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Abstract. We study the following nonlinear Stefan problem
ut − d∆u = g(u) for x ∈ Ω(t), t > 0,

u = 0 and ut = µ|∇xu|2 for x ∈ Γ(t), t > 0,

u(0, x) = u0(x) for x ∈ Ω0,

where Ω(t) ⊂ Rn (n ≥ 2) is bounded by the free boundary Γ(t), with Ω(0) = Ω0, µ and
d are given positive constants. The initial function u0 is positive in Ω0 and vanishes on
∂Ω0. The class of nonlinear functions g(u) includes the standard monostable, bistable
and combustion type nonlinearities. We show that the free boundary Γ(t) is smooth
outside the closed convex hull of Ω0, and as t → ∞, either Ω(t) expands to the entire Rn,
or it stays bounded. Moreover, in the former case, Γ(t) converges to the unit sphere when
normalized, and in the latter case, u → 0 uniformly. When g(u) = au− bu2, we further
prove that in the case Ω(t) expands to Rn, u → a/b as t → ∞, and the spreading speed
of the free boundary converges to a positive constant; moreover, there exists µ∗ ≥ 0 such
that Ω(t) expands to Rn exactly when µ > µ∗.

1. Introduction

In this paper, we study the following nonlinear Stefan problem

(1.1)


ut − d∆u = g(u) for x ∈ Ω(t), t > 0,

u = 0 and ut = µ|∇xu|2 for x ∈ Γ(t), t > 0,

u(0, x) = u0(x) for x ∈ Ω0,

where Ω(t) ⊂ Rn (n ≥ 2) is bounded by the free boundary Γ(t), with Ω(0) = Ω0, µ and d
are given positive constants. We assume that Ω0 is a bounded domain that agrees with the
interior of its closure Ω0, ∂Ω0 satisfies the interior ball condition, and u0 ∈ C(Ω0)∩H1(Ω0)
is positive in Ω0 and vanishes on ∂Ω0. For the nonlinear function g, we make the following
assumptions:

(1.2)

{
(i) g(0) = 0 and g ∈ C1,α([0, δ0]) for some δ0 > 0 and α ∈ (0, 1),

(ii) g(u) is locally Lipschitz in [0,∞), g(u) ≤ 0 in [M,∞) for some M > 0.
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We note that these conditions are satisfied by standard monostable, bistable and com-
bustion type nonlinearities. Less restrictions on g will be assumed in the main body of
the paper when it is possible to do so.

By [8], (1.1) has a unique weak solution u(t, x) defined for all t > 0; the free boundary
is understood as Γ(t) = ∂Ω(t), Ω(t) = {x : u(t, x) > 0}. The following theorems are the
main results of this paper.

Theorem 1.1. For any fixed t > 0, Γ̃(t) := Γ(t) \ co(Ω0) is a C2,α hypersurface in Rn,

and Γ̃ := {(t, x) : x ∈ Γ̃(t), t > 0} is a C2,α hypersurface in Rn+1. In particular, the free
boundary is always C2,α smooth if Ω0 is convex.

Here co(Ω0) stands for the closed convex hull of Ω0.

Theorem 1.2. Ω(t) is expanding in the sense that Ω0 ⊂ Ω(t) ⊂ Ω(s) if 0 < t < s. More-
over, Ω∞ := ∪t>0Ω(t) is either the entire space Rn, or it is a bounded set. Furthermore,
when Ω∞ = Rn, for all large t, Γ(t) is a smooth closed hypersurface in Rn, and there exists
a continuous function M(t) such that

(1.3) Γ(t) ⊂ {x :M(t)− d0
2
π ≤ |x| ≤M(t)};

and when Ω∞ is bounded, limt→∞ ∥u(t, ·)∥L∞(Ω(t)) = 0.

Here d0 is the diameter of Ω0.

Theorem 1.3. If g(u) = au−bu2 with a, b positive constants, then there exists µ∗ ≥ 0 such
that Ω∞ = Rn if µ > µ∗, and Ω∞ is bounded if µ ∈ (0, µ∗]. Moreover, when Ω∞ = Rn,
the following holds:

lim
t→∞

M(t)

t
= k0(µ), lim

t→∞
max
|x|≤ct

∣∣∣u(t, x)− a

b

∣∣∣ = 0 ∀c ∈ (0, k0(µ)),

where k0(µ) is a positive increasing function of µ satisfying limµ→∞ k0(µ) = 2
√
ad.

There exists R∗ > 0 such that µ∗ > 0 if Ω0 is contained in a ball with radius R∗, and
µ∗ = 0 if Ω0 contains a ball of radius R∗ (see Theorem 5.11). The asymptotic spreading
speed k0(µ) is determined by a class of traveling wave solutions, called semi-wave solutions
in [7] and [3]; detailed analysis of the function k0(µ) and the associated semi-wave solutions
can be found in [3].

Problem (1.1) reduces to the classical one phase Stefan problem when g(u) ≡ 0, which
describes the melting of ice in contact with water, with u(x, t) representing the temperature
of the water. In the setting of (1.1), the water region Ω(t) is surrounded by ice, and the
free boundary Γ(t) = ∂Ω(t) represents the interphase between water and ice. A nonlinear
Stefan problem of the form (1.1) may arise if water is replaced by a chemically reactive and
heat diffusive liquid surrounded by ice, with g(u) representing the reaction. As explained
below, in this work, u may also be viewed as the population density of an invasive species.

In the classical Stefan problem, it is often assumed that the water region Ω(t) is bounded
by two surfaces: a fixed surface Γ0, where a Dirichlet boundary condition is prescribed
(u = ϕ(t, x) for x ∈ Γ0 and t > 0), and a moving surface Γ1(t) representing the water ice
interphase. But we will only consider the situation described by (1.1).

The classical one phase Stefan problem has been extensively investigated in the past 50
years (see, for example, [4, 11, 12, 13, 14, 16, 20] and the references therein). In contrast,
the nonlinear Stefan problem is much less studied.



NONLINEAR STEFAN PROBLEMS 3

Problem (1.1) is also closely related to the following Cauchy problem:

(1.4)

{
Ut − d∆U = g(U) for x ∈ Rn, t > 0,

U(0, x) = u0(x) for x ∈ Rn,

where u0(x) is given in (1.1) but extended to Rn with value 0 outside Ω0. It was shown in
[8] (Theorem 5.4) that if uµ denotes the unique weak solution of (1.1), with Ωµ(t) = {x :
uµ(t, x) > 0}, then as µ→ ∞, Ωµ(t) → Rn (∀t > 0) and

uµ → U in C
(1+θ)/2,1+θ
loc ((0,∞)× Rn) (∀θ ∈ (0, 1)),

where U is the unique solution of (1.4).
The Cauchy problem (1.4) arises in a variety of applied problems and has been ex-

tensively studied. For example, in the classical work [1], for monostable, bistable or
combustion type nonlinearities, it was shown that if lim inft→∞ U(t, x) > 0, then there
exists c∗ > 0 such that, for any small ϵ > 0,

lim
t→∞

max
|x|≥(c∗+ϵ)t

U(t, x) = 0

and
lim
t→∞

min
|x|≤(c∗−ϵ)t

U(t, x) > 0.

The number c∗ is usually called the spreading speed, and is determined by certain traveling
wave solutions associated to (1.4). In particular,

c∗ = 2
√
ad = lim

µ→∞
k0(µ)

if g(u) = au− bu2.
Our work here was motivated by recent research on the following special case of (1.1),

(1.5)


ut − d∆u = au− bu2 for x ∈ Ω(t), t > 0,

u = 0 and ut = µ|∇xu|2 for x ∈ Γ(t), t > 0,

u(0, x) = u0(x) for x ∈ Ω0.

Problem (1.5) was introduced in [9, 7, 8] to better understand the spreading of invasive
species, where u represents the population density of the species, and the free boundary
stands for the spreading front (see [3] for a deduction of the free boundary condition based
on ecological assumptions).

In space dimension 1, and in several space dimensions with radial symmetry, it was
proved in [9] and [7] that problem (1.5) exhibits a spreading-vanishing dichotomy: as
t→ ∞, either Ω(t) expands to the entire Rn and u converges to the positive steady-state
a/b (spreading), or Ω(t) stays bounded and u → 0 (vanishing). In these cases the free
boundary and the solution are smooth due to the special geometry used, which greatly
simplifies the analysis. It is natural to ask whether the spreading-vanishing phenomenon
is retained in a general geometric setting. A positive answer to this question would suggest
that the spreading-vanishing dichotomy is a rather robust phenomenon.

A first step in this direction was made in [8], where the existence and uniqueness of
a weak solution for (1.1) with a general Ω0 was established by adapting ideas from [12].
As mentioned above, it was also shown in [8] that as µ → ∞, the weak solution of (1.1)
converges to the solution of the corresponding Cauchy problem (1.4). Moreover, for the
special problem (1.5), it was shown in [8] that under suitable conditions on the initial
values, as t → ∞, Ω(t) expands to the entire space Rn and u converges to the positive
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equilibrium solution a/b, and under a set of different conditions Ω(t) remains bounded and
u converges to 0. However, these two sets of conditions are not complementing to each
other, and whether there is a sharp spreading-vanishing dichotomy as in the special cases
studied in [9] and [7], was unclear. The regularity of the free boundary and the solution
were not considered in [8]. These issues are now addressed here. In particular, our Theorem
1.3 gives a complete answer to the question on the spreading-vanishing dichotomy.

The formulation of weak solutions in [8] alone appears insufficient for the purpose of
proving the regularity of the free boundary. In section 2, we give a new approach to the
existence problem for (1.1), by using ideas of [14], where the classical one phase Stefan
problem was formulated as a parabolic variational inequality suggested in [11]. However,
unlike in the classical case, due to the reaction term g(u) in our problem, a nonlocal term
appears in the new weak formulation of our problem, which causes great difficulties. For
example, comparison type of arguments are not directly applicable anymore, and hence
a uniqueness result as in [14] is difficult to obtain. We show that any weak solution here
corresponds to a weak solution in the sense of [8]. Thus it must be unique due to the
result in [8], and the two formulations of weak solutions are equivalent.

The regularity of the free boundary of the weak solution is invesstigated in sections 3
and 4, where both weak formulations of (1.1) are employed. In section 3, we use the weak
formulation of section 2 to show that if the free boundary is Lipschitz, then the techniques
for proving C1 and higher regularity of the free boundary developed by Caffarelli [4] and
Kinderlehrer-Nirenberg [16] can be adapted to treat the case here. A crucial fact is that the
nonlocal term in the equation is smooth enough near a free boundary point (see Lemmas
3.7 and 3.14).

The Lipschitz regularity of the free boundary outside the closed convex hull of Ω0 is
proved in section 4 by employing the weak formulation in [8]. This formulation allows us to
apply a monotonicity method along the lines of [20], where the classical one phase Stefan
problem was treated. Similar to [20], by a reflection and comparison argument we prove the
monotonicity of the solution in certain spatial directions. The Lipschitz regularity of the
free boundary is a consequence of this monotonicity property of the solution. Combined
with the regularity results established in section 3, this proves Theorem 1.1.

The reflection and comparison argument also shows that for any point on Γ(t) \ co(Ω0),
the inward normal line to Γ(t) at that point intersects co(Ω0). It was demonstrated in
[20] that such a normal line property implies some strong geometric constraints on the
free boundary of the classical one phase Stefan problem. In section 5, we make use of
this property and some novel techniques to prove Theorem 1.2. We first show by this
normal line property that (1.3) holds for Γ(t)\co(Ω0) if we assume that the free boundary
is unbounded as t → ∞. To show that (1.3) holds for Γ(t), we need to understand the
large-time behavior of Γ(t) ∩ co(Ω0), where the regularity of the free boundary is unclear
for non-convex Ω0, and singularity may occur. We show that if Γ(t) becomes unbounded
as t → ∞, then Γ(t) ∩ co(Ω0) must be empty after a finite time (see Theorem 5.4). This
relies on a new device based on the Harnack inequality. To prove that u → 0 as t → ∞
when Γ(t) stays bounded, a situation where the regularity of the free boundary is again
unclear unless Ω0 is convex, we rely on an energy inequality (see Lemma 5.6). Theorem
1.3 is largely a consequence of Theorem 1.2 and results of [7] and [8].



NONLINEAR STEFAN PROBLEMS 5

2. Weak solutions

For the study of regularity of the weak solution of (1.1), the definition in [8] seems
difficult to use directly. In this section, we give a different yet equivalent definition of
weak solutions to (1.1), and then obtain some basic properties of the weak solutions.
From now on in this paper, we will actually treat the following more general problem

(2.1)


ut − d∆u = g(x, u) for x ∈ Ω(t), t > 0,

u = 0 and ut = µ|∇xu|2 for x ∈ Γ(t), t > 0,

u(0, x) = u0(x) for x ∈ Ω0,

where g satisfies the following conditions:

(2.2)

 g is continuous for (x, u) ∈ Rn × [0,+∞),
g(x, 0) ≡ 0 and g(x, u) is locally Lipschitz in u uniformly for x ∈ Rn,
there exists C > 0 such that g(x, u) ≤ Cu for all u ≥ 0 and x ∈ Rn.

Our assumptions on Ω0 and u0 are the same as in (1.1).
Following [14], for an arbitrarily given ε > 0, take a smooth function βε defined on R,

such that

(2.3)


βε(t) = 0 for t > ε,

βε(0) = −1,

β
′
ε > 0 and β

′′
ε ≤ 0 for t < ε.

For given T > 0, take R > 0 large enough (in particular, Ω0 ⊂ BR(0)). Define

(2.4) f(x) =

{
u0(x), x ∈ Ω0,
−d/µ, x ∈ BR(0) \ Ω0.

We denote by fε(x) a family of functions smooth in BR(0), uniformly bounded, and
decreasing to f(x) as ε decreases to 0.

Now consider the following parabolic equation with a memory term

(2.5)


(∂t − d∆)uε = g(x, uε)− dµ−1β′ε

(∫ t

0
uε(τ, x)dτ

)
uε in (0, T )×BR(0),

uε = 0 on (0, T )× ∂BR(0),

uε = fε + dµ−1 on {0} ×BR(0).

The existence and uniqueness of a global solution in C1+α
2
,2+α((0, T ]×BR(0)) to (2.5) can

be proved as usual; see for example [15].

Define wε(t, x) =
∫ t
0 uε(τ, x)dτ . Then noticing that∫ t

0
∂tuε(τ, x)dτ = uε(t, x)− uε(0, x) = ∂twε(t, x)− fε(x)− dµ−1,

and ∫ t

0
β′ε(wε)uεdτ =

∫ wε(t,x)

0
β′ε(w)dw = βε(wε(t, x)) + 1,

we obtain, by integrating (2.5) over (0, t), that

(2.6)

 (∂t − d∆)wε +
d

µ
βε(wε) =

∫ t

0
g(x, ∂twε)dτ + fε in (0, T )×BR(0),

wε = 0 on ∂p((0, T )×BR(0)).
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Here ∂p denotes the parabolic boundary.

Proposition 2.1. There exists K(T ) > 0 such that 0 ≤ ∂twε ≤ K(T ) in (0, T )×BR(0).

Proof. By (2.2) and the boundedness of uε, ∃Cε > 0 such that

−Cεuε ≤ g(x, uε) ≤ Cuε.

