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Abstract. We study nonlinear diffusion problems of the form ut = uxx+f(u) with free bound-
aries. Such problems may be used to describe the spreading of a biological or chemical species,
with the free boundaries representing the expanding fronts. For monostable, bistable and combus-
tion types of nonlinearities, Du and Lou [7] obtained rather complete description of the long-time
dynamical behavior of the problem and revealed sharp transition phenomena between spreading
(limt→∞ u(t, x) = 1) and vanishing(limt→∞ u(t, x) = 0). They also determined the asymptotic
spreading speed of the fronts by making use of semi-waves when spreading happens. In this
paper, we give a much sharper estimate for the spreading speed of the fronts than that in [7],
and describe how the solution approaches the semi-wave when spreading happens.

1. Introduction and Main Results

We are interested in obtaining sharp estimates for the spreading speed determined by the
following free boundary problem:

ut − uxx = f(u), t > 0, g(t) < x < h(t),
u(t, g(t)) = u(t, h(t)) = 0, t > 0,
g′(t) = −µux(t, g(t)) t > 0,
h′(t) = −µux(t, h(t)), t > 0,
−g(0) = h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0,

(1.1)

where x = h(t) and x = g(t) are the moving boundaries to be determined together with u(t, x),
µ is a given positive constant, f : [0,∞) → R is C1, f(0) = 0 and is of monotstable, or bistable,
or of combustion type. The initial function u0 belongs to X (h0) for some h0 > 0, where

X (h0) := {ϕ ∈ C2[−h0, h0] : ϕ(−h0) = ϕ(h0) = 0, ϕ′(−h0) > 0,
ϕ′(h0) < 0, ϕ(x) > 0 in (−h0, h0)}.

For any h0 > 0 and u0 ∈ X (h0), a triple (u(t, x), g(t), h(t)) is a (classical) solution to (1.1) for
0 < t ≤ T if it belongs to C1,2(GT )×C1[0, T ]×C1[0, T ] and all the identities in (1.1) are satisfied
pointwisely, where

GT := {(t, x)|t ∈ (0, T ], x ∈ [g(t), h(t)]}.

Problem (1.1) with f(u) = au−bu2 was introduced by Du and Lin [6] to describe the spreading
of a new or invasive species. The free boundaries x = g(t) and x = h(t) represent the spreading
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fronts of the population whose density is represented by u(t, x). The results in [6] were extended
by Du and Guo [5] to higher dimensions in a radially symmetric setting. A deduction of the free
boundary condition based on ecological assumptions can be found in [4].

Problem (1.1) with a rather general f(u) was recently studied by Du and Lou [7]. In particular,
if f(u) is monostable, or bistable, or of combustion type, it was shown in [7] that (1.1) has a
unique solution which is defined for all t > 0, and as t → ∞, the interval (g(t), h(t)) converges
either to a finite interval (g∞, h∞), or to (−∞,+∞). Moreover, in the former case, u(t, x) → 0
uniformly in x, while in the latter case, u(t, x) → 1 locally uniformly in x ∈ (−∞,+∞) (except
for a non-generic transition case when f is of bistable or combustion type). The situation that

u → 0 and (g, h) → (g∞, h∞)

is called the vanishing case, and

u → 1 and (g, h) → (−∞,+∞)

is called the spreading case.
When spreading happens, it is shown in [7] that there exists c∗ > 0 such that

lim
t→∞

−g(t)

t
= lim

t→∞

h(t)

t
= c∗.

The number c∗ is therefore called the asymptotic spreading speed determined by (1.1).
The main purpose of this paper is to obtain a much better estimate for g(t) and h(t) for large

t when spreading happens, and at the same time obtain a much better understanding of the
behavior of u(t, x) as t → ∞.

Before describing our main results, let us be more precise about the three types of nonlinearities
of f mentioned above:

(fM) monostable case, (fB) bistable case, (fC) combustion case.

In the monostable case (fM), we assume that f is C1 and it satisfies

f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0, (1− u)f(u) > 0 for u > 0, u ̸= 1.

A typical example is f(u) = u(1− u).
In the bistable case (fB), we assume that f is C1 and it satisfies{

f(0) = f(θ) = f(1) = 0,
f(u) < 0 in (0, θ), f(u) > 0 in (θ, 1), f(u) < 0 in (1,∞),

for some θ ∈ (0, 1), f ′(0) < 0, f ′(1) < 0 and∫ 1

0
f(s)ds > 0.

A typical example is f(u) = u(u− θ)(1− u) with θ ∈
(
0, 12

)
.

In the combustion case (fC), we assume that f is C1 and it satisfies

f(u) = 0 in [0, θ], f(u) > 0 in (θ, 1), f ′(1) < 0, f(u) < 0 in [1,∞)

for some θ ∈ (0, 1), and there exists a small δ0 > 0 such that

f(u) is nondecreasing in (θ, θ + δ0).

The asymptotic spreading speed c∗ mentioned above is determined by the following problem,{
q′′ − cq′ + f(q) = 0 in (0,∞),
q(0) = 0, q(∞) = 1, q(z) > 0 in (0,∞).

(1.2)
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Proposition 1.1 (Proposition 1.8 and Theorem 6.2 of [7]). Suppose that f is of (fM), or (fB),
or (fC) type. Then for any µ > 0 there exists a unique c∗ = c∗µ > 0 and a unique solution qc∗ to

(1.2) with c = c∗ such that q′c∗(0) =
c∗

µ .

We remark that this function qc∗ is shown in [7] to satisfy q′c∗(z) > 0 for z ≥ 0. We call qc∗ a
semi-wave with speed c∗, since the function v(t, x) := qc∗(c

∗t− x) satisfies{
vt = vxx + f(v) for t ∈ R1, x < c∗t,
v(t, c∗t) = 0, vx(t, c

∗t) = c∗, v(t,−∞) = 1.

Our main result is the following theorem.

Theorem 1.2. Assume that f is of (fM), or (fB), or (fC) type and (u, g, h) is the unique solution
to (1.1) for which spreading happens. Let (c∗, qc∗) be given by Proposition 1.1. Then there exist

Ĥ, Ĝ ∈ R such that

lim
t→∞

(h(t)− c∗t− Ĥ) = 0, lim
t→∞

h′(t) = c∗,

lim
t→∞

(g(t) + c∗t− Ĝ) = 0, lim
t→∞

g′(t) = −c∗,

and

lim
t→∞

sup
x∈[0, h(t)]

|u(t, x)− qc∗(h(t)− x)| = 0,(1.3)

lim
t→∞

sup
x∈[g(t), 0]

|u(t, x)− qc∗(x− g(t))| = 0.(1.4)

We would like to remark that while problem (1.1) is relatively new, the corresponding Cauchy
problem {

ut = uxx + f(u), x ∈ R1, t > 0,
u(0, x) = u0(x), x ∈ R1(1.5)

has a long history and has been extensively studied. For example, the classical paper of Aronson
and Weinberger [1] contains a systematic investigation of this problem (and [2] contains its
higher dimensional extension). Various sufficient conditions for limt→∞ u(t, x) = 1 (“spreading”
or “propagation”) and for limt→∞ u(t, x) = 0 (“vanishing” or “extinction”) are known, and when
u0 is nonnegative and has compact support, the way u(t, x) approaches 1 as t → ∞ has been used
to describe the spreading of a (biological or chemical) species, which is characterized by certain
travelling waves, and the speed of these traveling waves determines the asymptotic spreading
speed of the species; see for example [1, 2, 8, 9, 11, 12, 14]. The relationship between the
spreading speed determined by (1.1) and that determined by (1.5) is given in Theorem 6.2 of [7].

