote the unique positive solution of (2.1) with a(t) = α∞
ε (t), b(t) =

βε∞(t) and k(t) = kε(t) := k0(µ, α
∞
ε , β

ε
∞)(t). Since

Uε(t, r) → V ε(t) in [0, T ] as r → +∞,

there exists R⋆
0 := R⋆

0(ε) > 2R⋆ such that

Uε(t, r) > V ε(t)(1− ε) for (t, r) ∈ [0, T ]× [R⋆
0,∞).

We now define

ξ(t) = (1− ε)−2

∫ t

0
kε(s)ds+R⋆

0 + h̃(T̃ ) for t ≥ 0,

w(t, r) = (1− ε)−2Uε(t, ξ(t)− r) for t ≥ 0, 0 ≤ r ≤ ξ(t).

Then

ξ′(t) = (1− ε)−2kε(t),

−µwr(t, ξ(t)) = µ(1− ε)−2(Uε)r(t, 0) = (1− ε)−2kε(t),

and so we have

ξ′(t) = −µwr(t, ξ(t)).

Clearly

w(t, ξ(t)) = 0, ξ(0) = R⋆
0 + h̃(T̃ ) > h̃(T̃ ).

Moreover, for 0 ≤ r ≤ h̃(T̃ ),

w(0, r) = (1− ε)−2Uε(0, ξ(0)− r) ≥ (1− ε)−2Uε(0, R
⋆
0) ≥ V ε(0)(1− ε)−1 ≥ ũ(T̃ , r)

and w(0, r) > 0 for h̃(T̃ ) < r < ξ(0). It is also easily seen that for t > 0,

w(t, 0) = (1− ε)−2Uε(t, ξ(t)) ≥ (1− ε)−2Uε(t, R
⋆
0) ≥ V ε(t)(1− ε)−1 ≥ ũ(t+ T̃ , 0).

Direct calculations show that, for t > 0 and 0 < r < ξ(t), with ρ = ξ(t)− r,

wt − d∆̃w = (1− ε)−2

[
(Uε)t + (Uε)ρξ

′(t)− d(Uε)ρρ +
d(N − 1)

r + 2R⋆
(Uε)ρ

]
= (1− ε)−2

[
(Uε)t + (1− ε)−2kε(t)(Uε)ρ − d(Uε)ρρ +

d(N − 1)

r + 2R⋆
(Uε)ρ

]
≥ (1− ε)−2((Uε)t + kε(t)(Uε)ρ − d(Uε)ρρ) (due to (Uε)ρ ≥ 0)

= (1− ε)−2Uε(α
∞
ε (t)− βε∞(t)Uε)

= w[α∞
ε (t)− (1− ε)2βε∞(t)w]

≥ w[α∞
ε (t)− βε∞(t)w].

Hence we can use Lemma 4.1 to conclude that

ũ(t+ T̃ , r) ≤ w(t, r), h̃(t+ T̃ ) ≤ ξ(t) for t ≥ 0, 0 ≤ r ≤ h̃(t+ T̃ ).
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It follows that

limt→+∞
h(t)

t
= limt→+∞

h̃(t− T ) + 2R⋆

t

≤ lim
t→+∞

ξ(t− (T + T̃ )) + 2R⋆

t

= lim
t→+∞

(1− ε)−2
∫ t
0 k

ε(s)ds+R⋆
0 + h̃(T̃ ) + 2R⋆

t

= (1− ε)−2 1

T

∫ T

0
kε(t)dt.

Since ε > 0 can be arbitrarily small, and kε(t) → k0(µ, α
∞, β∞)(t) as ε→ 0, we deduce

limt→+∞
h(t)

t
≤ 1

T

∫ T

0
k0(µ, α

∞, β∞)(t)dt.

Step 3. We show

limt→∞
h(t)

t
≥ 1

T

∫ T

0
k0(µ, α∞, β

∞)(t)dt

by constructing a suitable lower solution.
To this end, we denote

kε(t) = k0(µ, α
ε
∞, β

∞
ε )(t) and Zε(t, r) = Uαε

∞,β∞
ε ,kε(t, r).