In view of β
′
ε ≥ 0, we obtain from (2.5) that

−(Cε + dµ−1β′ε(wε))uε ≤ (∂t − d∆)uε ≤ Cuε in (0, T )×BR(0).

Thus we can apply the maximum principle to (2.5) to conclude that

0 ≤ uε ≤ K in (0, T )×BR(0)

for some constant K depending on T but independent of ε (for all small ε > 0). �
A direct consequence is

Corollary 2.2. There exists K1(T ) > 0 such that 0 ≤ wε ≤ K1(T ) in (0, T )×BR(0).

Denote

H(u)(t, x) :=

∫ t

0
g(x, u(τ, x))dτ.

Because ∂twε ≥ 0 and |g(x, u)| ≤ CT u for u ∈ [0,K(T )], a simple calculation shows that
there exists another constant C = C(T ) > 0 such that

(2.7) |H(∂twε)| ≤ Cwε.

In view of (2.7) and −1 ≤ βε(wε) ≤ 0, we may use (2.6) and Corollary 2.2 to obtain

|(∂t − d∆)wε| ≤ K2(T ).

Then ∀p > 1, by the Lp estimate for parabolic equations, wε is uniformly bounded in
W 1,2

p ((0, T ) × BR(0)). Thus we can find a subsequence of ε, say εj → 0, such that wεj

converges to w weakly in W 1,2
p ((0, T ) × BR(0)), ∀p > 1. By the Sobolev embedding

theorem, wεj converges to w in H1+γ([0, T ]×BR(0)), ∀γ ∈ (0, 1). Here and in the rest of
this paper, we use the notation

Hk+γ(Ω) = C
k+γ
2

,k+γ(Ω) for k = 0, 1, 2, γ ∈ (0, 1) and Ω ⊂ Rn+1.

We will eventually show that w = limε→0wε and it is uniquely determined, but for the
time being, w just stands for the limit of wε along the sequence εj . By Proposition 2.1,

(2.8) 0 ≤ wt ≤ K(T ) in (0, T )×BR(0).

Moreover w is continuous in [0, T ]×BR(0), and is zero on the parabolic boundary of this
set, so {w > 0} := {(t, x) ∈ (0, T ) × BR(0) : w(t, x) > 0} is an open set in Rn+1. We
denote

Ω̃(t) := {w(t, ·) > 0},
which is an open set in Rn. From (2.8) we obtain

Proposition 2.3. Ω̃(t) is expanding as t increases, that is, for 0 < t1 < t2, we have

Ω̃(t1) ⊂ Ω̃(t2).

We also have

Proposition 2.4. Ω̃(t) ⊃ Ω0 for t > 0.
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Proof. By (2.6), (2.7) and the definitions of fε and f , in (0, T )× Ω0,

∂twε − d∆wε ≥ −Cwε + u0.

Thus wε ≥ w, where w is the solution to the initial boundary value problem{
wt − d∆w = −Cw + u0 in (0,+∞)× Ω0,

w = 0 on ∂p((0,+∞)× Ω0).

Because u0 > 0, we have w > 0 in (0,+∞) × Ω0. By the comparison principle we have

wε ≥ w in (0, T ) × Ω0. It follows that w ≥ w > 0 in (0, T ) × Ω0. Hence Ω̃(t) ⊃ Ω0 for
t > 0. �

In fact, by the interior ball condition on ∂Ω0, we have Ω̃(t) ⊃ Ω0 for t > 0, which can be
easily proved after the equivalence of the weak solution here and that in [8] is established;
see Proposition 2.10.

In the following, we denote

u := wt and {u > 0} := {(t, x) ∈ (0, T )×BR(0) : u(t, x) > 0}.

Proposition 2.5. {u > 0} = {w > 0}, and u ∈ H1+γ({u > 0}) for all γ ∈ (0, 1).

Proof. Assume (t0, x0) ∈ {w > 0} and so 2δ := w(t0, x0) > 0; then in some neighborhood
V = (t0 − σ, t0 + σ)×Bσ(x0) of (t0, x0) we have w ≥ δ, where the small positive constant

σ depends only on δ due to w ∈ H1+γ((0, T ] × BR(0)). By the uniform convergence of
wεj , for εj small,

wεj ≥
δ

2
in V.

By the definition of βε, for all large j,

βεj (wεj ) ≡ 0 in V.

Thus in V , for all large j, wεj satisfies the equation

(2.9) (∂t − d∆)wεj =

∫ t

0
g(x, ∂twεj (τ, x))dτ + fεj ,

and ∂twεj satisfies

(2.10) (∂t − d∆)∂twεj = g(x, ∂twεj ).

By the uniform bound of ∂twεj , applying standard parabolic regularity theory, we can get

a uniform bound for ∂twεj in W 1,2
p (K) (∀p > 1) for any compact subset K of V . Because

∂twεj converges to ∂tw weakly in L2((0, T )×BR(0)), we must have ∂twεj converges to ∂tw
in H1+γ,loc(V ) (∀γ ∈ (0, 1)). In particular, u = wt satisfies

(∂t − d∆)u = g(x, u) in V.

Standard interior regularity shows that u ∈ H1+γ,loc(V ) for any γ ∈ (0, 1). By Propo-
sition 2.1, u ≥ 0. Since g(x, 0) = 0 and g is locally Lipschitz continuous in u, by the
strong maximum principle, either u(t0, x0) > 0 or u ≡ 0 in [t0 − σ, t0] × Bσ(x0). If the
latter happens, then ∀t ∈ [t0 − σ, t0], w(t, x0) ≡ w(t0, x0) = 2δ (by integration in t). In
particular w(t0 − σ, x0) = 2δ > 0. We may now repeat the above argument with (t0, x0)
replaced by (t0 − σ, x0) to deduce that w(t, x0) ≡ 2δ for t ∈ [t0 − 2σ, t0]. After finitely
many steps we deduce w(t, x0) ≡ 2δ in (0, t0]. This contradicts the assumption that
w(0, x0) = 0. Therefore we must have u(t0, x0) > 0 and this proves {u > 0} ⊃ {w > 0}.
Note also that the above argument implies that u ∈ H1+γ in {w > 0}. Since wt ≥ 0
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and w ≥ 0, we find that if w(t0, x0) = 0 with t0 > 0, then w(t, x0) ≡ 0 for t ∈ [0, t0]
and therefore u(t0, x0) = wt(t0, x0) = 0 whenever wt(t0, x0) exists. Thus we must have
{u > 0} = {w > 0} a.e., and u ∈ H1+γ({u > 0}). �

The following result implies that (2.7) holds for w, too.

Proposition 2.6. H(∂twεj ) converges to H(wt) uniformly in (0, T )×BR(0).

Proof. Assume the contrary; then by passing to a subsequence, we may assume that there
exist Xεj ∈ (0, T )×BR(0) and δ > 0, such that

|H(∂twεj )(Xεj )−H(wt)(Xεj )| ≥ δ, ∀j ≥ 1.

Without loss of generality, we can assume Xεj converges to X0 ∈ [0, T ]×BR(0). We divide
the problem into two cases.

Case 1. w(X0) ≤ δ
6C , with C given in (2.7).

Because wεj converges to w uniformly, for εj small enough, wεj (X0) ≤ δ
5C . Then by the

uniform continuity of w and wεj , for εj sufficiently small, wεj (Xεj ) ≤ δ
4C and w(Xεj ) ≤ δ

4C .
By (2.7),

|H(∂twεj )(Xεj )−H(wt)(Xεj )| ≤ C[wε(Xε) + w(Xε] < δ.

This is a contradiction.
Case 2. w(X0) >

δ
6C .

Write X0 = (t0, x0) and Xεj = (tεj , xεj ). Because w is nondecreasing in t and w(0, x0) =
0, we can take a t1 ∈ (0, t0) such that

δ

6C
< w(t1, x0) <

δ

3C
.

By the uniform convergence of wεj , for εj small we also have

δ

6C
< wεj (t1, xεj ) <

δ

3C
.

In view of ∂tw ≥ 0, we have

w(t, x0) >
δ

6C
for t ∈ [t1, T ].

Much as in the proof of Proposition 2.5, we can find a small neighborhood V of [t1, T ]×{x0}
in (0, T ]×BR(0) such that ∂twεj → ∂tw in H1+γ(V ). It follows that, as j → ∞,∫ tεj

t1

|g(xεj , ∂twεj (τ, xεj ))− g(xεj , ∂tw(τ, xεj ))|dτ → 0.

Hence

|H(∂twεj )(Xεj )−H(wt)(Xεj )|

≤
∫ tεj

t1

|g(xεj , ∂twεj (τ, xεj ))− g(xεj , ∂tw(τ, xεj ))|dτ

+
∣∣H(∂twεj )(t1, xεj )

∣∣+ ∣∣H(wt)(t1, xεj )
∣∣

< δ,

for εj small and we get a contradiction again. �

Finally we give the equation satisfied by w. For convenience of notation, we write
ΩT,R = (0, T )×BR(0).
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Proposition 2.7. The function w is a W 1,2
p (ΩT,R)-solution of

(2.11)

wt − d∆w =

∫ t

0
g(x,wt(τ, x))dτ + dµ−1χ{w=0} + f in ΩT,R,

w = 0 on ∂p(ΩT,R).

Proof. Take φ ∈ C∞(ΩT,R) which vanishes near [(0, T ]×∂BR(0)]∪ [{T}×BR(0)], multiply
the equation of wεj by φ and integrate by parts; it results∫∫

ΩT,R

[
wεj (−φt − d∆φ) + dµ−1βεj (wεj )φ−H(∂twεj )φ− fεjφ

]
dtdx = 0.

Without loss of generality, we may assume that as εj → 0, βεj (wεj ) converges to some β∞
weakly in L2(ΩT,R). Then in view of the definition of fε and the previous propositions,
we obtain by letting j → ∞,

(2.12)

∫∫
ΩT,R

[
w(−φt − d∆φ) + dµ−1β∞φ−H(wt)φ− fφ

]
dtdx = 0.

Since w ∈ W 1,2
p (ΩT,R), by standard parabolic regularity theory, (2.12) implies that w

solves, in the W 1,2
p sense,

(2.13)

{
wt − d∆w = H(wt)− dµ−1β∞ + f in ΩT,R,

w = 0 on ∂p(ΩT,R).

To complete the proof, it remains to show β∞ = −χ{w=0} a.e. in ΩT,R. In fact, for any
(t0, x0) ∈ {w > 0}, we have βεj (wεj ) = 0 for all large j in a small neighborhood of (t0, x0),
and so β∞ ≡ 0 in this small neighborhood. It follows that β∞ ≡ 0 in {w > 0}.

By (2.7), we have H(wt) = 0 in {w = 0}. Moreover, (∂t − d∆)w = 0 a.e. in {w = 0}.
So we obtain from (2.13) that dµ−1β∞ = f a.e in {w = 0}. By Proposition 2.4 we have

Ω0 ⊂ Ω̃(t) for t > 0. It follows that {w = 0} ⊂ [0, T ] × (BR(0) \ Ω0), and thus, by
definition, f = −dµ−1 on {w = 0}. Therefore β∞ = −1 a.e. in {w = 0}. It follows that
β∞ = −χ{w=0}. �

Proposition 2.8. wt ∈ L2(ΩT,R) ∩ L∞(ΩT,R) satisfies

(2.14)

∫∫
ΩT,R

[
wt(−d∆ϕ)−α(wt)ϕt

]
dtdx−

∫
BR(0)

α(ũ0)ϕ(0, x)dx =

∫∫
ΩT,R

g(x,wt)ϕdtdx

for every function ϕ ∈ C∞(ΩT,R) that vanishes near [(0, T ] × ∂BR(0)] ∪ [{T} × BR(0)],
where

(2.15) α(ξ) = ξ − dµ−1χ{ξ≤0}, ũ0 = u0 in Ω0, ũ0 = 0 outside Ω0.

Proof. From (2.11) we obtain∫∫
ΩT,R

[
w(−φt − d∆φ)− dµ−1χ{w=0}φ−H(wt)φ− fφ

]
dtdx = 0

for every φ ∈ C∞(ΩT,R) which vanishes near [(0, T ] × ∂BR(0)] ∪ [{T} × BR(0)]. Taking
φ = −ϕt, and using integration by parts in t, we deduce

(2.16)

∫∫
ΩT,R

[
wt(−ϕt − d∆ϕ) + dµ−1χ{w=0}ϕt − g(x,wt)ϕ

]
dtdx =

∫
BR(0)

f(x)ϕ(0, x)dx,

where we have used w = 0 and |H(wt)| ≤ Cw = 0 on {0} ×BR(0).
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Clearly f(x) = α(ũ0(x)). Moreover, by Proposition 2.5, we have χ{w=0} = χ{wt=0} a.e.
in ΩT,R. Therefore, due to wt ≥ 0, we have

wt − dµ−1χ{w=0} = wt − dµ−1χ{wt=0} = α(wt).

Substituting these into (2.16) we obtain (2.14). �

If wt ∈ H1(ΩT,R) ∩ L∞(ΩT,R), and if R is large enough so that G = BR(0) meets
the requirement in [8], then the above proposition implies that wt is a weak solution to
(2.1) in the sense of [8] (see Definition 2.1 there). Therefore, under these assumptions,
by the existence and uniqueness results in [8], wt must coincide with the unique weak
solution determined by Theorems 3.1 and 3.2 there. Since we have only proved wt ∈
L2(ΩT,R) ∩ L∞(ΩT,R) here, we could not apply these results of [8] directly. However, the
uniqueness proof of Theorem 3.2 in [8] does not use the fact that the weak solution there
is in H1. Checking this proof one finds that uniqueness also holds for solutions satisfying
(2.14). Since the weak solution obtained in [8] also satisfies (2.14), we thus conclude that
wt coincides with the unique weak solution of [8]1. This implies that w is the unique

solution of (2.11), and wε → w weakly in W 1,2
p (ΩT,R) (∀p > 1) as ε→ 0.

Summarizing the above discussions, we have the following result.

Theorem 2.9. For any given T > 0, suppose that R > 0 is chosen so large that G = BR(0)
satisfies the requirements in Definition 2.1 of [8], then wε obtained from (2.6) satisfies

limε→0wε = w weakly in W 1,2
p (ΩT,R) (∀p > 1), where w is the unique solution of (2.11),

and wt is the unique weak solution of (2.1) as determined in [8].

We are now in a position to improve the conclusion in Proposition 2.4.

Proposition 2.10. Ω̃(t) ⊃ Ω0 for t > 0.

Proof. We have proved Ω̃(t) ⊃ Ω0 for t > 0. It remains to show that w(t, x) > 0 if t > 0
and x ∈ ∂Ω0. Otherwise, we can find t0 > 0 and x0 ∈ ∂Ω0 such that w(t0, x0) = 0. By
the interior ball condition of ∂Ω0, we can find a ball B = BR0(y0) ⊂ Ω0 that touches ∂Ω0

at x0. Let v0 be a C2 radially symmetric function in B such that 0 < v0 ≤ u0 in B and
v0 = 0 on ∂B. Choose C0 > 0 such that g(w(t, x)) ≥ −C0w(t, x) for x ∈ Ω̃(t), t ∈ [0, T ]
with T > t0. We now consider the auxiliary radially symmetric problem

(2.17)


vt − d∆v = −C0v, t > 0, 0 < r < h(t),

vr(t, 0) = 0, v(t, h(t)) = 0, t > 0,

h′(t) = −µvr(t, h(t)), t > 0,

h(0) = R0, v(0, r) = v0(r), 0 ≤ r ≤ R0.