We remark that at the level of accuracy for the spreading speed considered here, the theory
for the free boundary model (1.1) and that for the Cauchy problem (1.5) exhibit some sharp
differences. While all three basic cases (fM), (fB) and (fC) can by covered in a unified fashion for
the free boundary model (see Theorem 1.2 above), this is not the case for the Cauchy problem.

A classical result of Fife and McLeod [8] shows that for f of type (fB), and for appropriate
initial function u0, the solution u to (1.5) satisfies

|u(t, x)− U(x− ct− x0)| < Ke−ωt for x < 0,

|u(t, x)− U(−x− ct− x1)| < Ke−ωt for x > 0.

Here U(x) is the unique traveling wave solution (with speed c, and U(0) = 1/2), x0, x1 ∈ R, and
K, ω are suitable positive constants. More precisely, (U, c) is the unique solution of

(1.6) U ′′ − cU ′ + f(U) = 0 in R, U(−∞) = 1, U(+∞) = 0, U(0) = 1/2.
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In the monostable case, significant differences arise. First, for such f , (1.6) has multiple
solutions: There exists c0 > 0 such that (1.6) has a unique solution Uc for every c ≥ c0, and it
has no solution for c < c0 (see [2]). Second, there is an essential difference on how the solution
of (1.5) approaches the traveling waves: When (fM) holds and furthermore f(u) ≤ f ′(0)u for
u ∈ (0, 1), there exist a constant C > 0 and functions ξ± : R → [−C,C] such that

lim
t→∞

∥u(t, ·)− Uc0(· − c0t+
3

c0
ln t+ ξ+(t))∥L∞(R+) = 0,

and

lim
t→∞

∥u(t, ·)− Uc0(c0t−
3

c0
ln t− ξ−(t)− ·)∥L∞(R−) = 0.

The term 3
c0
ln t is known as the logarithmic Bramson correction; see [3, 10, 13, 14] for more

details.

2. Some Basic and Known Results

In this section we give some basic and known results which will be frequently used later. The
first two results are for f(u) more general than the three types of nonlinearities in Theorem 1.2.
They only require

(2.1) f is C1 and f(0) = 0.

Lemma 2.1 (Lemma 2.2 of [7]). Suppose that (2.1) holds, T ∈ (0,∞), g, h ∈ C1[0, T ], u ∈
C(DT ) ∩ C1,2(DT ) with DT = {(t, x) ∈ R2 : 0 < t ≤ T, g(t) < x < h(t)}, and

ut ≥ uxx + f(u), 0 < t ≤ T, g(t) < x < h(t),
u ≥ u, 0 < t ≤ T, x = g(t),

u = 0, h
′
(t) ≥ −µux, 0 < t ≤ T, x = h(t).

If

g(t) ≥ g(t) in [0, T ], h0 ≤ h(0), u0(x) ≤ u(0, x) in [g(0), h0],

where (u, g, h) is a solution to (1.1), then

h(t) ≤ h(t) in (0, T ],

u(t, x) ≤ u(t, x) for t ∈ (0, T ] and g(t) < x < h(t).

The function u, or the triple (u, g, h) in Lemma 2.1 is usually called an upper solution of
(1.1). We can define a lower solution by reversing the inequalities in the obvious places. There
is a symmetric version of Lemma 2.1, where the conditions on the left and right boundaries are
interchanged. We also have corresponding comparison results for lower solutions in each case.

Lemma 2.2 (Lemma 2.6 of [7]). Suppose that (2.1) holds, (u, g, h) is a solution to (1.1) defined
for t ∈ [0, T0) for some T0 ∈ (0,∞), and there exists C1 > 0 such that

u(t, x) ≤ C1 for t ∈ [0, T0) and x ∈ [g(t), h(t)].

Then there exists C2 depending on C1 but independent of T0 such that

−g′(t), h′(t) ∈ (0, C2] for t ∈ (0, T0).

Moreover, the solution can be extended to some interval (0, T ) with T > T0.
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Lemma 2.3 (Lemma 6.5 of [7]). Suppose that f is of (fM), or (fB), or (fC) type. Let (u, g, h)
be the unique solution of (1.1) for which spreading happens. For any c ∈ (0, c∗) there exist
δ ∈ (0,−f ′(1)), T ∗ > 0 and M > 0 such that for t ≥ T ∗,

[g(t), h(t)] ⊃ [−ct, ct],(2.2)

u(t, x) ≥ 1−Me−δt for x ∈ [−ct, ct],(2.3)

u(t, x) ≤ 1 +Me−δt for x ∈ [g(t), h(t)].(2.4)

3. Proof of Theorem 1.2

Throughout this section we assume that f is of type (fM), or (fB), or (fC) and (u, g, h) is
a solution to (1.1) for which spreading happens. Our proof is divided into three parts, each
consisting of a subsection. In part 1, we show that |g(t) + c∗t| and |h(t)− c∗t| are both bounded
for all t > 0. This is achieved by constructing suitable upper and lower solutions. In part 2, we
show that along any sequence tn → ∞, there is a subsequence {t̃n} and a constant Ĥ ∈ R such

that h(t̃n + ·) − c∗(t̃n + ·) → Ĥ in C1
loc(R) and u(t̃n, z + c∗t̃n) → qc∗(Ĥ − z). This is a crucial

technical step and relies on an energy argument and various parabolic estimates. The proof of
Theorem 1.2 is completed in part 3, by constructing finer upper and lower solutions based on the
result in part 2. Our approach in parts 2 and 3 is motivated by the method of Fife and McLeod
[8].

3.1. Bound for |g(t) + c∗t| and |h(t)− c∗t|.

Proposition 3.1. There exists C > 0 such that

|g(t) + c∗t|, |h(t)− c∗t| ≤ C for all t > 0.(3.1)

We will show (3.1) for h(t) only, since the proof for g(t) is similar. Our arguments are based
on the construction of suitable upper and lower solutions.

Fix c ∈ (0, c∗). From Lemma 2.3, there exist δ ∈ (0,−f ′(1)), M > 0 and T ∗ > 0 such that for
t ≥ T ∗, (2.2), (2.3) and (2.4) hold. Since 0 < δ < −f ′(1) we can find some η > 0 such that{

δ ≤ −f ′(u) for 1− η ≤ u ≤ 1 + η,
f(u) ≥ 0 for 1− η ≤ u ≤ 1.

(3.2)

By enlarging T ∗ we may assume that

Me−δT ∗
< η/2.