We consider the auxiliary problem

(4.26)


vt − d∆̃v = v(αε

∞(t)− β∞ε (t)v), t > 0, 0 < r < h̃(t),

v(t, 0) = ũ(t, 0), v(t, h̃(t)) = 0, t > 0,

v(0, r) = ũ(0, r), r ∈ [0, h̃(0)],

where ũ and h̃ are defined as before. Since

lim
n→∞

ũ(t+ nT, 0) → Û(t, 2R⋆) > V ε/2 ∀t ∈ [0, T ]

we can apply Lemma 4.3 to (4.26) to conclude that

(4.27) limn→∞v(t+ nT, r) ≥ V ε(t) locally uniformly for (t, r) ∈ [0, T ]× [0,∞).

Since
α(t, r + 2R⋆) ≥ αε

∞(t), β(t, r + 2R⋆) ≤ β∞ε (t) ∀t ∈ [0, T ],

from the comparison principle we deduce

ũ(t, r) ≥ v(t, r) for t > 0, r ∈ [0, h̃(t)],

and hence, in view of (4.27), we have

(4.28) limn→∞ũ(t+ nT, r) ≥ V ε(t) locally uniformly for (t, r) ∈ [0, T ]× [0,∞).

Define

η(t) = (1− ε)2
∫ t

0
kε(s)ds+ h̃(0) for t ≥ 0,

and
w(t, r) = (1− ε)2Zε(t, η(t)− r) for t ≥ 0, 0 ≤ r ≤ η(t).

Then
η′(t) = (1− ε)2kε(t) ∀t ∈ [0, T ],

−µwr(t, η(t)) = µ(1− ε)2(Zε)r(t, 0) = (1− ε)2kε(t) ∀t ∈ [0, T ],
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and so we have
η′(t) = −µwr(t, η(t)).

Clearly, w(t, η(t)) = 0. Since

(Zε)r(t, r) ≥ 0 for (t, r) ∈ [0, T ]× [0,∞)

and
lim

r→+∞
Zε(t, r) = V ε(t) ∀t ∈ [0, T ],

we must have
Zε(t, r) ≤ V ε(t) ∀(t, r) ∈ [0, T ]× (0,∞).

Therefore, due to (4.28) we can find some T̂ = T̂ (ε) = N̂T > 0 (with an integer N̂ ) such that

(4.29) ũ(t+ T̂ , 0) ≥ w(t, 0) for t ≥ 0

and

(4.30) ũ(T̂ , r) ≥ w(0, r) for r ∈ [0, η(0)].

Direct calculations yield (with the notation θ = η(t)− r)

wt − d∆̃w = (1− ε)2
[
(Zε)t + (Zε)θη

′(t)− d(Zε)θθ +
d(N − 1)

r + 2R⋆
(Zε)θ

]
= (1− ε)2

[(
(1− ε)2kε(t) +

d(N − 1)

r + 2R⋆

)
(Zε)θ + (Zε)t − d(Zε)θθ

]
≤ (1− ε)2

[
kε(t)(Zε)θ + (Zε)t − d(Zε)θθ

]
(since (Zε)θ ≥ 0)

≤ w[αε
∞(t)− β∞ε (t)w] for t ≥ 0, 0 ≤ r ≤ η(t),

where we have used the fact that for large R⋆,

(1− ε)2kε(t) +
d(N − 1)

r + 2R⋆
≤ kε(t).

Hence, we can use Lemma 4.2 to conclude that

ũ(t+ T̂ , r) ≥ w(t, r), h̃(t+ T̂ ) ≥ η(t) for t ≥ 0, 0 ≤ r ≤ η(t).

It follows that

limt→∞
h(t)

t
= limt→∞

h̃(t− T )

t

≥ lim
t→∞

η(t− T − T̂ )

t
= (1− ε)2

1

T

∫ T

0
kε(t)dt.

Since ε > 0 can be arbitrarily small, this implies

limt→∞
h(t)

t
≥ 1

T

∫ T

0
k0(µ, α∞, β

∞)(t)dt.

The proof of the theorem is now complete. �
The result below follows trivially from Theorem 4.4.

Corollary 4.5. Assume that h∞ = +∞ and

(4.31) α(t, r) → α∗(t), β(t, r) → β∗(t) uniformly for t ∈ [0, T ] as r → +∞.

Then

lim
t→∞

h(t)

t
=

1

T

∫ T

0
k0(µ, α∗, β∗)(t)dt.
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Let c∗(µ) =
1
T

∫ T
0 k0(µ, α∗, β∗)(t)dt. Our next result describes the large time behavior of the

solution to (1.1) inside the ball {x : |x| < c∗(µ)t}, which considerably improves the conclusion
in (3.26).