By Proposition 4.3 of [8], we know that (2.17) has a unique solution v defined for all t > 0,
and the Hopf boundary lemma guarantees that h′(t) > 0 for all t > 0. The extended v (by
0) is a weak solution of (2.1) with g(x, u) replaced by −C0u. Hence we can apply Theorem
4.2 of [8] to obtain 0 < v(t, |x−y0|) ≤ wt(t, x) in {(t, x) : |x−y0| < h(t), 0 ≤ t ≤ T}. Since
x0 ∈ ∂BR0(y0) and h′(t) > 0, we find that |x0 − y0| = R0 < h(t0) and hence wt(t, x0) ≥
v(t, R0) > 0 for all t close to t0. This implies that w(t0, x0) > 0, a contradiction. �

1Alternatively, as in section 3 of [14], it is possible to prove separately that wt ∈ H1(ΩT,R) by estimating
the H1 norm of wε. Moreover, we can get an energy inequality similar to Lemma 3.4 therein for ∂twε,
which shows that for any t, wt(t, ·) ∈ H1(BR(0)).
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3. Regularity outside the convex hull of Ω0

In this section we discuss the regularity of the free boundary ∂{w > 0}. We will show
that it is smooth outside co(Ω0), the closed convex hull of Ω0.

By Proposition 2.5, ∂{w > 0} = ∂{u > 0}. So the study of the regularity of the free
boundary for (2.1) is equivalent to the study of that of (2.11). We will take advantage of
the fact that the latter can be viewed as a perturbation of the one phase Stefan problem

for which powerful techniques have already been developed. Let us recall that Ω̃(t) =
Ω(t) = {x ∈ BR : u(t, x) > 0} is an open set for each t ∈ (0, T ). Also, from

|H(wt)(t, x)| ≤ Cw(t, x),

we easily see that

(3.1) h(t, x) := H(wt)(t, x) =

∫ t

0
g(x,wt(τ, x))dτ

is continuous, and vanishes on {w = 0}.

Proposition 3.1. Let (t0, x0) ∈ ∂{w > 0} with t0 > 0 and h(t, x) be defined as above.
Then there exists r0 > 0 such that

(3.2) d∆w − wt = (dµ−1 − h)χ{w>0} in Pr0(t0, x0),

where

Pr(t, x) := (t− r2, t+ r2)×Br(x).

Proof. By Proposition 2.10, we find that x0 ̸∈ Ω0 and there exists r0 > 0 small such that
Br0(x0) ̸∈ Ω0. Thus for x ∈ Br0(x0) we have f(x) = −dµ−1 and

dµ−1χ{w=0} + f = dµ−1(χ{w=0} − 1) = −dµ−1χ{w>0} in Pr0(t0, x0).

Substituting this into (2.11) and recalling h ≡ 0 on {w = 0}, we immediately obtain
(3.2). �

Using (3.2), as in [2] we may follow the arguments of [6], [5] or [4] to obtain the following
results, where C denotes various constants which depend only on the space dimension n,
the solution w and the nonlinear function g, but are independent of (t, x) in the given
range.

Lemma 3.2. (Growth bound) ∃C > 0, such that for any (t0, x0) ∈ {w = 0} with
t0 > 0,

supPr(t0,x0)w ≤ Cr2 for all small r > 0.

Proof. We may follow the first part of the proof of Lemma 4.2 in [6] and then argue as in
the proof of Lemma 4.3 there. �

Lemma 3.3. (Nondegeneracy) ∃C > 0, such that for any (t0, x0) ∈ ∂{w > 0} with
t0 > 0,

supx∈Br(x0)w(t0, x) ≥ Cr2 for all small r > 0.

Proof. Since wt ≥ 0, w(t, ·) satisfies

d∆w ≥ (dµ−1 − h)χ{w>0}.

In view of h(t0, x0) = 0 we find that (dµ−1 − h)χ{w>0} > (1/2)dµ−1 in Pr(t0, x0) for all
small r > 0, say r ∈ (0, r0].
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For r ∈ (0, r0/2], choose a sequence (tj , xj) ∈ Pr(t0, x0) ∩ {w > 0} such that (tj , xj) →
(t0, x0) as j → ∞. Then define

vj(x) = w(tj , x)−
1

4nµ
|x− xj |2.

Clearly

∆vj ≥ 0 in Br(xj) ∩ Ω(tj), vj(xj) = w(tj , xj) > 0.

Therefore supBr(xj)∩Ω(tj) vj is positive and is achieved on the boundary of Br(xj)∩Ω(tj).

On Br(xj)∩ ∂Ω(tj), w(tj , x) = 0 and so vj ≤ 0. Hence the positive supremum is achieved
at some yj ∈ ∂Br(xj) ∩ Ω(tj):

0 < sup
Br(xj)∩Ω(tj)

vj = vj(yj) = w(tj , yj)−
1

4nµ
r2.

It follows that

sup
Br(xj)

w(tj , x) ≥ sup
Br(xj)∩Ω(tj)

w(tj , x) ≥ w(tj , yj) ≥
1

4nµ
r2.

Since w is continuous, letting j → ∞ we obtain sup
Br(x0)

w(t0, x) ≥ 1
4nµr

2. �

A simple consequence of Lemma 3.3 is the following result, which indicates that Ω(t)
expands continuously as t increases.

Proposition 3.4. Let t0 ∈ [0, T ). For ϵ > 0 small, Ω(t0 + ϵ) is contained in a small
neighborhood of Ω(t0).

Proof. Otherwise ∃xi ∈ ∂Ω(t0+ϵi) with ϵi > 0 and ϵi → 0 such that dist(xi,Ω(t0)) ≥ δ > 0.
Since xi is a bounded sequence, by passing to a subsequence we may assume that xi → x0
as i→ ∞. Thus dist(x0,Ω(t0)) ≥ δ and w(t0, x) ≡ 0 in Bδ/2(x0).

On the other hand, by Lemma 3.3, there is a constant C > 0, such that

sup
Bδ/4(xi)

w(t0 + ϵi, x) ≥ Cδ2 > 0 for all i ≥ 1.

Letting i→ ∞ and using the continuity of w we obtain

sup
Bδ/4(x0)

w(t0, x) ≥ Cδ2 > 0.

This contradiction completes the proof. �

A direct corollary is

Corollary 3.5.

∂Ω(t) =
{
x : (t, x) ∈ ∂{w > 0}

}
, ∀t > 0.

3.1. Lipschitz-Hölder regularity. From now on, we assume that

(3.3) g(x, u) ≡ g(u) is independent of x.

We have the following result.

Theorem 3.6. Let (3.3) hold, and t0 > 0, x0 ∈ Γ(t0) \ co(Ω0). Then there exists a fixed
open cone K0 ⊂ Rn (depending on x0) with vertex at the origin, and a small r0 > 0, such
that the following three conclusions hold:
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(i) Monotonicity:
For any x̃ and x ∈ Br0(x0), x̃ − x ∈ K0 implies wt(t, x̃) ≤ wt(t, x) (∀t > 0) and
hence w(t, x̃) ≤ w(s, x) (∀t > 0).

(ii) Cone property:
For any (t, x) ∈ ∂{w > 0} ∩ Pr0(t0, x0),{

(x+K0) ∩Br0(x0) ⊂ {z : w(t, z) = 0},
(x−K0) ∩Br0(x0) ⊂ {z : w(t, z) > 0}.

(iii) Lipschitz-Hölder representation of the free boundary:
There exists a coordinate system (s, y) ∈ R × Rn, with (t0, x0) as its origin, s =
t−t0, and the y1 direction parallel to the axis of K0, such that ∂{w > 0}∩Pr0(t0, x0)
can be expressed as

y1 < f(s, y′), (s, y) ∈ N0,

with f Lipschitz continuous in y′, 1
2 -Hölder continuous in s, and f(0, 0) = 0, where

y′ = (y2, ..., yn), and N0 is a small neighborhood of (0, 0) ∈ R1 × Rn−1.

Therefore we may write

(3.4) K0 = {y : y1 > δ0|y′|}, δ0 > 0.

The proof of Theorem 3.6 uses the monotonicity method and is given in section 4 below.

3.2. C1 regularity in space variables. In this subsection, we assume that (3.3) holds
and make use of Theorem 3.6 to show that the free boundary is C1 in space (for fixed time
t) and the solution w is C2 in the space variables in {w > 0} up to the boundary near a
free boundary point (t0, x0). This is achieved by showing that Caffarelli’s result in [4] can
be applied to the setting here.

We now fix such a point (t0, x0), and consider the free boundary in Pr0(t0, x0). It is
convenient to use the new coordinate system (s, y) given in conclusion (iii) of Theorem
3.6, and so (t0, x0) is replaced by (0,0), and the conclusions (i) and (ii) in Theorem 3.6
become

(3.5) ws(s, ỹ) ≤ ws(s, y), w(s, ỹ) ≤ w(s, y) if s > 0, ỹ − y ∈ K0 and y, ỹ ∈ Br0(0),

and

(3.6)

{
(y +K0) ∩Br0(0) ⊂ {z : w(s, z) = 0},
(y −K0) ∩Br0(0) ⊂ {z : w(s, z) > 0},

∀(s, y) ∈ ∂{w > 0} ∩ Pr0(0, 0).

To further simplify the notations, we normalize the parameters in (3.2). Through a
simple scaling change of w, t and h (t → dt, w → µw, h → d−1µh), the constants d and
dµ−1 in (3.2) can both be reduced to 1. Therefore, without loss of generality, in the rest
of this section we assume that w satisfies

(3.7) ∆w − ws = (1− h)χ{w>0} in Pr0(0, 0).

Recall that in the new coordinate system (0, 0) ∈ ∂{w > 0}.

Lemma 3.7. The functions h(s, y) and ws(s, y) in (3.7) are both Hölder continuous in
Pr0(0, 0) provided that r0 > 0 is small enough.
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Proof. Since h and wt are identically 0 outside {w > 0}, it suffices to show that they are

Hölder continuous over {w > 0} ∩ Pr0(0, 0). In this region, u(s, y) = ws(s, y) satisfies

us −∆u = g(u) in {w > 0} ∩ Pr0(0, 0), u = 0 on ∂{w > 0} ∩ Pr0(0, 0).

Since g(0) = 0, and g(u) is locally Lipschitz continuous and u is bounded in the L∞

norm, we may write g(u) = c(s, y)u with c ∈ L∞. The Lipschitz-Hölder smoothness of
∂{w > 0} ∩ Pr0(0, 0) in property (iii) of Theorem 3.6 allows us to use standard interior
and boundary parabolic regularity (see Theorem 6.33 in [19]) to conclude that u is Hölder

continuous over {w > 0} ∩Pr0/2(0, 0). Thus u (extended by 0 outside {w > 0} ) is Hölder
continuous in Pr0(0, 0).

Recall that in the original (t, x) coordinates

h(t, x) =

∫ t

0
g(u(τ, x))dτ.

To deduce the Hölder continuity of h(t, x) near (t0, x0), we need to consider the smoothness
of u(t, x) for all t ∈ (0, t0]. Our above discussion shows that the extended u is Hölder
continuous in Pr0/2(t0, x0). We show next that the extended u is Hölder continuous in
[0, t0 + r]×Br(x0) for some r > 0.

Since x0 ̸∈ co(Ω0), we can find r > 0 small such that Br(x0) ∩ Ω0 = ∅. By Proposition
3.4, there exists t1 ∈ (0, t0) such that u(t, x) = 0 for all t ∈ [0, t1] and x ∈ Br(x0). Thus u
is in particular Hölder continuous over [0, t1]×Br(x0).

For each (t, x) ∈ [t1, t0]×Br(x0), if w(t, x) > 0, then we can apply the interior regularity
to the above equation for u to see that u is Hölder continuous in a small neighborhood
of (t, x). If (t, x) ∈ ∂{w > 0}, then we can apply Theorem 3.6 with (t0, x0) replaced by
(t, x) and repeat the above argument to conclude that u is Hölder continuous near (t, x).

If (t, x) ̸∈ {w > 0}, then u is identically 0 in a neighborhood of (t, x). Thus we can use a
finite covering argument to conclude that u is Hölder continuous in a small neighborhood
of [t1, t0]×Br(x0).

Hence u is Hölder continuous in [0, t0 + r] × Br(x0) for some small r > 0. The Hölder
continuity of h(s, y) near (0, 0) is now obvious. �

Lemma 3.8. There exists C > 0 such that, for j, k ∈ {1, ..., n},

|wyjyk(s, y)| ≤ C ∀(s, y) ∈ {w > 0} ∩ Pr0(0, 0).

Proof. Since h is Hölder continuous in Pr0(0, 0), away from the free boundary in {w >
0} ∩Pr0(0, 0), we can apply classical Schauder estimates to see that w ∈ H2+σ. Therefore
it suffices to show that for any sequence (si, yi) ∈ {w > 0} ∩ Pr0(0, 0), (si, yi) → (s0, y0) ∈
∂{w > 0}∩Pr0(0, 0), |wyjyk(si, yi)| has a bound that does not depend on the choice of the
sequence.

Denote di = dp((si, yi), ∂{w > 0}), where dp denotes the parabolic distance. Then
define

wi(s, y) = d−2
i w(si + d2i s, yi + diy).

Clearly

∆wi − ∂swi = 1− hi in P1(0, 0),

where hi(s, y) = h(si+d
2
i s, yi+diy), and thus hi is uniformly Hölder continuous in P1(0, 0).

Moreover, by Lemma 3.2,

wi(s, y) ≤ C(1 + |s|2 + |y|) in P1(0, 0)
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for all i. Therefore we can apply classical interior Schauder estimates to the equation of
wi to conclude that

|(wi)yjyk | ≤ C in P1/2(0, 0) for all i ≥ 1,

where C only depends on ∥w∥∞. In particular,

|wyjyk(si, yi)| = |(wi)yjyk(0, 0)| ≤ C

for all i. �

From (3.6) we find that (0, 0) is a density point on the free boundary. With the help of
Lemmas 3.7 and 3.8, we can apply Caffarelli’s result [4] as in Lemma 9.11 on page 236 of
[13] to obtain the following result.

Theorem 3.9. The function y1 = f(s, y2, ..., yn) in Theorem 3.6 is a C1 function in
(y2, ..., yn), uniformly with respect to s. Moreover, wyiyj (i, j ∈ {1, ..., n}) are all continu-

ous in y, uniformly with respect to s, for (s, y) ∈ {w > 0} ∩ Pr0(0, 0).

3.3. Higher regularity. In this subsection, we will apply the partial hodograph-Legendre
transformation introduced by Kinderlehrer and Nirenberg [16] to obtain higher regularity
for the free boundary and the solution w. In order to do this, we first need to obtain L∞

bound for |wsyi | (i = 1, ..., n) and |wss| in {w > 0}∩Pr0(0, 0). Recall that in the new (s, y)
coordinate system, (0, 0) ∈ ∂{w > 0} and 0 ̸∈ co(Ω0).

Let (s, y) ∈ {w > 0} ∩ Pr0(0, 0). Since 0 ̸∈ co(Ω0) and |y| < r0, by shrinking r0 we
may assume that y ̸∈ co(Ω0). Thus there is a first time moment τ(y) ∈ (−t0, s) such that
(τ, y) enters {w > 0} as τ increases across τ(y), namely w(τ, y) = 0 for τ ≤ τ(y), and
w(τ, y) > 0 for τ > τ(y).