We take M ′ > M satisfying

M ′e−δT ∗ ≤ η.

Since qc∗(z) → 1 as z → 1, we can find X0 > 0 such that

(1 +M ′e−δT ∗
)qc∗(X0) ≥ 1 +Me−δT ∗

.(3.3)

We now construct an upper solution (u, g, h) to (1.1) as follows:

g(t) := g(t)

h(t) := c∗(t− T ∗) + σM ′(e−δT ∗ − e−δt) + h(T ∗) +X0,

u(t, x) := (1 +M ′e−δt)qc∗(h(t)− x),

where σ > 0 is a positive constant to be determined.
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Lemma 3.2. For sufficiently large σ > 0, u(t, x) and h(t) satisfy

u(t, x) ≤ u(t, x) for x ∈ [g(t), h(t)], t ≥ T ∗,

h(t) ≤ h(t) for t ≥ T ∗.

Proof. We check that (u, g, h) is an upper solution for t > T ∗, that is,

ut − uxx ≥ f(u) for t > T ∗, g(t) < x < h(t),(3.4)

u ≥ u for t ≥ T ∗, x = g(t),(3.5)

u = 0, h
′
(t) ≥ −µux(t, x) for t ≥ T ∗, x = h(t),(3.6)

h(T ∗) ≤ h(T ∗), u(T ∗, x) ≤ u(T ∗, x) for x ∈ [g(T ∗), h(T ∗)].(3.7)

Clearly u satisfies (3.5) since u(t, g(t)) = u(t, g(t)) = 0. We now show (3.6). It is obvious that u
satisfies u(t, h(t)) = 0. Direct computations yield that

h
′
(t) = c∗ + σM ′δe−δt

and

−µux(t, h(t)) = µ(1 +M ′e−δt)q′c∗(0) = µ(1 +M ′e−δt)
c∗

µ
= (1 +M ′e−δt)c∗.

Hence (3.6) holds for σ > 0 satisfying c∗ ≤ σδ.
Next we show (3.7). From the definition of h we see that h(T ∗) ≤ h(T ∗). By (2.4) and the

choice of X0 in (3.3) we have

u(T ∗, x) = (1 +M ′e−δT ∗
)qc∗(h(T

∗)− x)

= (1 +M ′e−δT ∗
)qc∗(h(T

∗) +X0 − x)

≥ (1 +M ′e−δT ∗
)qc∗(X0)

≥ 1 +Me−δT ∗ ≥ u(T ∗, x)

for x ∈ [g(T ∗), h(T ∗)]. Thus (3.7) holds.
Finally we show that (3.4) holds for sufficiently large σ > 0. Put z = h(t)− x. Since

ut = −δM ′e−δtqc∗(z) + (1 +M ′e−δt)h
′
(t)q′c∗(z)

= −δM ′e−δtqc∗(z) + (1 +M ′e−δt)(c∗ + σM ′δe−δt)q′c∗(z),

and

uxx = (1 +M ′e−δt)q′′c∗(z),

we have

ut − uxx − f(u)

=− δM ′e−δtqc∗(z) + (1 +M ′e−δt)(c∗ + σM ′δe−δt)q′c∗(z)

− (1 +M ′e−δt)q′′c∗(z)− f((1 +M ′e−δt)qc∗(z))

=− δM ′e−δtqc∗(z) + (1 +M ′e−δt)
{
−q′′c∗(z) + c∗q′c∗(z)

}
+ σM ′δe−δt(1 +M ′e−δt)q′c∗(z)− f((1 +M ′e−δt)qc∗(z))

=− δM ′e−δtqc∗(z) + σM ′δe−δt(1 +M ′e−δt)q′c∗(z)

+ (1 +M ′e−δt)f(qc∗(z))− f((1 +M ′e−δt)qc∗(z)).
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Now we consider the term (1 +M ′e−δt)f(qc∗(z))− f((1 +M ′e−δt)qc∗(z)). Denote

F (ξ, u) := (1 + ξ)f(u)− f((1 + ξ)u).

The mean value theorem yields

F (ξ, u) = ξf(u) + f(u)− f((1 + ξ)u) = ξf(u)− ξf ′(u+ θξ,uξu)u

for some θξ,u ∈ (0, 1). Since qc∗(z) → 1 as z → ∞, there exists zη > 0 such that qc∗(z) ≥ 1 − η
for z ≥ zη.

For h(t)− x ≥ zη, we have

ut − uxx − f(u)

= − δM ′e−δtqc∗(z) + σM ′δe−δt(1 +M ′e−δt)q′c∗(z) + F (M ′e−δt, qc∗(z))

= σM ′δe−δt(1 +M ′e−δt)q′c∗(z) +M ′e−δtf(qc∗(z))

+M ′e−δtqc∗(z)
{
− f ′(qc∗(z) + θ′M ′e−δtqc∗(z)

)
− δ

}
≥ 0,

where θ′ = θ′(t, z) ∈ (0, 1), and we have used M ′e−δt ≤ η for t ≥ T ∗ and (3.2).
On the other hand for 0 ≤ h(t)− x ≤ zη, we obtain

ut − uxx − f(u)

= M ′e−δtf(qc∗(z)) + σM ′δe−δt(1 +M ′e−δt)q′c∗(z)

+M ′e−δt
{
−f ′(qc∗(z) + θ′M ′e−δtqc∗(z)

)
− δ

}
qc∗(z)

≥ M ′e−δt min
0≤s≤1

f(s) + σδM ′e−δtQη −M ′e−δt

(
max

0≤s≤1+η
f ′(s) + δ

)
= M ′e−δt

{
min
0≤s≤1

f(s)− max
0≤s≤1+η

f ′(s)− δ + σδQη

}
,

where Qη := min0≤z≤zη q
′
c∗(z) > 0. Thus ut − uxx − f(u) ≥ 0 for sufficiently large σ > 0.

We may now apply Lemma 2.1 to conclude that

u(t, x) ≤ u(t, x), h(t) ≤ h(t) for t ≥ T ∗ and x ∈ [g(t), h(t)].

This completes the proof of the lemma. �

Next we bound u and h from below by constructing a lower solution (u, g, h) to (1.1). For η

given in (3.2), we define constants ζη ∈ (0,∞) and Q′
η as follows:

qc∗(ζη) = 1− η

2
, Q′

η = min
0≤ζ≤ζη

q′c∗(ζ) > 0.

Then we take T ∗∗ > T ∗ so that

Me−δt ≤ η

2
for t ≥ T ∗∗.(3.8)

Let c, M and δ be as before. We now define g(t), h(t) and u(t, x) as follows:

g(t) = −ct,

h(t) = c∗(t− T ∗∗) + cT ∗∗ − σM(e−δT ∗∗ − e−δt),

u(t, x) = (1−Me−δt)qc∗(h(t)− x).
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Lemma 3.3. For sufficiently large σ > 0, u(t, x) and h(t) satisfy

u(t, x) ≤ u(t, x) for x ∈ [g(t), h(t)], t ≥ T ∗∗,

h(t) ≤ h(t) for t ≥ T ∗∗.