Theorem 4.6. Suppose that the assumptions of Corollary 4.5 hold, and u(t, r), Û(t, r) are as
in (3.26). Then

(4.32) lim
t→∞

max
r≤[c∗(µ)−ϵ]t

|u(t, r)− Û(t, r)| = 0

for every small ϵ > 0.

Proof. Since (4.31) holds, we see that

α∞(t) ≡ α∞(t) ≡ α∗(t), β∞(t) ≡ β∞(t) ≡ β∗(t) ∀t ∈ [0, T ],

and thus the proof of Theorem 4.4 implies that V (t) ≡ V (t) ≡ V (t), where V (t) is the unique
positive solution of

dV

dt
= V [α∗(t)− β∗(t)]V, V (0) = V (T ).

Moreover, by Step 1 of the proof of Theorem 4.4, we have

lim
r→∞

Û(t, r) = V (t) uniformly for t ∈ [0, T ].

Hence for any given small ϵ > 0, there exists Rϵ > 0 such that

(4.33)
∣∣∣Û(t, r)− V (t)

∣∣∣ < ϵ for all (t, r) ∈ R× [Rϵ,∞).

We next make use of the estimates for ũ(t, r) given in Step 2 of the proof of Theorem 4.4,
and see that for any given small δ > 0, there exist positive numbers T δ, Rδ

1 and Rδ
2 such that

(4.34) u(t+ T δ, r +Rδ
1) ≤ (1− δ)−2U δ(t, ξ(t)− r) for t ≥ 0, 0 ≤ r ≤ ξ(t),

where

ξ(t) = (1− δ)−2

∫ t

0
kδ(s)ds+Rδ

2

and

U δ(t, r) := Uα∗+δ,β∗−δ,kδ(t, r), kδ(t) := k0(µ, α∗ + δ, β∗ − δ)(t).

Similarly, by Step 3 of the proof of Theorem 4.4 there exist positive numbers T̃ δ, R̃δ
1, R̃

δ
2 such

that

(4.35) u(t+ T̃ δ, r + R̃δ
1) ≥ (1− δ)2Uδ(t, η(t)− r) for t ≥ 0, 0 ≤ r ≤ η(t),

where

η(t) = (1− δ)2
∫ t

0
kδ(s)ds+ R̃δ

2

and

Uδ(t, r) := Uα∗−δ,β∗+δ,kδ(t, r), kδ(t) := k0(µ, α∗ − δ, β∗ + δ)(t).

Since

lim
δ→0

(1− δ)2kδ(t) = lim
δ→0

(1− δ)−2kδ(t) = k0(µ, α∗, β∗)(t) uniformly for t ∈ [0, T ],

we can find δϵ ∈ (0, ϵ) sufficiently small so that for all large t, say t ≥ Tϵ,

|(1− δϵ)
2

∫ t

0
kδϵ(s)ds− c∗(µ)t| <

ϵt

2
, |(1− δϵ)

−2

∫ t

0
kδϵ(s)ds− c∗(µ)t| <

ϵt

2
.
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We now fix δ = δϵ in U
δ, ξ, Uδ and η. Then clearly, for t ≥ Tϵ,

ξ(t)− r ≥ [c∗(µ)− ϵ]t− r +Rδϵ
2 +

ϵ

2
t,

η(t)− r ≥ [c∗(µ)− ϵ]t− r + R̃δϵ
2 +

ϵ

2
t.

By Proposition 2.1, we have

lim
r→∞

U δϵ(t, r) = V δϵ(t) uniformly for t ∈ [0, T ],

where V δϵ(t) is the unique positive solution to

dV δϵ

dt
= V δϵ [(α∗(t) + δϵ)− (β∗(t)− δϵ)V

δϵ ], V δϵ(0) = V δϵ(T );

and
lim
r→∞

Uδϵ(t, r) = Vδϵ(t) uniformly for t ∈ [0, T ],

where Vδϵ(t) is the unique positive solution of

dVδϵ
dt

= Vδϵ [(α∗(t)− δϵ)− (β∗(t) + δϵ)Vδϵ ], Vδϵ(0) = Vδϵ(T ).