Since Ω(s) = {y : (s, y) ∈ {w > 0}} is expanding continuously as s increases (Proposi-
tions 2.3 and 3.4), there exists δ > 0 small such that Ω(s) ∩ Br0(0) = ∅ for s ≤ −t0 + δ
provided that r0 is small enough so that B2r0(0) ∩ co(Ω0) = ∅. The choice of δ implies
that τ(y) > −t0 + δ whenever (s, y) ∈ {w > 0} ∩ Pr0(0, 0). Moreover, for each such (s, y),
dy(τ) := dist(y, ∂Ω(τ)) is a nondecreasing function of τ for τ > τ(y) (due to the fact that
Ω(τ) is expanding). It follows that, for (s, y) ∈ {w > 0} ∩ Pr0(0, 0),

dist
(
(τ, y), ∂{w > 0}

)
≤ dy(τ) ≤ dy(0) < r0 ∀τ ∈ (τ(y),−r20].

For τ ∈ (−r20, s], we have (τ, y) ∈ Pr0(0, 0) and hence

dist((τ, y), ∂{w > 0}) ≤ dist((τ, y), (0, 0)) ≤ r0.

Thus by Lemma 3.7 (applied to all points (τ, y) in {w > 0} near the free boundary with
τ ∈ [−t0 + δ, s]), |ws(τ, y)| ≤ Crσ0 for some σ ∈ (0, 1) and C > 0 independent of (s, y).
Therefore we have the following result.

Lemma 3.10. There exist σ ∈ (0, 1), δ > 0 and C > 0 such that for all small r0 > 0 and
all (s, y) ∈ {w > 0} ∩ Pr0(0, 0),

τ(y) ≥ −t0 + δ, u(τ, y) = ws(τ, y) ≤ Crσ0 ∀τ ∈ (−t0, s].

Due to (3.5), we can find k1 > 0 large enough such that for any fixed s, w(s, y) and
ws(s, y) are nonincreasing in the direction y−z0 for y ∈ Br0(0), where z0 = (−k1, 0, ..., 0) ∈
Rn. We now establish a polar coordinate system (ρ, θ) = (ρ, θ1, ..., θn−1) with origin at z0,
and write

∆w = wρρ +
n− 1

ρ
wρ +

1

ρ2
∆Sn−1w,
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where ∆Sn−1 denotes the Laplace-Beltrami operator on the unit sphere {ρ = 1}. The
choice of z0 ensures that ∂ρw ≤ 0 for y ∈ Br0(0). We define, as in [17],

v0 = −ρ∂ρw.

Clearly v0 ≥ 0 in {w > 0} ∩ Pr0(0, 0). Since all the partial derivatives of w vanish on
∂{w > 0}, we have v0 = 0 on ∂{w > 0} ∩ Pr0(0, 0).

Lemma 3.11. There exists M0 > 0 (depending on g) such that

∂sv0 −∆v0 +M0v0 ≥ 1 in {w > 0} ∩ Pr0(0, 0).

Proof. Using the polar coordinates, one easily calculates ∆v0 = −ρ−1∂ρ(ρ
2∆w). It follows

that
∂sv0 −∆v0 +M0v0

= −ρ−1∂ρ
[
ρ2(ws −∆w)

]
+ 2ws −M0ρ∂ρw

= ρ−1∂ρ

[
ρ2 − ρ2

∫ s

−t0

g(ws(τ, y)dτ

]
+ 2ws −M0ρ∂ρw

≥ 2− 2

∫ s

−t0

g(ws(τ, y))dτ − ρ

∫ s

−t0

∂ρ
[
g(ws(τ, y)) +M0ws(τ, y)

]
dτ.

We now choose M0 > 0 such that g̃(u) = g(u) + M0u is increasing in the interval
[0, ∥ws∥∞]. It follows that

∂ρg̃(ws) = g̃′(ws)∂ρws ≤ 0

in view of the monotonicity of ws for y ∈ Br0(0). Therefore

∂sv0 −∆v0 +M0v0 ≥ 2− 2

∫ s

−t0

g(ws(τ, y))dτ

≥ 2− Cw(s, y) ≥ 1

in {w > 0} ∩ Pr0(0, 0) provided that r0 is small enough. �

Lemma 3.12. There exist c1 > 0 and c2 > 0 such that for any (s0, y0) ∈ ∂{w > 0} ∩
Pr0/2(0, 0),

0 ≤ ws(s, y) ≤ c1|y − y0|2 + c2v0(s, y) in {w > 0} ∩ Pr0(0, 0).

Proof. Denote Ω0 = {w > 0} ∩ Pr0(0, 0) and denote by ∂pΩ0 its parabolic boundary. On
∂{w > 0} ∩ ∂pΩ0, ws = 0, and for y ∈ ∂pΩ0 \ ∂{w > 0}, |y − y0| ≥ c0 > 0. Therefore we
can find c1 > 0 such that

ws(s, y) ≤ c1|y − y0|2 ∀(s, y) ∈ ∂pΩ0.

We now choose c2 > 0 such that

(∂s −∆+M0)[c1|y − y0|2 + c2v0(s, y)] ≥ −2nc1 + c2 ≥ 1.

Next we compare ws and W := c1|y− y0|2+ c2v0(s, y) over Ω0 by the maximum principle.
Clearly ws ≤W on ∂pΩ0. Since

(∂s −∆+M0)ws = g(ws) +M0ws ≤ 1 in Ω0

provided that r0 is small enough, we conclude that ws ≤W in Ω0. �

We are now ready to prove the L∞ bound for the second order derivatives of w not
covered by Lemma 3.8.
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Lemma 3.13. There exists C > 0 such that

Σn
i=1|wsyi | ≤ C in {w > 0} ∩ Pr0/4(0, 0).

If further g ∈ C1,α([0, δ0]), then we have

|wss| ≤ C in {w > 0} ∩ Pr0/6(0, 0).

Proof. To simplify notations we will write Pr0 instead of Pr0(0, 0), etc.

Step 1. Boundedness of Σn
i=1|wsyi |.

We follow the ideas of the proof of Theorem 6 in [4]. Choose a function φ ∈ C∞
0 (Pr0/3),

0 ≤ φ ≤ 1, with φ = 1 in Pr0/4. For (s, y) ∈ {w > 0} ∩ Pr0 , we have

(φu)s −∆(φu) = φg(u) + (φs +∆φ)u− Σn
i=1(2φyiu)yi

= a− Σn
i=1∂yibi

with

a = φg(u) + (φs +∆φ)u, bi = 2φyiu.

We note that a and bi are well defined over Pr0 , and by Lemma 3.7, they are Hölder
continuous, say a, bi ∈ Cα(Pr0). Therefore the problem{

vs −∆v = a− Σn
i=1∂yibi in Pr0 ,

v = 0 on ∂pPr0

has a unique solution v ∈ H1+α(Pr0) (see Theorem 6.45 in [19]).
We now consider the function V = v − φu. Clearly

Vs −∆V = 0 in {w > 0} ∩ Pr0 .

For any unit vector ξ ∈ Rn, consider the difference quotient

Vh(s, y) :=
1

h
[V (s, y + hξ)− V (s, y)].

Define

Ω0 = {w > 0} ∩ Pr0/3, Ωh = {(s, y) ∈ Ω0 : dist(y, ∂Ω(s)) > h}.
Evidently

∂sVh −∆Vh = 0 in Ωh.

For any (s, y) ∈ Ω0 with dist(y, ∂Ω(s)) = h ∈ (0, r012), there exists y0 ∈ ∂Ω(s) such that
|y − y0| = h. By Lemma 3.12,

0 < u(s, y) ≤ c1|y − y0|2 + c2v0(s, y) ≤ c3h

since v0 = −ρ∂ρw is a Lipschitz function in the space variables due to Lemma 3.8; similarly,

0 < u(s, y + hξ) ≤ C1|y + hξ − y0|2 + c2v0(s, y + hξ) ≤ c4h.

It follows that for (s, y) ∈ Ω0 with dist(y, ∂Ω(s)) = h ∈ (0, r012),

|uh(s, y)| ≤
1

h
[u(s, y + hξ) + u(s, y)] ≤ c3 + c4.

Hence there exists c5 > 0 such that

|Vh| ≤ c5 on ∂Ωh for all small h > 0.

Applying the maximum principle to Vh over Ωh we deduce

|Vh| ≤ c5 in Ωh.
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Letting h→ 0 we obtain
|∂ξV | ≤ c5 in Ω0,

which implies that
|∂ξu| ≤ c6 in {w > 0} ∩ Pr0/4,

and therefore
Σn
i=1|wsyi | ≤ nc6 in {w > 0} ∩ Pr0/4.

Step 2. Bound for |wss|.
We first observe from the estimate proved in Step 1 that

|∂sv0| = |ρ∂ρsw| ≤ c7 in {w > 0} ∩ Pr0/4.

It follows that for (s− h, y) ∈ ∂{w > 0} ∩ Pr0/4 and h ∈ (0, r08 ),

0 < sup
|τ−s|<h

u(τ, y) ≤ sup
|τ−s|<h

c2v0(τ, y) ≤ c8h.

Denote
Ωh := {(s, y) ∈ {w > 0} ∩ Pr0/5 : s− τ(y) > 2h},

and recall that u(τ(y), y) = 0, u(τ, y) > 0 for τ > τ(y). For (s, y) ∈ Ωh, define

uh(s, y) =
1

h

∫ s+h

s
u(τ, y)dτ.

(It is crucial that we define uh this way instead of using mollifiers as on page 266 of [17].)
Clearly

∂su
h =

1

h
[u(s+ h, y)− u(s, y)],

and so for all small h > 0,

|∂suh| ≤ c9 for (s, y) ∈ Ωh with s = τ(y) + 2h,

and

|∇uh| =
∣∣∣∣1h

∫ s+h

s
∇u(τ, y)dτ

∣∣∣∣ ≤ sup
{w>0}∩Pr0/4

|∇u| ≤ c6 ∀(s, y) ∈ Ωh.

Choose a function ζ ∈ C∞
0 (Pr0/5), 0 ≤ ζ ≤ 1, with ζ = 1 in Pr0/6, and define, with

positive constants µ and σ to be specified,

W = ζ2(∂su
h)2 + µ|∇uh|2 + σ.

We are going to apply a Bernestern type argument to show that W has an upper bound
in Ωh that is independent of h.

Since we now assume that g ∈ C1,α([0, δ0]), by setting r0 small enough, we may assume
without loss of generality that 0 < u(s, y) < δ0 in {w > 0}∩Pr0 . Hence from the equation

us −∆u = g(u) in {w > 0} ∩ Pr0 ,

we see by the interior Schauder estimates that us and uyi (i = 1, ..., n) belong toH2+α({w >

0} ∩ Pr0). In particular, W ∈ H2+α(Ωh).
Let us also observe that, for (s, y) ∈ Ωh and all small h > 0,

∂su
h −∆uh = [g(u)]h with |[g(u)]h| ≤ c10,

|∂s[g(u)]h| =
1

h
|g(u(s+ h, y))− g(u(s, y))| ≤ c11|∂suh|,

|∇[g(u)]h| = |[g′(u)∇u]h| ≤ c12.
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We compute, for (s, y) ∈ Ωh,

∆W +W −Ws

= 2µΣi,j(u
h)2yiyj + 8ζ∂su

h∇ζ · ∇(∂su
h) + 2ζ2|∇(∂su

h)|2

+ 2
(
|∇ζ|2 + ζ∆ζ − ζζs

)
(∂su

h)2

+ 2µ∇uh · ∇(∆uh − ∂su
h) + 2ζ2(∂su

h)∂s
(
∆uh − ∂su

h
)

+ ζ2(∂su
h)2 + µ|∇uh|2 + σ

≥ 2µΣi,j(u
h)2yiyj − 8|∇ζ|2(∂suh)2

+ 2
(
|∇ζ|2 + ζ∆ζ − ζζs

)
(∂su

h)2

− 2µ|∇uh| |∇[g(u)]h| − 2ζ2|∂suh| |∂s[g(u)]h|

+ ζ2(∂su
h)2 + µ|∇uh|2 + σ

≥ 2µΣi,j(u
h)2yiyj − 8|∇ζ|2(∂suh)2

+ 2
(
|∇ζ|2 + ζ∆ζ − ζζs

)
(∂su

h)2

− 2c12µ|∇uh| − 2ζ2c11(∂su
h)2

+ ζ2(∂su
h)2 + µ|∇uh|2 + σ

= 2µΣi,j(u
h)2yiyj − (∂su

h)2ψ + µ(|∇uh| − c12)
2 + σ − c212µ,

where ψ is a bounded function (independent of h). Since

(∂su
h)2 = (∆uh + [g(u)]h)2 ≤ 2(∆uh)2 + 2|[g(u)]h|2 ≤ 2n2Σn

i=1(u
h)2yiyi + 2c210,

we easily see that if µ ≥ n2|ψ| and σ ≥ c212µ+ 2c210|ψ|, then

∆W +W −Ws ≥ 0 in Ωh for all small h > 0.

Applying the maximum principle to e−sW , which satisfies (e−sW )s −∆(e−sW ) ≤ 0 in
Ωh, we obtain, for (s, y) ∈ Ωh ∩ Pr0/6,

(∂su
h)2 ≤ sup

Ωh

W ≤ er
2
0/36 sup

Ωh

(e−sW ) ≤ er
2
0/36 sup

∂Ωh

(e−sW )

≤ er
2
0 sup
∂Ωh

W ≤ er
2
0(c29 + µc26 + σ).

Letting h→ 0 we obtain

|∂su|2 ≤ er
2
0(c29 + µc26 + σ) for (s, y) ∈ {w > 0} ∩ Pr0/6.

The proof is complete. �

We next establish a key smoothness lemma for h(s, y).

Lemma 3.14. Suppose that g ∈ C1,α([0, δ0]). Then the function h(s, y) is Lipschitz

continuous in {w > 0}∩Pr0(0, 0). Moreover, if u(s, ·) = ws(s, ·) ∈ C1,α(Ωr0(s)) uniformly
for s ∈ [−t0 + δ, r20], where δ is given in Lemma 3.10 and

Ωr0(s) = {y ∈ Ω(s) : dist(y, ∂Ω(s)) < r0} ∩Br0(0),

then h(s, ·) ∈ C1,α(Ωr0(s)) uniformly for s ∈ [−r20, r20].
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Proof. Step 1. h is Lipschitz.
Since ∂sh(s, y) = g(u(s, y)), it is clear that ∂sh is uniformly bounded in Pr0(0, 0). (It is

actually Lipschitz, recalling the conclusions in Lemma 3.13.)
Let (s, y) ∈ {w > 0}∩Pr0(0, 0), and ν ∈ Rn be a unit vector. We now consider ∂νh(s, y).

We first prove the following formula

(3.8) ∂νh(s, y) =

∫ s

τ(y)
g′(u(τ, y))∂νu(τ, y)dτ.