Proof. We will check that (u, g, h) is a lower solution to (1.1) for t ≥ T ∗∗. First, from (2.3) we
can easily see that u ≤ u at x = g(t) since for t ≥ T ∗∗,

u(t, g(t)) = u(t,−ct) ≤ 1−Me−δt ≤ u(t,−ct) = u(t, g(t)).

Next we check that h and u satisfy the required conditions at x = h(t). It is obvious that
u(t, h(t)) = 0. Direct computations yield that

h′(t) = c∗ − σMδe−δt

and

−µux(t, h(t)) = µ(1−Me−δt)q′c∗(0) = c∗ − c∗Me−δt,

from which we see h′(t) ≤ −µux(t, h(t)) for σ > 0 satisfying c∗ ≤ σδ.
By (2.2) and (2.3),

h(T ∗∗) = cT ∗∗ ≤ h(T ∗∗)

and

u(T ∗∗, x) ≤ 1−Me−δT ∗∗ ≤ u(T ∗∗, x) for x ∈
[
g(T ∗∗), h(T ∗∗)

]
.

Finally we will prove ut − uxx − f(u) ≤ 0 for t ≥ T ∗∗. Put ζ = h(t)− x. Since

ut = δMe−δtqc∗(ζ) + (1−Me−δt)h′(t)q′c∗(ζ),

uxx = (1−Me−δt)q′′c∗(ζ),

we have

ut − uxx − f(u)

= δMe−δtqc∗(ζ)− σMδe−δt(1−Me−δt)q′c∗(ζ)

+ (1−Me−δt)f(qc∗(ζ))− f((1−Me−δt)qc∗(ζ))

= δMe−δtqc∗(ζ)− σMδe−δt(1−Me−δt)q′c∗(ζ) + F (−Me−δt, qc∗(ζ)).

For ζ ≥ ζη we can apply the mean value theorem to F (ξ, u) as before to obtain

ut − uxx − f(u)

= δMe−δtqc∗(ζ)− σMδe−δt(1−Me−δt)q′c∗(ζ)

−Me−δt
{
f(qc∗(ζ))− f ′(qc∗(ζ)− θ′′Me−δtqc∗(ζ)

)
qc∗(ζ)

}
= −Me−δtf(qc∗(ζ))− σMδe−δt(1−Me−δt)q′c∗(ζ)

+Me−δt
{
f ′(qc∗(ζ)− θ′′Me−δtqc∗(ζ)

)
+ δ

}
qc∗(ζ) ≥ 0,

for some θ′′ = θ′′(t, z) ∈ (0, 1). Here we have used the fact that for ζ ≥ ζη, due to (3.8),

1 ≥ qc∗(ζ)− θ′′Me−δtqc∗(ζ) ≥ qc∗(ζ)−Me−δtqc∗(ζ) ≥ 1− η,

and hence, by (3.2), f ′(qc∗(ζ)− θ′′Me−δtqc∗(ζ)
)
+ δ ≤ 0.
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For 0 ≤ ζ ≤ ζη, we obtain

ut − uxx − f(u)

= δMe−δtqc∗(ζ)− σMδe−δt(1−M ′e−δt)q′c∗(ζ)

−Me−δt
{
f(qc∗(ζ))− f ′(qc∗(ζ)− θ′′Me−δtqc∗(ζ)

)
qc∗(ζ)

}
= −Me−δtf(qc∗(ζ))− σMδe−δt(1−Me−δt)q′c∗(ζ)

+Me−δt
{
f ′(qc∗(ζ)− θ′′Me−δtqc∗(ζ)

)
+ δ

}
qc∗(ζ)

≤ −Me−δt min
0≤s≤1

f(s)− σMδe−δt(1−Me−δt)q′c∗(ζ)

+Me−δt

(
max
0≤s≤1

f ′(s) + δ

)
≤ Me−δt(1−Me−δt)

{
−min0≤s≤1 f(s) + max0≤s≤1 f

′(s) + δ

1−Me−δt
− σδQ′

η

}
≤ Me−δt(1−Me−δt)

{
−min0≤s≤1 f(s) + max0≤s≤1 f

′(s) + δ

1−Me−δT ∗∗ − σδQ′
η

}
≤ 0,

by taking σ > 0 sufficiently large. This completes the proof of the lemma. �

Proof of Proposition 3.1. From Lemmas 3.2 and 3.3, for t ≥ T ∗∗ we have

(c− c∗)T ∗∗ − σM(e−δT ∗∗ − e−δt) ≤ h(t)− c∗t

≤ −c∗T ∗ + σM ′(e−δT ∗ − e−δt) + h(T ∗) +X0.

Hence if we define

C := max
{
− c∗T ∗ + σM ′e−δT ∗

+ h(T ∗) +X0,

(c∗ − c)T ∗∗ + σMe−δT ∗∗
, max
t∈[0,T ∗∗]

|h(t)− c∗t|
}
,

then

|h(t)− c∗t| ≤ C for all t > 0.

This completes the proof of Proposition 3.1. �

3.2. Convergence along a subsequence of tn → ∞. Set

H(t) := h(t)− c∗t

and note that H and H ′ are bounded on [0,∞) by Proposition 3.1 and Lemma 2.2. We have the
following technical result.

Proposition 3.4. For any sequence {tn} ⊂ R satisfying limn→∞ tn = ∞, there exists a sub-

sequence {t̃n} ⊂ {tn} such that limn→∞H(t̃n + ·) = Ĥ in C1
loc(R) for some constant Ĥ ∈ R,

and

lim
n→∞

sup
z∈[−(c+c∗)t̃n,Ĥ]

|v(t̃n, z)− qc∗(Ĥ − z)| = 0.

Here we have used the convention that qc∗(z) = 0 for z ≤ 0 and v(t, z) = 0 for z ≥ H(t).
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We will need the following energy functional

E(t) :=

∫ h(t)−c∗t

g(t)−c∗t
ec

∗z

{
1

2
v2z − F (v)

}
dz,

where

F (v) =

∫ v

0
f(s)ds.

Lemma 3.5. The functional E(t) is bounded from below and satisfies

E′(t) = −h′(t)2

2µ2
(h′(t)− c∗)ec

∗(h(t)−c∗t) +
g′(t)2

2µ2
(g′(t)− c∗)ec

∗(g(t)−c∗t)

−
∫ h(t)−c∗t

g(t)−c∗t
ec

∗z {vzz + c∗vz + f(v)}2 dz.

Proof. We first observe that E(t) is bounded from below since H(t) and F (v(t, z)) are bounded,
and limt→∞(g(t)− c∗t) = −∞.

Direct calculation yields that

E′(t) = (h′(t)− c∗)ec
∗(h(t)−c∗t)

{
1

2
v2z(t, h(t)− c∗t)− F (v(t, h(t)− c∗t))

}
− (g′(t)− c∗)ec

∗(g(t)−c∗t)

{
1

2
v2z(t, g(t)− c∗t)− F (v(t, g(t)− c∗t))

}
+

∫ h(t)−c∗t

g(t)−c∗t
ec

∗z {vzvzt − f(v)vt} dz

= (h′(t)− c∗)ec
∗(h(t)−c∗t) · h

′(t)2

2µ2
− (g′(t)− c∗)ec

∗(g(t)−c∗t) · g
′(t)2

2µ2

+

∫ h(t)−c∗t

g(t)−c∗t
ec

∗z
{
vzvzt − f(v)vt

}
dz.