Thus, the monotonicity of U δϵ(t, ·) implies that we can find R̂ϵ
1 > 0 such that for r ≥ R̂ϵ

1,

U δϵ(t, r) ≤ V δϵ(t) ∀t ∈ R
and

Uδϵ(t, r) ≥ Vδϵ(t)− ϵ ∀t ∈ R.
It follows that, if

0 ≤ r ≤ [c∗(µ)− ϵ]t and t ≥ max

{
2

ϵ
R̂ϵ

1, Tϵ

}
,

then
u(t+ T δϵ , r +Rδϵ

1 ) ≤ (1− δϵ)
−2U δϵ(t, ξ(t)− r) ≤ (1− ϵ)−2V δϵ(t),

and
u(t+ T̃ δϵ , r + R̃δϵ

1 ) ≥ (1− δϵ)
2Uδϵ(t, η(t)− r) ≥ (1− ϵ)2[Vδϵ(t)− ϵ].

Without loss of generality, we may assume that T δϵ and T̃ δϵ are both integer multiples of T .
Thus, from the above inequalities we obtain

(4.36) (1− ϵ)2[Vδϵ(t)− ϵ] ≤ u(t, r) ≤ (1− ϵ)−2V δϵ(t)

if

t ≥ 2

ϵ
R̂ϵ

1 +max{Tϵ, T δϵ , T̃ δϵ}

and
0 ≤ r −Rδϵ

1 ≤ [c∗(µ)− ϵ]t, 0 ≤ r − R̃δϵ
1 ≤ [c∗(µ)− ϵ]t.

We now take

T ϵ
1 :=

1

ϵ
max{2R̂ϵ

1, R
δϵ
1 , R̃

δϵ
1 }+max{Tϵ, T δϵ , T̃ δϵ}, R̃ϵ := max{Rϵ, R

δϵ
1 , R̃

δϵ
1 },

and find that (4.36) holds if

t ≥ T ϵ
1 and R̃ϵ ≤ r ≤ [c∗(µ)− 2ϵ]t.

In view of (4.33), this implies that, for such t and r,

|u(t, r)− Û(t, r)| ≤ I(ϵ),
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where

I(ϵ) = ϵ+ max
t∈[0,T ]

{∣∣∣(1− ϵ)2(Vδϵ(t)− ϵ)− V (t)− ϵ
∣∣∣, ∣∣∣(1− ϵ)−2V δϵ(t)− V (t) + ϵ

∣∣∣}.
By (3.26),

lim
n→∞

u(t+ nT, r) = Û(t, r) uniformly for (t, r) ∈ [0, T ]× [0, R̃ϵ].

Hence we can find T ϵ
2 > T ϵ

1 such that

|u(t, r)− Û(t, r)| ≤ I(ϵ) for t ≥ T ϵ
2 and 0 ≤ r ≤ R̃ϵ.

So finally we find that for all t ≥ T ϵ
2 and 0 ≤ r ≤ [c∗(µ)− 2ϵ]t,

|u(t, r)− Û(t, r)| ≤ I(ϵ).

Since I(ϵ) → 0 as ϵ→ 0, this implies that (4.32) holds. The proof is now complete. �

We now use Theorem 4.6 to study the dynamical behavior of the solution of (1.1) when the
parameter µ is large. Let (uµ, hµ) be the unique solution of (1.1). Suppose that the assumptions
of Corollary 4.5 hold. Then for all large µ, spreading occurs and

lim
t→∞

hµ(t)

t
= k0(µ).

By Theorem 2.8, k0(µ) increases to 2
√
ad as µ increases to ∞. We have the following theorem

for the behavior of uµ.

Theorem 4.7. Suppose that the assumptions of Corollary 4.5 hold. Then for any given small
ϵ > 0, there exists a large µϵ > 0 such that

(4.37) lim
t→∞

max
r≤[2

√
ad−ϵ]t

|uµ(t, r)− Û(t, r)| = 0 for all µ ≥ µϵ.

Proof. For any given small ϵ > 0, since limµ→∞ k0(µ) = 2
√
ad, we can find µϵ ≥ µ0 such that

(4.38) k0(µ) > 2
√
ad− ϵ/2 ∀µ ≥ µϵ.

Moreover, by Theorem 4.6 for any µ ≥ µϵ,

(4.39) lim
t→∞

max
r≤[k0(µ)−ϵ/2]t

|uµ(t, r)− Û(t, r)| = 0.

On the other hand, for any µ ≥ µϵ, we see from (4.38) that if r ≤ [2
√
ad− ϵ]t, then

r ≤ [k0(µ)− ϵ/2]t.

Therefore, it follows from (4.39) that for any µ ≥ µϵ,

lim
t→∞

max
r≤[2

√
ad−ϵ]t

|uµ(t, r)− Û(t, r)| = 0.

�
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