If τ(y) is a C1 function, this formula would follow directly from differentiating the
equation h(s, y) =

∫ s
τ(y) g(u(τ, y))dτ . Since it is unclear whether τ(y) is C1, a proof is

needed.
For small ϵ > 0, σ > 0, we consider

Iϵ : = ϵ−1
[
h(s, y + ϵν)− h(s, y)

]
= ϵ−1

∫ s

τ(y+ϵν)
g(u(τ, y + ϵν))dτ − ϵ−1

∫ s

τ(y)
g(u(τ, y))dτ

=

∫ s

τ(y)+σ
ϵ−1

[
g(u(τ, y + ϵν))− g(u(τ, y)

]
dτ [ =: I1 ]

+

∫ τ(y)+σ

τ(y)
ϵ−1

[
g(u(τ, y + ϵν))− g(u(τ, y))

]
dτ [ =: I2 ]

+

∫ τ(y)

τ(y+ϵν)
ϵ−1g(u(τ, y + ϵν))dτ. [ =: I3 ]

We observe that lim supϵ→0 τ(y+ϵν) = τ∗ ≤ τ(y) for otherwise we would have w(τ∗, y) =
0 with τ∗ > τ(y), contradicting the definition of τ(y). Therefore we may assume that
τ(y + ϵν) < τ(y) + σ for all small ϵ. By Lemmas 3.10 and 3.13, there exists C > 0 such
that

(3.9) |∂νu(τ, y)| ≤ C ∀τ ∈ [τ(y), r20], ∀y ∈ Br0(0).

It now follows easily that

I1 =

∫ s

τ(y)+σ
g′(u(τ, y))∂νu(τ, y)dτ + oϵ(1)

=

∫ s

τ(y)
g′(u(τ, y))∂νu(τ, y)dτ + oϵ(1) +O(σ),

where oϵ(1) → 0 as ϵ → 0 uniformly in σ, and |O(σ)| ≤ Cσ for some C > 0 independent
of ϵ.

To estimate I2, we note that for τ ∈ [τ(y), τ(y) + σ],

|g(u(τ, y + ϵν))− g(u(τ, y))| ≤ C1|u(τ, y + ϵν)− u(τ, y)| ≤ C2ϵ

due to the fact that u = ws is Lipschitz in view of Lemma 3.13. It follows that

I2 = O(σ).
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Since (τ(y), y) ∈ {w = 0}, we have, noting 0 ≤ g(u(τ, y + ϵν)) ≤ Cu(τ, y + ϵν),

|I3| ≤ ϵ−1
∣∣∣ ∫ τ(y)

τ(y+ϵν)
Cws(τ, y + ϵν)dτ

∣∣∣
= ϵ−1Cw(τ(y), y + ϵν)

≤ ϵ−1C3

(
dist

[
(τ(y), y + ϵν), (τ(y), y)

])2
[ by Lemma 3.2 ]

≤ C3ϵ.

Thus I3 = oϵ(1) and∣∣Iϵ − ∫ s

τ(y)
g′(u(τ, y))∂νu(τ, y)dτ

∣∣ = oϵ(1) +O(σ).

Letting ϵ→ 0 followed by letting σ → 0, we obtain (3.8).
Using (3.9) and (3.8) we obtain

|∂νh(s, y)| ≤ C ∀(s, y) ∈ {w > 0} ∩ Pr0(0, 0).

This proves the first part of the lemma.

Step 2. h(s, ·) is C1,α.

Suppose now u(s, ·) ∈ C1,α(Ωr0(s)) uniformly for s ∈ [−t0 + δ, r20]. Fix s ∈ [−r20, r20]
and y ∈ Ωr0(s). For small ϵ > 0 and fixed unit vector η ∈ Rn, we may assume that
y + ϵη ∈ Ωr0(s). For definiteness, we assume that τ(y) < τ(y + ϵη). (The other case is
handled similarly.) Then

Jϵ : = ϵ−α
[
∂νh(s, y + ϵη)− ∂νh(s, y)

]
=

∫ s

τ(y+ϵη)
ϵ−αg′(u(τ, y + ϵη))∂νu(τ, y + ϵη)dτ −

∫ s

τ(y)
ϵ−αg′(u(τ, y))∂νu(τ, y)dτ

=

∫ s

τ(y+ϵη)
ϵ−α

[
g′(u(τ, y + ϵη))∂νu(τ, y + ϵη)− g′(u(τ, y))∂νu(τ, y)

]
dτ [ =: J1 ]

−
∫ τ(y+ϵη)

τ(y)
ϵ−αg′(u(τ, y))∂νu(τ, y)dτ. [ =: −J2 ]

To simplify notations, for fixed τ ∈ [τ(y), s] we write

G(z) = g′(u(τ, z)), U(z) = ∂νu(τ, z).

Then
ϵ−α

[
G(y + ϵη)−G(y)

]
=
g′(u(τ, y + ϵη))− g′(u(τ, y))

|u(τ, y + ϵη)− u(τ, y)|α

(
|u(τ, y + ϵη)− u(τ, y)|

ϵ

)α

≤ C1

for some C1 > 0 independent of ϵ and τ , since g′ is Cα and u(τ, ·) is C1.
It follows that

|J1| ≤ (t0 + r20)ϵ
−α|G(y + ϵη)U(y + ϵη)−G(y)U(y)|

≤ (t0 + r20)
(
ϵ−α|G(y + ϵη)−G(y)| · |U(y + ϵη)|

+ ϵ−α|U(y + ϵη)− U(y)| · |G(y)|
)

≤ C2.
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To estimate J2, we observe that τ ∈ (τ(y), τ(y+ϵη)) implies y ∈ Ω(τ) and y+ϵη ̸∈ Ω(τ).
Therefore the line segment in Rn joining y and y + ϵη intersects ∂Ω(τ) at some point
z(τ) ∈ ∂Ω(τ). By the known smoothness of the free boundary, z(τ) is a continuous
function of τ ∈ [τ(y), τ(y + ϵη)], with z(τ(y)) = y and z(τ(y + ϵη) = y + ϵη. More
importantly we have |z(τ)− y| ≤ ϵ. We thus similarly have, for fixed τ ∈ [τ(y), τ(y+ ϵη)],

ϵ−α|G(y)U(y)−G(z(τ))U(z(τ))| ≤ C3

for some C3 > 0 independent of ϵ and τ . This implies that if the integrand function
G(y)U(y) in J2 is replaced by G(z(τ))U(z(τ)), the change in J2 is bounded by a constant,
namely ∣∣J2 − ∫ τ(y+ϵη)

τ(y)
ϵ−αg′(u(τ, z(τ))∂νu(τ, z(τ))dτ

∣∣ ≤ C̃3.

Moreover, (τ, z(τ)) ∈ ∂{w > 0} implies u(τ, z(τ)) = 0 and g′(u(τ, z(τ)) = g′(0). So∫ τ(y+ϵη)

τ(y)
ϵ−αg′(u(τ, z(τ))∂νu(τ, z(τ))dτ = ϵ−αg′(0)

∫ τ(y+ϵη)

τ(y)
∂νu(τ, z(τ))dτ.

We further have

ϵ−α
∣∣∂νu(τ, z(τ))− ∂νu(τ, y)

∣∣ ≤ ϵ−αC4|z(τ)− y|α ≤ C4,

and due to ∂νu(τ, y) = ∂τ
[
wν(τ, y)

]
, and the fact that wν = 0 on the free boundary, we

have

ϵ−α
∣∣∣ ∫ τ(y+ϵη)

τ(y)
∂νu(τ, y)dτ

∣∣∣
= ϵ−α

∣∣wν(τ(y + ϵη), y)− wν(τ(y), y)
∣∣

= ϵ−α
∣∣wν(τ(y + ϵη), y)− wν(τ(y + ϵη), y + ϵη)

∣∣
≤ C5.

Thus we have

ϵ−α
∣∣∣ ∫ τ(y+ϵη)

τ(y)
∂νu(τ, z(τ))dτ

∣∣∣ ≤ C6

and |J2| ≤ C7. Hence we have a constant C independent of s, ϵ and η such that |Jϵ| ≤ C.
For the remaining case s ∈ [−r20, r20] and y ∈ ∂Ω(s), if y + ϵη ∈ ∂Ω(s), then s = τ(y) =

τ(y + ϵν) and from (3.8) we find

∂νh(s, y + ϵη) = ∂νh(s, y) = 0;

if y + ϵ η ∈ Ωr0(s), then using s = τ(y) and ∂νh(s, y) = 0 we obtain

ϵ−α
[
∂νh(s, y + ϵη)− ∂νh(s, y)

]
=

∫ τ(y)

τ(y+ϵη)
ϵ−αg′(u(τ, y + ϵη))∂νu(τ, y + ϵη)dτ,

and our argument used for estimating J2 above can be applied to obtain a bound for this
quantity.

Thus for each y ∈ Ωr0/2(s), we can find a small ball Bϵ(y) (with ϵ depending on y) such

that ∂νh(s, ·) is in Cα(Bϵ(y)∩Ωr0/2(s)). The required conclusion now follows from a finite
covering argument, recalling that the constants bounding the Hölder norms in each step
of our arguments are independent of s. �

We are now ready to prove our higher regularity result.
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Theorem 3.15. Suppose that g ∈ C1,α([0, δ0]). Then ∂{w > 0} ∩ Pr0(0, 0) is of class
C2,α, and therefore the function y1 = f(s, y2, ..., yn) in Theorem 3.9 can be chosen to be
C2,α; moreover, fs > 0.

Proof. For clarity we divide the proof into several steps.

Step 1. The partial hodograph-Legendre transformation.
Through a suitable rotation of the y coordinate system around the origin, we may

assume that the function f satisfies additionally fyi(0, 0, ..., 0) = 0 for i = 2, ..., n. It
follows that wyiyj (0, 0) = 0 except for wy1y1(0, 0) = 1. We recall that wy1 is Lipschitz

continuous in {w > 0}∩Pr0(0, 0), and for fixed s, it is C1 in y with modulus of continuity
independent of s. As in [16], we extend wy1 into a full neighborhood of (0, 0) keeping the
above smoothness property, and consider the partial hodograph-Legendre transformation

ξ = (ξ1, ..., ξn) = (−wy1 , y2, ..., yn), v = ξ1y1 + w = −y1wy1 + w.

From [16] we know that for fixed s, y → ξ is a C1 local diffeomorphism near 0, and the
mapping (s, y) → (s, ξ) and its inverse are both Lipschitz continuous, and it changes the
free boundary y1 = f(s, y2, ..., yn) into part of the hyperplane {(s, ξ) : ξ1 = 0}, with

(3.10)


vs = ws, vξ1 = y1, vξi = wyi ,

vsξ1 = − wsy1
wy1y1

, vsξi = wsyi ,

wy1y1 = − 1
vξ1ξ1

, wy1yi =
vξ1ξi
vξ1ξ1

, wyjyi = vξjξi −
vξ1ξi
vξ1ξ1

vξjξ1 ,

i, j ∈ {2, ..., n}.

Hence (3.7) over {w > 0} ∩ Pr0(0, 0) becomes

Σn
i=2vξiξi −

1

vξ1ξ1
− 1

vξ1ξ1
Σn
i=2v

2
ξ1ξi

− vs = 1− h(s, vξ1 , ξ2, ..., ξn)

in N0∩{(s, ξ) : ξ1 < 0}, where N0 is a small neighborhood of (0, 0) in R×Rn. Furthermore,
from the definition of v and (3.10), in view of Lemmas 3.8, 3.13 and Theorem 3.9, one
finds that v, vs and vξi(i = 1, ..., n) are Lipschitz in N0 ∩ {(s, ξ) : ξ1 ≤ 0}, and for fixed s,
v(s, ξ) is C2 in ξ with modulus of continuity independent of s. In particular, v belongs to

W 1,2
p (N0 ∩ {(s, ξ) : ξ1 ≤ 0}) for 1 < p ≤ ∞.
We now denote the above fully nonlinear equation as

(3.11) F (D2v)− vs = 1− h(s, vξ1 , ξ2, ..., ξn),

where D2v is the Hessian of v in the space variables. To simplify notations, we write

Ω0 = {w > 0} ∩ Pr0(0, 0)}, Γ0 = ∂{w > 0} ∩ Pr0(0, 0),

and use O and Σ to denote their images in the (s, ξ) space under the transformation
(s, y) → (s, ξ). We note that Σ is contained in the hyperplane ξ1 = 0, and Γ0 can now be
represented by

(3.12) y1 = vξ1(s, 0, y2, ..., yn).

When r0 in the above definitions is replaced by some r′0 ∈ (0, r0), we denote the corre-
sponding sets by Ω′

0, Γ
′
0, O

′ and Σ′, respectively. We also write

Ω0(s) = {y : (s, y) ∈ Ω0}, Γ0(s) = {y : (s, y) ∈ Γ0}, etc.

Step 2. vξk(s, ·) (k = 1, ..., n) belong to C1,γ(O(s) ∪ Σ(s)) for any γ ∈ (0, 1).
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Since h(s, y) is Lipschitz in Ω0 ∪ Γ0 and vξ1 is Lipschitz in O ∪ Σ, we find that
h(s, vξ1 , ξ2, ..., ξ2) is Lipschitz in O ∪ Σ. Thus the function

h̃(s, ξ) := 1− h(s, vξ1 , ξ2, ..., ξn)

is Lipschitz in O∪Σ. Since vs is Lipschitz in this set, ĥ = vs+ h̃ is also Lipschitz in O∪Σ.
For fixed s ∈ [−r20, r20], we may now rewrite (3.11) as

F (Dv2) = ĥ(s, ·) ∈ C0,1 in O(s), v = 0 on Σ(s).

In the direction ξk, k ̸= 1, the difference quotient of v(s, ·),

∆k
ϵ v(s, ·) =

v(s, ·+ ϵek)− v(s, ·)
ϵ

,

satisfies the equation

(3.13) Σaϵij(∆
k
ϵ v)ξiξj = ∆k

ϵ ĥ in O′(s), ∆k
ϵ v = 0 on Σ′(s),

with

(3.14) aϵij(s, y) =

∫ 1

0
∂vξiξjF

[
(1− t)vξiξj (s, y) + tvξiξj (s, y + ϵek)

]
dt,

which is uniformly continuous in O′(s) ∪ Σ′(s), and the equation is uniformly elliptic in
O′(s) (see [16]). Therefore one can apply standard Lp theory to conclude that ∆k

ϵ v(s, ·)
has a W 2,p bound that is independent of ϵ, for any p > 1, since the right hand side of
the differential equation is uniformly bounded in L∞. It follows that vξk(s, ·) belongs to
W 2,p(O(s)) for any p > 1 and hence, by Sobolev embedding, vξk(s, ·) ∈ C1,γ(O(s) ∪Σ(s))
for any γ ∈ (0, 1). We further notice that the bounds for vξk in the norms of these spaces
are independent of s. We finally obtain the same bound for vξ1 from the differential
equation and the bound for vξk , k = 2, ..., n.

Step 3. v ∈ C2(O ∪ Σ).
Using (3.12) we now see that Γ0(s) ∈ C1,γ uniformly in s ∈ [−r20, r20]. Moreover the

above smoothness conclusion on v implies that wyiyj (s, ·) ∈ Cγ(Ω0(s) ∪ Γ0(s)) uniformly

in s ∈ [−r20, r20] (see page 351 of [16] for more details).
For fixed s ∈ [−r20, r20], the function u = ws(s, ·) satisfies

∆u = wss − g(ws) ∈ L∞ in Ω0(s), u = 0 on Γ0(s).

Since Γ0(s) ∈ C1,γ , by Lemma 3.1 of [17], u(s, ·) ∈ C1,γ(Ω0(s) ∪ Γ0(s)), and its modulus
of continuity is independent of s.