Let us consider the term
∫ h(t)−c∗t
g(t)−c∗t ec

∗zvzvztdz. Integration by parts yields that∫ h(t)−c∗t

g(t)−c∗t
ec

∗zvzvztdz

=
[
ec

∗zvzvt

]h(t)−c∗t

g(t)−c∗t
−

∫ h(t)−c∗t

g(t)−c∗t
vt
(
ec

∗zvz
)
z
dz

= ec
∗(h(t)−c∗t)vt(t, h(t)− c∗t)vz(t, h(t)− c∗t)

− ec
∗(g(t)−c∗t)vt(t, g(t)− c∗t)vz(t, g(t)− c∗t)−

∫ h(t)−c∗t

g(t)−c∗t
ec

∗z
(
vzz + c∗vz

)
vtdz.

Differentiating the identities v(t, h(t)− c∗t) = 0 and v(t, g(t)− c∗t) = 0 in t we obtain

vt(t, h(t)− c∗t) + (h′(t)− c∗)vz(t, h(t)− c∗t) = 0,

vt(t, g(t)− c∗t) + (g′(t)− c∗)vz(t, g(t)− c∗t) = 0.
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It follows that

vt(t, h(t)− c∗t)vz(t, h(t)− c∗t) = −(h′(t)− c∗)v2z(t, h(t)− c∗t) = −h′(t)2

µ2
(h′(t)− c∗),

vt(t, g(t)− c∗t)vz(t, g(t)− c∗t) = −(g′(t)− c∗)v2z(t, g(t)− c∗t) = −g′(t)2

µ2
(g′(t)− c∗).

Using these identities we obtain∫ h(t)−c∗t

g(t)−c∗t
ec

∗zvzvztdz

= − ec
∗(h(t)−c∗t)h

′(t)2

µ2
(h′(t)− c∗) + ec

∗(g(t)−c∗t) g
′(t)2

µ2
(g′(t)− c∗)

−
∫ h(t)−c∗t

g(t)−c∗t
ec

∗zvt
(
vzz + c∗vz

)
dz.

Hence

E′(t) =− h′(t)2

2µ2
(h′(t)− c∗)ec

∗(h(t)−c∗t) +
g′(t)2

2µ2
(g′(t)− c∗)ec

∗(g(t)−c∗t)

−
∫ h(t)−c∗t

g(t)−c∗t
ec

∗zvt
{
vzz + c∗vz + f(v)

}
dz

=− h′(t)2

2µ2
(h′(t)− c∗)ec

∗(h(t)−c∗t) +
g′(t)2

2µ2
(g′(t)− c∗)ec

∗(g(t)−c∗t)

−
∫ h(t)−c∗t

g(t)−c∗t
ec

∗z
{
vzz + c∗vz + f(v)

}2
dz.

This completes the proof. �

Let us define

E0(t) :=
1

2µ2

∫ t

0
ec

∗(h(s)−c∗s)h′(s)2(h′(s)− c∗)ds

and

Ẽ(t) := E(t) + E0(t).

Lemma 3.6. limt→∞ Ẽ′(t) = 0.

Proof. It is easily seen that Ẽ(t) satisfies

Ẽ′(t) =
g′(t)2

2µ2
(g′(t)− c∗)ec

∗(g(t)−c∗t)

−
∫ h(t)−c∗t

g(t)−c∗t
ec

∗z{vzz + c∗vz + f(v)}2dz ≤ 0.

Since

h′(s)2[h′(s)− c∗]− (c∗)2[h′(s)− c∗] = [h′(s) + c∗][h′(s)− c∗]2 ≥ 0,
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we have

E0(t) ≥
1

2µ2

∫ t

0
ec

∗(h(s)−c∗s)(c∗)2(h′(s)− c∗)ds

=
c∗

2µ2

∫ t

0

d

ds

{
ec

∗(h(s)−c∗s)
}
ds

=
c∗

2µ2

(
ec

∗H(t) − ec
∗h0

)
≥ −C0

for some C0 > 0 independent of t.
Now Ẽ(t) = E(t) + E0(t) is bounded from below with Ẽ′(t) ≤ 0. Hence

lim
t→∞

Ẽ(t) = E∞ > −∞.

If Ẽ′(t) is uniformly continuous, then we necessarily have limt→∞ Ẽ′(t) = 0, for otherwise

there exist a sequence {tn} with limn→∞ tn = ∞ and ε > 0 such that Ẽ′(tn) ≤ −ε. Since Ẽ′(t)

is uniformly continuous Ẽ′(t) ≤ −ε/2 holds for t ∈ [tn, tn + δ] with some δ > 0 independent of n.
Then we have, by passing to a subsequence of {tn} if necessary,

Ẽ(∞)− Ẽ(t1) =

∫ ∞

t1

Ẽ′(t)dt

≤
∫
∪∞
n=1[tn,tn+δ]

Ẽ′(t)dt = −∞.

This contradiction confirms our claim.
Moreover, since

lim
t→∞

g′(t)2

2µ2
(g′(t)− c∗)ec

∗(g(t)−c∗t) = 0,

to show limt→∞ Ẽ′(t) = 0, by the above discussion, we actually only have to show that the second

term in the expression of Ẽ′(t) is uniformly continuous in t for all large t, and this will be the
case if for any L > 0, v, vz and vzz are uniformly continuous in t for z ∈ [−L, h(t)− c∗t].

We first consider these functions over the domain [t0−1, t0+1]×[−L−1, h(t0)−c∗t0−η/3] ⊂ R2

for t0 ∈ R, L > 0 and η > 0. Since ∥v∥∞ and ∥f(v)∥L∞ are bounded, we can apply the parabolic
Lp estimate to obtain

∥v∥
W 1,2

p ([t0−1/2,t0+1]×[−L−1/2,h(t0)−c∗t0−η/2])
≤ C

for some C > 0 which does not depend on t0. Here we have used the fact that H(t0) = h(t0)−c∗t0
has a bound independent of t0 > 0. By Sobolev imbedding we have

∥v∥
C

1+γ
2 ,1+γ([t0−1/2,t0+1]×[−L−1/2,h(t0)−c∗t0−η/2])

≤ C ′.

Using this and Schauder estimate we obtain

∥v∥
C1+α

2 ,2+α([t0,t0+1]×[−L,h(t0)−c∗t−η])
≤ C ′′.(3.9)

for some C ′′ > 0 which does not depend on t0.
Next we consider the domain {(t, x)|t ∈ [t0 − 1, t0 + 1], x ∈ [h(t) − c∗t − 2L, h(t) − c∗t]} for

L > 0. We first straighten the boundary z = H(t) = h(t)− c∗t. Let

z = y +H(t) and w(t, y) = v(t, y +H(t)).
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Then w satisfies wt = wyy + (H ′(t) + c∗)wy + f(w), t > 0, y ∈ (g(t)− c∗t−H(t), 0),
w(t, 0) = 0, t > 0,
H ′(t) = −µwy(t, 0) + c∗, t > 0.

(3.10)

Since ∥w∥∞, ∥f(w)∥L∞ and ∥H ′∥L∞ are bounded we can apply the parabolic Lp estimate to
obtain

∥w∥
W 1,2

p ([t0−1,t0+1]×[−3L/2,0])
≤ C

for some C > 0 which does not depend on t0. By Sobolev imbedding we have

∥w∥
C

1+γ
2 ,1+γ([t0−1/2,t0+1]×[−3L/2,0])

≤ C ′

for some γ ∈ (0, 1) and C ′ > 0 which do not depend on t0. This implies that H ′ and f(w) are
Hölder continuous and by the parabolic Schauder estimate we obtain

∥w∥
C1+α

2 ,2+α([t0,t0+1]×[−L,0])
≤ C ′′(3.11)

for some α ∈ (0, 1) and C ′′ > 0 which do not depend on t0.
From (3.9) and (3.11) we see that v, vz and vzz are uniformly continuous in t for z ∈ [−L, h(t)−

c∗t]. This completes the proof. �
Lemma 3.7. For any sequence {tn} satisfying limn→∞ tn = ∞ and any K > 0 there exists a

subsequence {t̃n} ⊂ {tn} such that limn→∞H(t̃n + ·) = Ĥ in C1
loc(R) for some constant Ĥ ∈ R,

and

lim
n→∞

sup
z∈[−K,Ĥ]

|v(t̃n, z)− qc∗(Ĥ − z)| = 0

Proof. Without loss of generality we assume that {tn} is an increasing sequence of positive num-
bers satisfying limn→∞ tn = ∞. Define

vn(t, z) = v(t+ tn, z), wn(t, y) = w(t+ tn, y),

Hn(t) = H(t+ tn), Gn(t) = g(t+ tn)− c∗(t+ tn)−Hn(t).

By (3.10) we have
∂wn

∂t
=

∂2wn

∂y2
+ (H ′

n(t) + c∗)
∂wn

∂y
+ f(wn), t > −tn, y ∈ (Gn(t), 0),

wn(t, 0) = 0, t > −tn,

H ′
n(t) = −µ

∂wn

∂y
(t, 0)− c∗, t > −tn.

By the same regularity consideration used to (3.10) above, {wn} is bounded in C1+α
2
,2+α([−R,R]×

[−R, 0]) for any R > 0. Hence H ′
n is uniformly bounded in Cα(I) for any bounded interval I ⊂ R,

and by passing to a subsequence, still dented by {tn}, we have

H ′
n → H̃ in Cα′

loc(R)

for some α′ ∈ (0, α). Similarly, subject to passing to a further subsequence,

(3.12) wn → ŵ in C
1+α′

2
,2+α′

loc (R× (−∞, 0]),

and ŵ satisfies  ŵt = ŵyy + (H̃(t) + c∗)ŵy + f(ŵ), t ∈ R, y < 0,
ŵ(t, 0) = 0, t ∈ R,
H̃(t) = −µŵy(t, 0)− c∗, t ∈ R.
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Since

Hn(t) = Hn(0) +

∫ t

0
H ′

n(s)ds

and H ′
n → H̃ in Cα′

loc(R), we obtain

Hn(t) → Ĥ(t) := H̃(0) +

∫ t

0
H̃(s)ds in C1,α′

loc (R).

Thus H̃(t) = Ĥ ′(t) and ŵy = ŵyy + (Ĥ ′(t) + c∗)ŵy + f(ŵ), t ∈ R, y < 0,
ŵ(t, 0) = 0, t ∈ R,
Ĥ ′(t) = −µŵy(t, 0)− c∗, t ∈ R.

Now we examine vn. It is easily checked that
∂vn
∂t

=
∂2vn
∂z2

+ c∗
∂vn
∂z

+ f(vn), t > −tn, z < Hn(t),

vn(t,Hn(t)) = 0, t > −tn,

H ′
n(t) = −µ

∂vn
∂z

(t,Hn(t))− c∗, t > −tn.

(3.13)

For any ε > 0 we consider (3.13) over

Ωε :=
{
(t, z) | t ∈

[
−ε−1, ε−1

]
, z ∈

[
−ε−1, Ĥ(t)− ε

]}
.

Applying the parabolic Schauder estimate we have by passing to a subsequence

vn → v̂ in C1+α′
2
,2+α′

(Ωε)

and v̂ satisfies

v̂t = v̂zz + c∗v̂z + f(v̂) in Ωε.

Since ε > 0 is arbitrary, by passing to a further subsequence we may assume vn → v̂ in

C
1+α′

2
,2+α′

loc (Ω0) with Ω0 = {(t, z) | t ∈ R, z < Ĥ(t)}.
Next we show v̂t ≡ 0 and v̂(t, z) ≡ v̂(z). By Lemma 3.6 we have

Ẽ′(t+ tn) =
g′(t+ tn)

2

2µ2
(g′(t+ tn)− c∗)ec

∗[g(t+tn)−c∗(t+tn)]

−
∫ H(t+tn)

g(t+tn)−c∗(t+tn)
ec

∗z{(vn)zz + c∗(vn)z + f(vn)}2dz → 0

as n → ∞. Since the first term on the right side of the above identity converges to 0, it follows
that for any K > 0 and ε > 0,

0 ≤
∫ Ĥ(t)−ε

−K
ec

∗z{v̂zz + c∗v̂z + f(v̂)}2dz

≤ lim
n→∞

∫ H(t+tn)

g(t+tn)−c∗(t+tn)
ec

∗z{(vn)zz + c∗(vn)z + f(vn)}2dz = 0.

Since ε,K > 0 are arbitrarily, we obtain

v̂zz + c∗v̂z + f(v̂) = 0 in Ω0.

Hence v̂t ≡ 0 and v̂(t, z) ≡ v̂(z).
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To determine the boundary condition of v̂ at z = Ĥ(t), we consider v̂ on{
(t, z) | t ∈ [−1/ε, 1/ε], z ∈ [Ĥ(t)− ε, Ĥ(t)]

}
.

We observe that

vn(t, z) = v(t+ tn, z) = w(t+ tn, z −H(t+ tn)) = wn(t, z −Hn(t)),

and by (3.12),

lim
n→∞

sup
z∈[Ĥ(t)−ε,Ĥ(t)]

|wn(t, z −Hn(t))− ŵ(t, z − Ĥ(t))| = 0

if we define wn(t, y) = 0 for y ≥ 0 and ŵ(t, y) = 0 for y ≥ 0. It follows that v̂(t, z) ≡ ŵ(t, z−Ĥ(t)).

Hence v̂(t, Ĥ(t)) = 0 and

Ĥ ′(t) = −µv̂z(t, Ĥ(t))− c∗, t ∈ R.