For later use, we note that since the above analysis can be applied near any point on
∂{w > 0} ∩

(
[−t0 + δ, r20] × Br0(0)

)
, we find that u(s, ·) ∈ C1,γ(Ωr′0

(s)) uniformly for

s ∈ [−t0 + δ, r20] (with r
′
0 sufficiently small).

We thus find that wsyi(s, ·) ∈ Cγ(Ω0(s)∪Γ0(s)) uniformly in s. Let us recall from Step
2 that the same conclusion holds for wyiyj . On the other hand, since h and hs are Hölder

continuous, by standard interior parabolic estimate we know that w ∈ C2(Ω0). Therefore
we would have w ∈ C2(Ω0 ∪ Γ0) if we can show that wsyi , wyiyj are all continuous along
Γ0. This can be done in the same way as on page 270 of [17]. We have thus proved that
w ∈ C2(Ω0 ∪ Γ0). It follows that v ∈ C2(O ∪ Σ).

Step 4. vs and vξk (k = 1, ..., n) belong to H1+γ(O ∪ Σ) for any γ ∈ (0, 1).
We now return to (3.11) and view it as a fully nonlinear parabolic equation of the form

(3.15) F (D2v)− vs = h̃ ∈ C0,1 in O, v = 0 on Σ.
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In the direction ξk, k ̸= 1, the difference quotient ∆k
ϵ v satisfies

(3.16) Σaϵij(∆
k
ϵ v)ξiξj − (∆k

ϵ v)s = ∆k
ϵ h̃ in O′, ∆k

ϵ v = 0 on Σ′,

with aϵij(s, y) given by (3.14), which are uniformly continuous in O′ ∪ Σ′ (due to the

continuity of vξiξj in O∪Σ), and the equation is uniformly parabolic in O′∪Σ′. Therefore

one can apply standard Lp theory for linear parabolic equations to conclude that ∆k
ϵ v has

a W 1,2
p bound that is independent of small ϵ > 0, for any p > 1, since ∆k

ϵ h̃ is uniformly

bounded in L∞. It follows that vξk belongs to W 1,2
p (O′) for any p > 1, and hence, by

Sobolev embedding, vξk ∈ H1+γ(O
′ ∪ Σ′) for any γ ∈ (0, 1). We can do the same in the

direction of s to deduce that vs ∈W 1,2
p (O′), and the bound for vξ1 finally follows from the

differential equation and the bound for vs, vξk , k = 2, ..., n. Therefore ∂ξivξ1 (i = 1, ..., n)
and ∂svξ1 all belong to Cγ(O′ ∪ Σ′), for any γ ∈ (0, 1). In view of (3.12), we have proved
that Γ0 ∈ C1,γ for any γ ∈ (0, 1).

Step 5. Completion of the proof.
In Step 3 we have shown that u(s, ·) ∈ C1,γ(Ωr′0

(s)) uniformly for s ∈ [−t0+ δ, r20] (with
r′0 sufficiently small). Therefore we may apply Lemma 3.14 to conclude that h(s, ·) ∈
C1,α(Ω′

0(s) ∪ Γ′
0(s)) uniformly for s ∈ [−(r′0)

2, (r′0)
2]. From (3.8) it is clear that ∂νh(s, y)

is Lipschitz continuous in s uniformly in y. From ∂sh(s, y) = g(ws(s, y)) and Lemma 3.13
we immediately see that ∂sh ∈ C0,1(Ω′

0 ∪ Γ′
0). Therefore h ∈ H1+α(Ω

′
0 ∪ Γ′

0). It follows

that h̃ ∈ H1+α(O
′ ∪ Σ′).

We now return to (3.15) and (3.16), and notice that due to Step 4 and the above

discussion on h̃, the terms aϵij and ∆k
ϵ h̃ are uniformly bounded in Hα(O

′ ∪Σ′). Therefore

we may apply standard Hölder estimates to conclude that vξk ∈ H2+α(O
′ ∪ Σ′). The

estimates for vs and vξ1 are obtained in a similar fashion as before. Therefore ∂ξivξ1 , ∂svξ1 ∈
C1,α(O′ ∪ Σ′), which implies that Γ0 ∈ C2,α.

From the equation

us −∆u = g(u) in Ω0, u = 0 on Γ0

we deduce, by the strong maximum principle, wy1s = ∂y1u < 0 on Γ0.
Rewriting (3.12) as y1 = f(s, y2, ..., yn) and recalling that wy1 vanishes on the free

boundary, we have

wy1(s, f(s, y
′), y′) ≡ 0.

Differentiating this identity with respect to s we obtain

∂sf = − wy1s

wy1y1

> 0

since wy1y1 > 0 on Γ0 due to wy1y1(0, 0) = 1 and r0 is small. �

Corollary 3.16. Suppose (2.2) and (3.3) hold, and g ∈ C1,α([0, δ0]) for some small

δ0 > 0. Then for any t > 0, Γ̃(t) := Γ(t) \ co(Ω0) is a C2,α hypersurface in Rn, and

Γ̃ := {(t, x) : x ∈ Γ̃(t), t > 0} is a C2,α hypersurface in Rn+1.

4. The monotonicity method and Lipschitz smoothness

In this section, we prove Theorem 3.6 by the monotonicity method. This is where (3.3)
is needed. More precisely the reflection argument to be used requires

(4.1) g(x, u) ≡ g(u).



26 Y. DU, H. MATANO AND K. WANG

Let (t0, x0) ∈ ∂{w > 0} with t0 > 0 and x0 ̸∈ co(Ω0). We will first show that Γ(t0) is
Lipschitz continuous near x0. The Hölder continuity in t then follows from a blowing up
argument.

The Lipschitz continuity of Γ(t0) near x0 follows from a simple reflection and comparison
argument as employed in [20]. This argument shows that u = wt is monotone in certain
directions, which implies the Lipschitz continuity of Γ(t0) near x0.

This monotonicity method was applied in [20] to the classical one phase Stefan problem
corresponding to the weak formulation (2.11) in this paper. However, in our situation
here, due to the nonlocal term H(wt) in (2.11), comparison arguments are difficult to
apply directly. Instead, we will apply the comparison argument to u = wt, which is the
unique weak solution to (2.1) as defined in [8].

Fix (t0, x0) as above, then fix T > t0. By Theorem 3.1 of [8], u = wt is the weak limit in
H1((0, T )×BR) and strong limit in L2((0, T )×BR) of a sequence of approximate solutions
um satisfying

(4.2)


∂t[αm(um)]− d∆um = g(um) in (0, T )×BR,

um = 0 on (0, T )× ∂BR,

um(0, x) = ũ0(x) in BR,

where BR is a ball of radius R with center a fixed point in Ω0, R is chosen large enough
so that Ω(t) ⊂ BR for t ∈ (0, T ] (see [8] for the choice of R), ũ0(x) is the zero extension of
u0(x), and αm is a sequence of smooth functions with the following properties: αm(ξ) → α(ξ) uniformly in any compact subset of R1 \ {0},

αm(0) → −dµ−1, α′
m(ξ) ≥ 1 for all ξ ∈ R1,

ξ − dµ−1 ≤ αm(ξ) ≤ ξ for all ξ ∈ R1,

where α(ξ) is defined in (2.15).

For any given z0 ̸∈ co(Ω0), we can associate a uniquely determined open set of unit
vectors Sz0 and an open cone Cz0 with vertex 0 in the following way:

Sz0 := {ν ∈ RN : |ν| = 1 , ν · (x− z0) < 0 ∀x ∈ co(Ω0)},

Cz0 := {λν : λ ∈ (0, 1), ν ∈ Sz0}.
Cz0 has the following geometric characterization: For any x ∈ z0 + Cz0 , let l0 denote

the straight line passing through z0 and x; then the hyperplane passing through z0 and
normal to l0 does not intersect co(Ω0).

Lemma 4.1. For s ∈ (0, T ), z ∈ BR \ co(Ω0) and ν ∈ Sz, we have ∂νum(s, z) ≤ 0.

Proof. Let P = Pz be the hyperplane passing through z with normal vector ν. P divides
BR into two parts. Denote S+ the part containing Ω0 and S− the other part. This is
possible because by the definition of ν, co(Ω0) ⊂ {x : ν · (x− z) < 0}.

For x ∈ S−, let x̃ be the reflection point of x in P . We claim that for (t, x) ∈ (0, T )×S−,

um(t, x) ≤ um(t, x̃).

In fact, this is true on the parabolic boundary ∂p((0, T ) × S−), and both um(t, x) and
vm(t, x) := um(t, x̃) satisfy the first equation in (4.2) over (0, T )×S−, so this claim follows
from the comparison principle (see Lemma 3.2 in [8]). From this claim, we immediately
obtain ∂νum(s, z) ≤ 0. �
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Lemma 4.2. For (s, z) ∈ (0, T ) × [BR \ co(Ω0)], and all ν ∈ Sz, we have ∂νu(s, z) ≤ 0.
Moreover, for every s0 ∈ (0, T ), z0 ∈ Ω(s0) \ co(Ω0) and ν ∈ Sz0, we have ∂νu(s0, z0) < 0.

Proof. Since um → u weakly inH1((0, T )×BR), the first part of the lemma follows directly
from Lemma 4.1.

We now consider the second part. Recall that u is continuous in {w > 0} = {u > 0}.
Therefore from u(s0, z0) > 0 we can find r0 > 0 small such that for (s, z) ∈ Pr0(s0, z0),
u(s, z) ≥ u(s0, z0)/2 > 0 and z ∈ Ω(s) \ co(Ω0).

Fix ν ∈ Sz0 . Since Sz varies continuously with z, we find that ν ∈ Sz for all z close to
z0. Thus by shrinking r0 > 0 we may assume that ν ∈ Sz whenever (s, z) ∈ Pr0(s0, z0).

We may now apply Lemma 4.1 to conclude that ∂νum(s, z) ≤ 0 for all (s, z) ∈ Pr0(s0, z0).
By the definition of α and αm, and by our choice of r0, for all large m, α(um) = um in
Pr0(s0, z0). This implies that um → u in H2+σ,loc(Pr0(s0, z0)) (0 < σ < 1) by standard
regularity theory for parabolic equations. It follows that ∂νu(s, z) ≤ 0 in Pr0(s0, z0).
Moreover, u satisfies

ut − d∆u = g(u) in Pr0(s0, z0).

Denote v = ∂νu and we find that

vt − d∆v = c(t, x)v and v ≤ 0 in Pr0(s0, z0),

for some c ∈ L∞(Pr0(s0, z0)). By the strong maximum principle we have either v(s0, z0) <
0 or v(t, x) ≡ 0 in P−

r0(s0, z0) := {(t, x) ∈ Pr0(s0, z0) : t ≤ s0}.
To complete the proof, it remains to show that the second alternative cannot happen.

Suppose by way of contradiction that v ≡ 0 in P−
r0(s0, z0). Then u(s0, z0 + rν) ≡ u(s0, z0)

for r ∈ [0, r0]. Since Ω(s0) ⊂ BR, we can find a maximal r∗ > 0 such that u(s0, z0 + rν) ≡
u(s0, z0) > 0 for r ∈ [0, r∗]. Set z∗ = z0 + r∗ν. Since ν ∈ Sz0 , the hyperplane in Rn that
passes through z∗ and is perpendicular to ν does not intersect co(Ω0), which indicates
that ν ∈ Sz∗ . Hence we can repeat the argument used above but with z0 replaced by
z∗ to conclude that for some r1 > 0 small, either ∂νu(s0, z

∗) < 0 or ∂νu(s0, x) ≡ 0 in
P−
r1(s0, z

∗). However, from the definition of z∗ we see that ∂νu(s0, z
∗) = 0 since u(s0, ·)

takes the constant value u(s0, z0) on the line segment connecting z0 and z∗. Thus the
second alternative must happen, which implies u(s0, z0+rν) ≡ u(s0, z0) for r ∈ [0, r∗+r1],
a contradiction to the maximality of r∗. This completes the proof. �

For any small δ > 0, let

Wδ := {x ∈ Rn : dist(x, co(Ω0)) ≤ δ}.
We now associate to each z0 ̸∈ co(Ω0) the unique open set Sδ

z0 and open cone Cδ
z0 which

are obtained by replacing co(Ω0) with Wδ in the definitions of Sz0 and Cz0 , respectively.
It is easily seen that for each δ > 0 and z0 ̸∈ co(Ω0), there exists ϵ > 0 small (depending
on dist(z0, co(Ω0)) and δ) such that

Sδ
z̃ ⊂ Sδ/2

z ⊂ Sz0 and Cδ
z̃ ⊂ Cδ/2

z ⊂ Cz0 if z, z̃ ∈ Bϵ(z0).

This property will be used in the proof of the next result.

Lemma 4.3. Suppose that t0 ∈ (0, T ), x0 ∈ Γ(t0) \ co(Ω0) and δ > 0 is small. Then
there exists ϵ > 0 small such that u(t0, x) ≡ 0 in (x0 + Cδ

x0
) ∩Bϵ(x0), and u(t0, x) > 0 in

(x0 − Cδ
x0
) ∩Bϵ(x0).

Proof. We first choose ϵ > 0 small so that Cx0 ⊃ C
δ/2
x ⊃ Cδ

x̃ for all x, x̃ ∈ B2ϵ(x0), and
B2ϵ(x0) ∩ co(Ω0) = ∅. We now show that u(t0, ·) ≡ 0 in (x0 + Cδ

x0
) ∩ Bϵ(x0). Otherwise
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there exists z0 in this set such that (t0, z0) ∈ {u > 0}. We may now use Lemma 4.2

to deduce that u(t0, x) > u(t0, z0) > 0 for x ∈ (z0 − C
δ/2
z0 ) ∩ Bϵ(x0). This implies that

(t0, x0) ∈ {u > 0}, which clearly contradicts the assumption that (t0, x0) ∈ ∂{u > 0}.
We show next that u(t0, x) > 0 in (x0 − Cδ

x0
) ∩ Bϵ(x0). Since Γ(t0) is the boundary of

the open set Ω(t0), there exists xi ∈ Ω(t0) such that xi → x0 as i → ∞. By Lemma 4.2,
we have u(t0, x) > 0 in (xi − Cδ

x0
) ∩ Bϵ(x0) for all large i. Letting i → ∞ we find that

u(t0, x) > 0 in (x0 − Cδ
x0
) ∩Bϵ(x0). �

Because the cone Cz depends continuously on z, by Lemma 4.3 it is easily seen that
for any x0 ∈ Γ(t0) \ co(Ω0) with t0 ∈ (0, T ), in a neighborhood Br(x0) of x0, Γ(t0) can be
represented by a Lipschitz graph, with the bound of its Lipschitz constant determined by
the opening angle of Cδ

x0
.

Fix such a pair (t0, x0) and fix δ > 0 small. We now choose the coordinate system so
that x0 is the origin. Moreover, if νx0 ∈ Sx0 is the axis of Cx0 , we choose the xn-axis to

agree with νx0 . Let r0 > 0 be a small number so that Cδ
x ⊂ C

δ/2
x0 for all x ∈ Br0(x0). By

the continuous dependence of Ω(t) on t (see Proposition 3.4), we can find r1 > 0 small
such that for t ∈ (t0 − r21, t0 + r21), At := Γ(t) ∩ {λνx0 : λ ∈ R1} ⊂ Br0/2(x0). We may

now apply Lemma 4.3 to conclude that At consists of a single point, say At = {yt}, and
Γ(t) ∩ Br0(x0) is a Lipschitz hypersurface of the form xn = f(t, x′), with yt = f(t, 0),
for x′ varying in a small r-neighborhood Ur of 0 ∈ Rn−1, and r > 0 can be chosen to be
independent of t ∈ (t0 − r21, t+ r21).

Now we show that f(t, x) is 1
2–Hölder continuous with respect to t in (t0− r21, t0+ r21)×

Ur/2.

Lemma 4.4. ∃C > 0, such that

|f(t, x′
)− f(s, x

′
)| ≤ C|t− s|

1
2 for t, s ∈ (t0 − r21, t0 + r21) and x

′ ∈ Ur/2.

Proof. Assume by way of contradiction that ∃(tj , x
′
j) and (sj , x

′
j) such that tj , sj ∈ (t0 −

r21, t0 + r21), x
′
j ∈ Ur/2 and

|f(tj , x
′
j)− f(sj , x

′
j)|

|tj − sj |1/2
→ +∞ as j → ∞.

Without loss of generality, assume tj − sj = r2j > 0. Then by the monotonicity of Ω(t) we

have f(tj , x
′
j) ≥ f(sj , x

′
j). Thus

(4.3)
f(tj , x

′
j)− f(sj , x

′
j)

(tj − sj)1/2
→ +∞.

Denote xj = (x
′
j , f(tj , x

′
j)) and yj = (x

′
j , f(sj , x

′
j). Then define the rescaling

wj(t, x) :=
1

r2j
w(tj + r2j t, xj + rjx) for (t, x) ∈ Pr−1

j
(0, 0),

where w is the solution of (2.11).
By Lemma 3.2, for all large j, wj is uniformly bounded in any compact set K of

(−∞,+∞)×Rn. By rescaling the equation of w, we see (d∆−∂t)wj is uniformly bounded in

K. Thus for ∀p > 1, wj is uniformly bounded inW 1,2
p (K). After passing to a subsequence,
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we can assume wj converges to w∞ uniformly in any compact set of (−∞,+∞)×Rn. By
Lemma 3.3, w∞ is nontrivial. In particular,

(4.4) sup
P1(0,0)

w∞ ≥ C(n) > 0.

Because (sj , yj) ∈ ∂{w > 0} = ∂{u > 0}, we have, with x̃j := (0,
f(sj ,xj)−f(tj ,xj)

rj
),

(−1, x̃j) ∈ ∂{wj > 0} = ∂{uj > 0},
where uj denotes the corresponding rescaling of u. By the monotonicity of uj , ∀λ ≥ 0

such that x ∈ x̃j + λSδ
x0

⊂ BR/ri ,

(−1, x) ∈ {uj = 0} = {wj = 0}, i.e., wj(−1, x) = 0.

Passing to the limit and noticing our assumption (4.3), we see

w∞(−1, x) ≡ 0 for x ∈ Rn.

On the other hand, using (3.2), we obtain

(d∆− ∂t)w∞ = dµ−1χ{w∞>0} ≥ 0 in R1 × Rn,

and by Lemma 3.2, 0 ≤ w∞(t, x) ≤ C(n)r2 in P−
r (0, 0) for all r > 0. Combing these three

facts we get w∞ ≡ 0 in (−1,∞)× Rn. This contradicts (4.4). �
Clearly Theorem 3.6 is a consequence of the above results.

As in [8], we know that when (2.2) holds, the weak solution u of (2.1) is defined for all
t > 0. Let us end this section by observing the following easy consequence of Corollary
3.16.

Theorem 4.5. Apart from (4.1) if we assume further that g ∈ C1,α([0, δ0]) and Ω0 is
convex, then Γ(t) is C2,α for t > 0, and the weak solution is classical.

Proof. By Proposition 2.4, Γ(t)∩Ω0 = ∅ for t > 0. Hence we may apply Corollary 3.16 to
conclude. �

5. The spreading-vanishing dichotomy

In this section, we study the asymptotic behavior of Γ(t) and u(t, x) as t → ∞. We
always assume that (4.1) holds. We will also need a further restriction on g:

(5.1) g(x, u) = g(u) ≤ 0 for all u ≥M > 0.

In Section 2, we have proven that Ω(t) is expanding in t; thus we can define the limit

Ω∞ =
∪
t>0

Ω(t).

5.1. Dichotomy for Ω∞. In this subsection we prove the following dichotomy.

Theorem 5.1. Suppose that (5.1) hold and g ∈ C1,α([0, δ0]) for some small δ0 > 0. Then
either Ω∞ = Rn or it is a bounded set. Moreover, if Ω∞ = Rn, then for all large t, Γ(t) is
a smooth closed hypersurface, and there exists an increasing function M(t) such that

Γ(t) ⊂ {x ∈ Rn :M(t)− d0
2
π ≤ |x| ≤M(t)};

if Ω∞ is bounded, then u(t, x) → 0 uniformly in x as t→ ∞. Here d0 denotes the diameter
of Ω0.
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It is natural to ask: When Ω∞ = Rn, what is the asymptotic behavior of u as t → ∞?
Without further restrictions on g, this cannot be answered. When g takes the logistic
nonlinearity, this question is answered in the next subsection. In one space dimension
with bistable or combustion nonlinearities, it is shown in [10] that the limit of u is usually
the stable positive steady-state except in the transition case, where the limit is a ground
state (for the bistable case) or the ignition constant (for combustion nonlinearity).

Theorem 5.1 is a consequence of some stronger results below. The proofs are based on
the following simple geometric result, which is an analogue of Theorem 2 in [20] but we
do not have the restriction that n ≥ 3.

Theorem 5.2. Suppose that (4.1) holds and g ∈ C1,α([0, δ0]). Then at any point x0 ∈
Γ(t) \ co(Ω0), the inward normal line to Γ(t) at x0 intersects co(Ω0).

Proof. Fix t > 0 and x0 ∈ Γ(t)\co(Ω0). Then choose r > 0 small so that Br(x0)∩co(Ω0) =
∅. To simplify notations, we will write W0 = co(Ω0).

Since u is smooth in Ω(t) ∩ Br(x0), we can use the Hopf boundary lemma to conclude
that |∇xu(t, x)| ̸= 0 on Γ(t)∩Br(x0), where ∇xu(t, x)|Γ(t)∩Br(x0) is understood as its limit
when x ∈ Ω(t) goes to Γ(t) ∩Br(x0). It follows that for all small ε > 0, the level set

Γε = {x ∈ Rn : u(t, x) = ε}

is close to Γ(t) in Br(x0), and Γε ∩ Br(x0) is a smooth hypersurface. We will show that
any ray inward normal to Γε ∩ Br(x0) intersects W0. The conclusion of the first part of
the theorem then follows by letting ε → 0 because u is C2,α up to Γ(t) ∩ Br(x0) and
|∇xu(t, x)| ̸= 0 on Γ(t) ∩Br(x0).

Let x1 be any point on Γε and l the ray inward normal to Γε at x1. Assuming that

(5.2) l ∩W0 = ∅,

we will derive a contradiction.
By the definition of Sx1 we easily see that (5.2) implies the existence of a ν ∈ Sx1

satisfying ν ⊥ l. By Lemma 4.2, we have ∂νu(t, x1) < 0. On the other hand, since ν
is tangent to the level surface Γε of u, we must have ∂νu(t, x1) = 0. This contradiction
completes the proof. �

Let x∗ be any point in Ω0 and define

m(t) = min
x∈Γ(t)\co(Ω0)

|x− x∗|, M(t) = max
x∈Γ(t)

|x− x∗| = max
x∈Ω(t)

|x− x∗|.

Theorem 5.3. Suppose that (4.1) holds, g ∈ C1,α([0, δ0]), BR0(x∗) ⊃ co(Ω0), and there

exists t0 > 0 such that M(t0) > (π+1)R0. Then for t ≥ t0, Γ̃(t) := Γ(t)\ co(Ω0) is a C
2,α

closed hypersurface in Rn, with m(t) > M(t)− πR0. Thus

Γ̃(t) ⊂ {x ∈ Rn : M(t)− πR0 < |x− x∗| ≤M(t)}, ∀t ≥ t0.

Proof. Without loss of generality, assume x∗ = 0 is the origin. Fix t ≥ t0 and let x0 ∈ Γ(t)
satisfy |x0| =M(t). Since Ω(t) is expanding, M(t) ≥M(t0).

We claim that Γ̃(t) is a closed hypersurface in Rn and Γ̃(t) ∩ BR(0) = ∅, with R =
M(t)− πR0. Clearly the conclusions of the theorem will follow from this claim.

Let Π0 be an arbitrary two dimensional hyperplane in Rn that passes through the origin
and x0. We may rotate the coordinate system so that Π0 is the x1x2-plane with x0 having
coordinates (M(t), 0) on Π0. In view of Theorem 5.2, Π0 ∩ Γ̃(t) contains a curve l0 with
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x0 ∈ ℓ0, and at each point on l0 the normal line intersects the disc {ρ < R0} on Π0, where
the polar coordinates (ρ, θ) on Π0 are used. This implies that l0 can be expressed as

ρ = r(θ), θ− ≤ θ ≤ θ+,

with −π ≤ θ− < 0 < θ+ ≤ π. The normal line property implies that R0 > r′(θ) > −R0 for

all θ ∈ (θ−, θ+). We may assume that ℓ0 is the maximal connected component of Π0∩ Γ̃(t)
that contains x0.

We thus obtain, for any P0 = (r(θ0), θ0) ∈ ℓ0,

|P0| = r(θ0) =M(t) +

∫ θ0

0
r′(θ)dθ > M(t)−R0|θ0| ≥M(t0)− πR0.

SinceM(t0)−πR0 > R0, clearly Bϵ(P0)∩co(Ω0) = ∅, where ϵ =M(t0)−(π+1)R0. Hence

Bϵ(P0) ∩ Π0 ∩ Γ̃(t) is a C2,α curve, which necessarily forms part of ℓ0. This implies that
θ− = −π, θ+ = π and ℓ0 is a closed curve in Π0, and ℓ0 ∩BR(0) = ∅.

Since Π0 is arbitrary, the above conclusion implies that Γ̃(t) is a closed hypersurface in

Rn, with Γ̃(t) ∩BR(0) = ∅, as we claimed. �

5.1.1. [Ω∞ unbounded implies Ω∞ = Rn]. Now we come to the proof of Theorem 5.1
for the case that Ω∞ is unbounded. In such a case, we necessarily have

(5.3) lim
t→+∞

M(t) = +∞.

By Theorem 5.3, this implies

lim
t→+∞

m(t) = +∞,

and hence Γ(t) \ co(Ω0) goes to infinity in every direction. However, this says nothing
about the part Γ(t) ∩ co(Ω0), which is nonempty for small t > 0 if Ω0 is not convex.

If Ω0 is convex, this set is empty and the proof of Theorem 5.1 for unbounded Ω∞ is
thus complete. The case that Ω∞ is unbounded and that Ω0 is not convex is covered in
the following theorem.

Theorem 5.4. Suppose that (5.1) holds and g ∈ C1,α([0, δ0]). If Ω∞ is unbounded and
not convex, then there is a T0 > 0, such that for all t ≥ T0,

co(Ω0) ⊂ Ω(t).

Proof. Without loss of generality, we assume 0 ∈ Ω0. Suppose by way of contradiction
that the conclusion of the theorem is false. Then we can define

ρ(t) := max
x∈co(Ω0)\Ω(t)

|x|, ∀t > 0.

Since Ω(t) is expanding as t increases, ρ(t) is non-increasing for t ∈ (0,∞). Take R > 0
such that co(Ω0) ⊂ BR = BR(0). By Theorem 5.3, there is a T > 0, such that for all
t ≥ T ,

B5R \ co(Ω0) ⊂ Ω(t),

and hence u > 0 on [T,+∞)× [B5R \Bρ(t)], and ρ(t) < R for t > 0.
Since 0 ∈ Ω0 and Ω0 is open, there exists r0 > 0 such that Br0 ⊂ Ω0. Thus Br0 ⊂ Ω(t)

and ρ(t) ≥ r0 for all t > 0. It follows that

(5.4) ρ∞ := lim
t→∞

ρ(t) ∈ [r0, R).
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Because 0 ≤ u(t, x) ≤ M , we can write g(u) = c(t, x)u with ∥c∥L∞ ≤ C0. Since
B5R \ co(Ω0) ⊂ Ω(t) for t ≥ T , by the Harnack inequality (see, e.g., Theorem 6.27 in [19]),
we can find a constant C such that, for any t ≥ T + 3,

(5.5) σ(t) :=
1

2
inf

B3R\B2R

u(t, ·) ≥ C sup
[t−5/2,t−1]×(B4R\BR)

u.

The arguments below are divided into four steps.

Step 1. There exists C > 0 such that

(5.6) σ(t) ≥ C sup
y∈Γ̃(τ)

|∇u(τ, y)| ∀τ ∈ [t− 2, t− 1], ∀t ≥ T + 3.

The normal line property of Γ̃(t) in Theorem 5.2 implies that Γ̃(t) is uniformly Lipschitz
continuous for all t ≥ T . The proof of the regularity of ∂{u > 0} indicates that the
C2,α-norm of the local expression of the free boundary given in Theorem 3.15, y1 =
f(s, y2, ..., yn), is determined by the modulus of Lipschitz continuity of Γ̃(t) and the L∞

bound of u. Therefore, near each point (t0, x0) ∈ Γ̃T := {(t, x) : x ∈ Γ̃(t), t ≥ T}, after a
suitable rotation of the x-coordinate system, Γ̃T can be expressed as x1 = f(t, x2, ..., xn),
with f ∈ C2,α and its C2,α-norm bounded by a constant independent of (t0, x0). Therefore

there exists r ∈ (0, R/2) and η > 1 such that for any t0 > T + 1 and x0 ∈ Γ̃(t0), one can
find a parabolic half ball

Br = {(t, x) : |x− y0|2 + η(t0 − t) < r2, t < t0}
that touches {u > 0} at (t0, x0) from outside:

Br ∩ {u > 0} = ∅, Br ∩ Γ̃T = {(t0, x0)}.
We now define

Ar := {(t, x) ∈ B2r \ Br : η(t0 − t) < r2/2}.
Clearly ∂pAr = S1

r ∪ S2
r ∪ S3

r with

S1
r = {(t, x) ∈ ∂pBr : η(t0 − t) < r2/2},
S2
r = {(t, x) ∈ ∂pB2r : η(t0 − t) < r2/2},
S3
r = {(t, x) : r2/2 ≤ |x− y0|2 ≤ 3r2/2, η(t0 − t) = r2/2}.

For β > 0 to be determined, we define

v(t, x) = eβρ
2 − eβr

2
with ρ2 = |x− y0|2 + η(t0 − t).

A direct calculation gives

vt − d∆v = β
[
− η + d(4β|x− y0|2 + 2N)

]
eβρ

2
.

In Ar, |x− y0|2 = ρ2 − η(t0 − t) ≥ r2/2. Hence

vt − d∆v ≥ β
[
− η + 2dβr2 + 2Nd]eβρ

2 ≥ k v in Ar,

provided that β is chosen large enough. Here k > 0 is chosen such that g(ξ) ≤ kξ for all
ξ ≥ 0.