From 0 = v̂(t, Ĥ(t)) = v̂(Ĥ(t)) and the fact that v̂(z) > 0 for z < Ĥ(t) we obtain by the

Hopf lemma that v̂z(t, Ĥ(t)) = v̂z(Ĥ(t)) < 0. On the other hand, from 0 = v̂(Ĥ(t)) we deduce

0 = v̂z(Ĥ(t))Ĥ ′(t). Therefore Ĥ ′(t) ≡ 0 and Ĥ(t) ≡ Ĥ. It follows that c∗ = −µv̂z(Ĥ). Together
with

v̂zz + c∗v̂z + f(v̂) = 0 in (−∞, Ĥ), v̂(Ĥ) = 0,

this implies, by the uniqueness of qc∗ , that v̂(z) = qc∗(Ĥ − z). The proof is now complete. �

Proof of Proposition 3.4. By Lemmas 3.2 and 3.3 we have

(1−Me−δt)qc∗(h(t)− x) ≤ u(t, x) ≤ (1 +M ′e−δt)qc∗(h(t)− x)

for t ∈ [T ∗∗,∞) and x ∈ [−ct, h(t)], where we have assumed that qc∗(z) = 0 for z ≤ 0.
Since f ′(1) < 0, by standard argument we have

|1− qc∗(z)| ≤ Ce−βz for some C > 0 and β > 0.

Using this and the boundedness of the functions h(t)− c∗t and h(t)− c∗t, we easily see that there
exists some C ′ > 0 such that

v(t, z) := u(t, z + c∗t)

satisfies

|1− v(t, z)| ≤ C ′(eβz + e−δt)(3.14)

for t ∈ [T ∗∗,∞) and z ∈ [−(c+ c∗)t, h(t)− c∗t].
By (3.14) we have

|v(tn, z)− 1| ≤ C ′(eβz + e−δtn) for z ∈ [−(c+ c∗)tn,H(tn)].

Therefore, for any ε > 0, there exists K > 0 and T > 0 such that

sup
z∈[−(c+c∗)tn,−K]

|v(tn, z)− qc∗(Ĥ − z)| < ε

for tn > T . On the other hand from Lemma 3.7, for all large tn,

sup
z∈[−K,Ĥ]

|v(tn, z)− qc∗(Ĥ − z)| < ε

and

|h(tn)− c∗tn − Ĥ| < ε.(3.15)
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Hence we have

sup
z∈[−(c+c∗)tn,Ĥ]

|v(tn, z)− qc∗(Ĥ − z)| < ε(3.16)

for all large n. This completes the proof of the proposition. �

3.3. Completion of the proof of Theorem 1.2. With the help of Proposition 3.4, we are now
able to refine the upper and lower solutions used in proving Proposition 3.1, which will lead to
the required estimates in Theorem 1.2.

First we construct an upper solution. Take an arbitrary ε > 0, and fix tn such that (3.15),
(3.16) hold and e−δtn ≤ ε. From (3.16) and (3.15) we have

v(tn, z) ≤ qc∗(Ĥ − z) + ε for z ∈ [−(c+ c∗)tn, Ĥ],

H(tn) = h(tn)− c∗tn ≤ Ĥ + ε.

Hence we have

v(tn, z) ≤ qc∗(Ĥ + ε− z) + ε for z ∈ [−(c+ c∗)tn, Ĥ + ε].

We note that we can find N > 1 independent of ε > 0 such that

(1 +Nε)qc∗(Ĥ +Nε− z) ≥ qc∗(Ĥ + ε− z) + ε for z ≤ Ĥ + ε.

Indeed, if qc∗(Ĥ + Nε − z) ≥ 1/2, then the required inequality holds provided that N ≥ 2. If

qc∗(Ĥ +Nε− z) < 1/2, then due to δ0 := minζ∈[0,ζ0] q
′
c∗(ζ) > 0, where qc∗(ζ0) = 1/2, we have

qc∗(Ĥ +Nε− z)− qc∗(Ĥ + ε− z) ≥ δ0(N − 1)ε,

and hence the required inequality holds when δ0(N − 1) ≥ 1.
Now we define an upper solution (u, g, h) as follows:

u(t, x) = (1 +Nεe−δ(t−tn))qc∗(h(t)− x),

h(t) = Ĥ + c∗t+Nε+Nεσ(1− e−δ(t−tn)),

g(t) = g(t).

We will check (u, g, h) satisfies the conditions in Lemma 2.1 for t ≥ tn, that is,

ut − uxx ≥ f(u) for t > tn, g(t) < x < h(t),(3.17)

u ≥ u for t ≥ tn, x = g(t),(3.18)

u = 0, h
′
(t) ≥ −µux(t, x) for t ≥ tn, x = h(t),(3.19)

h(tn) ≤ h(tn), u(tn, x) ≤ u(tn, x) for x ∈ [g(tn), h(tn)].(3.20)

From (3.15) we have

h(tn)− c∗tn = H(tn) ≤ Ĥ + ε ≤ Ĥ +Nε = h(tn)− c∗tn,

and so h(tn) ≤ h(tn). We also have

u(tn, x) = (1 + εN)qc∗(Ĥ + εN − (x− c∗tn))

≥ qc∗
(
Ĥ + ε− (x− c∗tn)

)
+ ε

≥ v(tn, x− c∗tn) = u(tn, x)

for x ∈ [−ctn, h(tn)].
By Lemma 2.8 in [7], we have

ux(tn, x) ≥ 0 for x ∈ [g(tn),−h0].
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Therefore due to

ux(tn, x) ≤ 0 for x ∈ (−∞, h(t)],

from u(tn, z) ≥ u(tn, z) with z = −ctn we deduce

u(tn, x) ≥ u(tn, x) for x ∈ [g(tn),−ctn].

Thus (3.20) holds.
We next show (3.19). By definition u(t, h(t)) = 0, and direct calculation gives

h
′
(t) = c∗ +Nεσδe−δ(t−tn),

− µux(t, h(t)) = c∗ +Nεc∗e−δ(t−tn).

Hence if we take σ > 0 so that c∗ ≤ σδ then

h
′
(t) ≥ −µux(t, h(t)).

Clearly (3.18) holds. Finally (3.17) can be proved in the same way that (3.4) is proved,
the only point we should note is that by shrinking ε we can guarantee that Nε < η and so
1 + Nεe−δ(t−tn) ≤ 1 + η for all t ≥ tn. We further note that (3.17) holds for σ > σ0 where σ0
depends only on f and δ.

Thus the constructed triple is indeed an upper solution and we obtain

u(t, x) ≤ qc∗(Ĥ +Nε(1 + σ) + c∗t− x) + εNe−δ(t−tn),(3.21)

h(t)− c∗t− Ĥ ≤ Nε(1 + σ)(3.22)

for t ≥ tn and x ∈ [g(t), h(t)] = [g(t), h(t)].

Next we construct a lower solution. From (3.16) and (3.15) we have

qc∗(Ĥ − z)− ε ≤ v(tn, z) for z ∈ [−(c+ c∗)tn, Ĥ],

Ĥ − ε ≤ H(tn) = h(tn)− c∗tn.

Hence we have

qc∗(Ĥ − ε− z) ≤ v(tn, z) for z ∈ [−(c+ c∗)tn, Ĥ + ε].

We note that we can find N > 1 which does not depend on ε > 0 such that

(1−Nε)qc∗(Ĥ −Nε− z) ≤ qc∗(Ĥ + ε− z)− ε for z ≤ Ĥ − ε.

Now we define a lower solution (u, g, h) as follows:

u(t, x) = (1−Nεe−δ(t−tn))qc∗(h(t)− x),

h(t) = Ĥ + c∗t−Nε−Nεσ(1− e−δ(t−tn)),

g(t) = −ct.

We will check that (u, g, h) satisfies the inequalities for a lower solution for t ≥ tn, namely

ut − uxx ≤ f(u) for t > tn, g(t) < x < h(t),(3.23)

u ≤ u for t ≥ tn, x = g(t),(3.24)

u = 0, h′(t) ≤ −µux(t, x) for t ≥ tn, x = h(t),(3.25)

h(tn) ≤ h(tn), u(tn, x) ≤ u(tn, x) for x ∈ [g(tn), h(tn)].(3.26)

From (3.15) we have

h(tn)− c∗tn = Ĥ −Nε ≤ Ĥ − ε ≤ H(tn) = h(tn)− c∗tn,
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and so h(tn) ≤ h(tn). Moreover,

u(tn, x) = (1− εN)qc∗(Ĥ − εN − (x− c∗tn))

≤ qc∗
(
Ĥ − ε− (x− c∗tn)

)
− ε

≤ v(tn, x− c∗tn) = u(tn, x)

for x ∈ [−ctn, h(tn)]. This proves (3.26).
Next we show that (3.24) holds. We have

u(t,−ct) = (1− εNe−δ(t−tn))qc∗(Ĥ + (c+ c∗)t−Nε)

≤ 1− εNe−δ(t−tn).

On the other hand from Lemma 2.3 we have

u(t,−ct) ≥ 1−Me−δt

= 1−Me−δtne−δ(t−tn) ≥ 1−Mεe−δ(t−tn).

Since we may assume N ≥ M , we obtain u(t, g(t)) ≤ u(t, g(t)), and (3.24) is proved.
We now show (3.25). By the definition of u, we have u(t, h(t)) = 0, and direct calculation gives

h′(t) = c∗ −Nεσδe−δ(t−tn),

− µux(t, h(t)) = c∗ −Nεc∗e−δ(t−tn).

Hence if we take σ > 0 so that c∗ ≤ σδ then

h′(t) ≤ −µux(t, h(t)).

Finally we can show (3.23) in the same way as in the proof of Lemma 3.3. We also note that
(3.23) holds for σ > σ0 where σ0 depends only on f and δ.

We may now apply the comparison principle to obtain

qc∗(Ĥ −Nε(1 + σ) + c∗t− x)− εNe−δ(t−tn) ≤ u(t, x),(3.27)

−Nε(1 + σ) ≤ h(t)− c∗t− Ĥ(3.28)

for t ≥ tn and x ∈ [g(t), h(t)] = [−ct, h(t)].
By (3.22), (3.28) and the arbitrariness of ε, we find

lim
t→∞

(h(t)− c∗t− Ĥ) = 0.

In the following, we will obtain an estimate for supx∈[−ct,h(t)] |u(t, x) − qc∗(h(t) − x)|. From

(3.21) and (3.27), we have

qc∗(Ĥ −Nε(1 + σ) + c∗t− x)− εNe−δ(t−tn) ≤ u(t, x)

≤ qc∗(Ĥ +Nε(1 + σ) + c∗t− x) + εNe−δ(t−tn)

for −ct ≤ x ≤ h(t). Hence

|u(t, x)− qc∗(h(t)− x)|

≤ εNe−δ(t−tn) +max
{
qc∗

(
Ĥ +Nε(1 + σ) + c∗t− x

)
− qc∗(h(t)− x),

qc∗
(
h(t)− x

)
− qc∗

(
Ĥ − εN(1 + σ) + c∗t− x

)}
.
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By the mean value theorem and the monotonicity of qc∗(z) we have

0 ≤ qc∗(Ĥ +Nε(1 + σ) + c∗t− x)− qc∗(h(t)− x)

≤ ∥q′c∗∥∞
{
Nε(1 + σ) + [Ĥ + c∗t− h(t)]

}
,

and

0 ≤ qc∗(h(t)− x)− qc∗(Ĥ −Nε(1 + σ) + c∗t− x)

≤ ∥q′c∗∥∞
{
[h(t)− c∗t− Ĥ] +Nε(1 + σ)

}
.

It follows that

lim sup
t→∞

sup
x∈[−ct,h(t)]

|u(t, x)− qc∗(h(t)− x)| ≤ Cε,

where C = N(1 + σ)∥q′c∗∥∞ is independent of ε.
For x ∈ [h(t), h(t)] we have

0 ≤ u(t, x) ≤ u(t, x) ≤ qc∗(h(t)− x) +Nεe−δ(t−tn)

and

− qc∗(h(t)− x) ≤ u(t, x)− qc∗(h(t)− x)

≤ qc∗(h(t)− x)− qc∗(h(t)− x) +Nεe−δ(t−tn).

By the monotonicity of qc∗ ,

qc∗(h(t)− x) ≤ qc∗(h(t)− h(t)) for h(t) ≤ x ≤ h(t).

Because

0 ≤ qc∗(h(t)− x)− qc∗(h(t)− x) ≤ ∥q′c∗∥∞[h(t)− h(t)] ≤ ∥q′c∗∥∞2N(1 + σ)ε,

and

0 ≤ qc∗(h(t)− h(t)) ≤ ∥q′c∗∥∞[h(t)− h(t)] ≤ ∥q′c∗∥∞2N(1 + σ)ε,

we conclude that, for t ≥ tn,

sup
x∈[h(t),h(t)]

|u(t, x)− qc∗(h(t)− x)| ≤ Cε

where C > 0 does not depend on ε. Therefore

lim sup
t→∞

sup
x∈[−ct, h(t)]

|u(t, x)− qc∗(h(t)− x)| ≤ Cε.

Letting ε → 0 we deduce

lim
t→∞

sup
x∈[−ct, h(t)]

|u(t, x)− qc∗(h(t)− x)| = 0.

One can similarly show that

lim
t→∞

(g(t) + c∗t− Ĝ) = 0

for some constant Ĝ, and

lim
t→∞

sup
x∈[g(t), ct]

|u(t, x)− qc∗(x− g(t))| = 0.
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Finally fromH(t) → Ĥ as t → ∞ we conclude that in Lemma 3.7, the conclusionH(t̃n+·) → Ĥ

in C1
loc(R) as n → ∞ can be strengthened to H(t + ·) → Ĥ in C1

loc(R) as t → ∞. This implies
that H ′(t) → 0 as t → ∞, and hence

h′(t) → c∗ as t → ∞.

The proof for g′(t) → −c∗ as t → ∞ is similar. Theorem 1.2 is now proved.
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