Clearly [
(S2

r ∪ S3
r ) ∩ {u > 0}

]
∩ Br = (S2

r ∪ S3
r ) ∩ {(t0, x0)} = ∅.

Therefore we can find ϵ0 > 0 depending only on r and η such that

|x− y0|2 + η(t0 − t) ≥ (1 + ϵ0)r
2 for (t, x) ∈ (S2

r ∪ S3
r ) ∩ {u > 0}.
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It follows that

v ≥ m0 := eβ(1+ϵ0)r2 − eβr
2
in (S2

r ∪ S3
r ) ∩ {u > 0}.

We may write

∂p(Ar ∩ {u > 0}) = S̃1
r ∪ S̃2

r

with

S̃1
r = Ar ∩ ∂{u > 0}, S̃2

r = (S2
r ∪ S3

r ) ∩ {u > 0}. [ Recall S1
r ∩ {u > 0} = ∅.]

Denote M0 = supS̃2
r
u, and define v0 =

M0
m0
v. Then

u = 0 ≤ v0 on S̃1
r , u ≤M0 ≤ v0 on S̃2

r ,

and

(v0)t − d∆v0 ≥ k v0 ≥ g(v0) in Ar ∩ {u > 0}.
Therefore we can apply the maximum principle to conclude that v0 ≥ u in Ar ∩ {u > 0}.
It follows that, with ν0 = (x0 − y0)/|x0 − y0|,

∂ν0u(t0, x0) ≤ ∂ν0v0(t0, x0) =
M0

m0
2βreβr

2
= CM0,

with C independent of (t0, x0). Since the sphere {|x− y0| = r} is tangent to Γ̃(t0) at x0,
we have ∂ν0u(t0, x0) = |∇u(t0, x0)|. Therefore

|∇u(t0, x0)| ≤ CM0.

Here and in what follows, we will use C to denote a generic positive constant which does
not depend on t or t0, but its value may change from place to place.

If we denote

Γ̃δ(t) = {x ∈ Ω(t) : dist(x, Γ̃(t)) ≤ δ}, ∀t ≥ T,

then by shrinking r if necessary we can guarantee

S̃2
r ⊂ Nr(t0) := {(t, x) : x ∈ Γ̃2r(t), t0 − 1/2 ≤ t ≤ t0}.

By Lemma 4.2, for all t ≥ T ,

sup
B3R\B2R

u(t, ·) ≥ sup
Γ̃2r(t)

u(t, ·).

Therefore

sup
[t0−1/2,t0]×(B3R\B2R)

u ≥ sup
Nr(t0)

u ≥M0 ≥ C|∇u(t0, x0)|.

Since x0 ∈ Γ̃(t0) is arbitrary, this implies that

sup
[t0−1/2,t0]×(B3R\B2R)

u ≥ C sup
y∈Γ̃(t0)

|∇u(t0, y)|.

Taking t0 ∈ [t− 2, t− 1] and using (5.5), we obtain (5.6).

Step 2. An upper bound for σ(t).
For any fixed s ≥ T + 3, we choose a smooth function vs over B5R \ Bρ(s) with the

following properties:

(i) vs is radially symmetric,
(ii) vs ≡ σ(s) = 1

2 infx∈B3R\B2R
u(s, x) in B3R \B2R,

(iii) 0 < vs ≤ u(s, ·) in B5R \Bρ(s),
(iv) vs = 0 on ∂B5R ∪ ∂Bρ(s).
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Since g is locally Lipschitz, there exists k > 0 such that g(u) ≥ −ku in [0,M ]. We now
consider the problem

(5.7)


vt − d∆v = −kv, t > s, h(t) < r < 5R,

v(t, 5R) = 0, v(t, h(t)) = 0, t > s,

h′(t) = −µvr(t, h(t)), t > s,

h(s) = ρ(s), v(s, r) = vs(r), ρ(s) ≤ r ≤ 5R.

Similar to Theorem 2.1 in [7], we know that (5.7) has a unique classical solution pair
(v, h) defined on some maximal time interval [s, s + T1), with T1 ∈ (0,∞], and the Hopf
boundary lemma guarantees that h′(t) < 0 for all t ∈ (s, s + T1). By Theorem 4.3 of [8],
we find that v ≤ u in {(t, x) : t ∈ (s, s+ T1), h(t) < |x| < 5R}, and

(5.8) ρ∞ ≤ ρ(t) ≤ h(t) for all t ∈ (s, s+ T1).

This implies that T1 = ∞.
Let (λ1, ϕ1) denote the first eigenpair of

−∆ϕ = λϕ in B3R \B2R, ϕ = 0 on ∂(B3R \B2R),

with ϕ1 > 0 in B3R \B2R and ∥ϕ1∥∞ = 1. Set

v∗(t, x) = σ(s)e−(dλ1+k)(t−s)ϕ1(x).

We have

∂tv∗ − d∆v∗ = −kv∗ for t ≥ s, x ∈ B3R \B2R,

v∗ = 0 < v for t ≥ s, x ∈ ∂(B3R \B2R),

and

v∗(s, x) = σ(s)ϕ1 ≤ σ(s) = vs(|x|) = v(s, |x|) for x ∈ B3R \B2R.

Therefore we can apply the standard comparison principle to conclude that

v(t, |x|) ≥ v∗(t, x) = σ(s)e−(dλ1+k)(t−s)ϕ1(x) for t > s and x ∈ B3R \B2R.

In particular,

(5.9) v(t, |x|) ≥ Cσ(s) for |x| = 5

2
R, t ∈ [s+ 1/4, s+ 1],

with C independent of s.

Step 3. Completion of the proof under an extra assumption.
We claim that

(5.10) vr(t, h(t)) ≥ Cv(t− 1/6, 5R/2) for t ≥ s+ 1/4.

Assuming (5.10) we now continue with the proof. In view of (5.9), it follows from (5.10)
that

h′(t) = −µvr(t, h(t))
≤ −Cv(t− 1/6, 5R/2)

≤ −Cσ(s) for t ∈ [s+
5

12
, s+

7

6
].

Recalling h(s) = ρ(s), h(s+ 1) ≥ ρ(s+ 1) and h′(t) < 0, we obtain

ρ(s+ 1)− ρ(s) ≤ h(s+ 1)− h(s) =

∫ s+1

s
h′(t)dt ≤

∫ s+1

s+1/2
h′(t)dt.
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Hence
ρ(s+ 1)− ρ(s) ≤ −Cσ(s).

Making use of (5.6), we obtain

ρ(s+ 1)− ρ(s) ≤ −C sup
τ∈[s−2,s−1]

(
sup

y∈Γ̃(τ)
|∇u(τ, y)|

)
≤ −C

∫ s−1

s−2
sup

y∈Γ̃(τ)
|∇u(τ, y)|dτ.

Using the above inequality for s0 = T + 3, sj+1 = sj + 1 successively, we obtain

ρ(sj+1)− ρ(sj) ≤ −C
∫ sj−1

sj−2

sup
y∈Γ̃(τ)

|∇u(τ, y)|dτ, j = 2, 3, ...,

and hence

ρ∞ − ρ(s2) ≤ −C
∫ ∞

s0

sup
y∈Γ̃(τ)

|∇u(τ, y)|dτ,

which yields ∫ ∞

T+3
sup

y∈Γ̃(τ)
|∇u(τ, y)|dτ <∞.

We show next that this leads to a contradiction.
Fix a unit vector ν ∈ Rn, and define r(t) > 0 by

r(t)ν ∈ Γ̃(t), t ≥ T.

Then u(t, r(t)ν) ≡ 0 and it follows that

ut(t, r(t)ν) + r′(t)∇u(t, r(t)ν) · ν ≡ 0.

By the free boundary condition,

ut(t, r(t)ν) = µ|∇u(t, r(t)ν)|2.
Hence

r′(t) = −µ |∇u(t, r(t)ν)|2

∇u(t, r(t)ν) · ν
.

Since the inward normal line of Γ̃(t) at r(t)ν intersects co(Ω0) ⊂ BR, and for t ≥ T ,
r(t) ≥ 5R, there exists a positive constant c0 such that

−∇u(t, r(t)ν) · ν ≥ c0|∇u(t, r(t)ν)| ∀t ≥ T.

It follows that

r′(t) ≤ µ

c0
|∇u(t, r(t)ν)| ≤ µ

c0
sup

y∈Γ̃(t)
|∇u(t, y)| ∀t ≥ T.

Therefore

lim
t→∞

r(t) = r(T + 3) +

∫ ∞

T+3
r′(t)dt

≤ r(T + 3) +
µ

c0

∫ ∞

T+3
sup

y∈Γ̃(t)
|∇u(t, y)|dt <∞,

a contradiction to the fact that r(t) ≥ m(t) → ∞ as t→ ∞. This finishes the proof under
the assumption of (5.10).

Step 4. Proof of (5.10).
Since h(t) ≥ ρ∞ > 0, the sphere {|x| = h(t)} is uniformly smooth for all t > s. Thus

as in Step 1, one can obtain a uniform bound of the C2,α-norm of the free boundary
{(t, x) : |x| = h(t), t ≥ s + ϵ} for any ϵ > 0. In particular, h′(t) is uniformly bounded for
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t ≥ s + 1/4. Hence for each t0 ≥ s + 1/4 and x0 ∈ ∂Bh̃(t0)
, we can construct a parabolic

half ball
Br := {(t, x) : |x− y0|2 + η(t0 − t) < r2, t < t0}

such that
Br ⊂ {v > 0}, Br ∩ ∂{v > 0} = {(t0, x0)}.

Moreover, r ∈ (0, R/2) and η > 1 can be chosen independently of such (t0, x0).
Define

Ãr := {(t, x) ∈ Br : |x− y0|2 > r2/2}.
Then ∂pÃr = Σ1

r ∪ Σ2
r, with

Σ1
r = {(t, x) ∈ ∂pBr : η(t0 − t) < r2/2},

Σ2
r = {(t, x) : |x− y0|2 = r2/2, 0 < η(t0 − t) ≤ r2/2}.

For β > 0 to be determined, we define

z(t, x) = e−βρ2 − e−βr2 with ρ2 = |x− y0|2 + η(t0 − t).

Then
zt − d∆z = β[η − d(4β|x− y0|2 + 2N)]e−βρ2

≤ β(η − 2dβr2 − 2dN)e−βρ2

≤ −kz for (t, x) ∈ Ãr,

provided that β is chosen large enough.
Clearly z = 0 on Σ1

r and

z ≤ M̃0 := e−βr2/2 − e−βr2 on Σ2
r.

We may assume that η > 4r2 with r sufficiently small. Then there exists δ > 0 independent
of (t0, x0) such that 0 < δ ≤ r and

Σ2
r ⊂ Ñ(t0) := {(t, x) : δ + h(t) ≤ |x| ≤ 4R, 0 < t0 − t ≤ 1/8}.

Set

m̃0 := inf
Ñ(t0)

v, z0 =
m̃0

M̃0

z.

Then
z0 = 0 ≤ v on Σ1

r , z0 ≤ m̃0 ≤ v on Σ2
r

and
(z0)t − d∆z0 ≤ −kz in Ãr.

It follows from the comparison principle that z0 ≤ ṽ in Ãr. Hence, with ν = y0−x0

|y0−x0| , we

have

∂νv(t0, |x0|) ≥ ∂νz0(t0, x0) = 2βre−βr2 m̃0

M̃0

= Cm̃0,

that is, vr(t0, h(t0)) ≥ Cm̃0.
Since limt→∞ h(t) =: h∞ ∈ [ρ∞, R), by enlarging T if necessary, we may assume, without

loss of generality, that

h(t) ∈ (h∞, h∞ +
δ

4
) ∀t ≥ T.

Hence

Ñ(t0) ⊂ [t0, t0 +
1

8
]×NR ⊂

{
(t, x) :

δ

4
+ h(t) ≤ |x| ≤ 4R, t ∈ [t0, t0 +

1

8
]

}
,
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where NR = {x : h∞ + δ
2 ≤ |x| ≤ 4R}.

By Harnack’s inequality,

m̃0 = inf
Ñ(t0)

v ≥ inf
[t0,t0+

1
8
]×NR

v ≥ Cv(t0 −
1

6
,
5

2
R).

Therefore

vr(t0, h(t0)) ≥ Cv(t0 − 1/6, 5R/2) for t0 ≥ s+ 1/4,

which is (5.10) with t = t0. The proof of the theorem is now complete. �

5.1.2. [Ω∞ bounded implies u→ 0]. The following result shows that vanishing happens
when Ω∞ is bounded.

Theorem 5.5. If Ω∞ is bounded and (5.1) holds, then as t → +∞, u(t, x) converges to
0 uniformly.

We will prove this theorem by the following three lemmas. Note that when Ω∞ is
bounded, then in the approximate problem (4.2), we can choose any BR(0) ⊃ Ω∞ and
it works for all T > 0. Moreover, if we extend u(t, x) by 0 outside Ω(t), then it satisfies
(2.14) for all BR ⊃ Ω∞.

In the discussions below, we always assume that the conditions of Theorem 5.5 are
satisfied. We first prove an energy inequality. Let u be the weak solution of (2.1). Define

E(u)(t) :=

∫
Ω(t)

{
− 1

2

[
ut − g(u)

]
u−G(u)

}
dx, with G(u) =

∫ u

0
g(t)dt.

Lemma 5.6. For 0 < T1 < T2 < +∞, we have

(5.11) E(u)(T2)− E(u)(T1) ≤ −
∫ T2

T1

∫
Ω(t)

|∂tu(t, x)|2dxdt,

where u is the unique weak solution of (2.1). Moreover, there exists C0 > 0 such that

E(u)(t) ≥ −C0 ∀t > 0.

Proof. Choose any BR ⊃ Ω∞ and let um be the solution of (4.2). Define

E(um)(t) :=

∫
BR

[d
2
|∇um(t, x)|2 −G(um(t, x))

]
dx.

From (4.2) we can calculate directly to get, for t2 > t1 + δ,

E(um)(t2)−E(um)(t1) =

∫ t2

t1

∫
BR

−α′
m(um)|∂tum|2dxdt

≤
∫ t2

t1

∫
BR

−|∂tum|2dxdt.

Here we have used the fact α′
m ≥ 1. Integrating the above inequality for t1 over [T1, T1+δ]

and then for t2 over [T2, T2 + δ], we obtain

(5.12)

∫ T2+δ

T2

E(um)(t)dt−
∫ T1+δ

T1

E(um)(t)dt ≤ −δ
∫ T2

T1+δ

∫
BR

|∂tum|2dxdt.



38 Y. DU, H. MATANO AND K. WANG

A simple comparison consideration shows that 0 ≤ um ≤ C := max{M, ∥u0∥∞}. Since
um → u weakly in H1((0, T ) × BR) and strongly in L2((0, T ) × BR) for any T > 0, and
since um ≤ C for all m, we have

lim inf
m→∞

∫ T2

T1+δ

∫
BR

|∂tum|2dxdt ≥
∫ T2

T1+δ

∫
BR

|∂tu|2dxdt

and

lim
m→∞

∫ T2

T1+δ

∫
BR

G(um)dxdt =

∫ T2

T1+δ

∫
BR

G(u)dxdt.

We show next that for T > 0,

Eδ(T ) := lim
m→∞

∫ T+δ

T
E(um)(t)dt exists.

Define, for ξ ≥ 0,

Am(ξ) =

∫ ξ

0
αm(s)ds, A(ξ) =

∫ ξ

0
α(s)ds = ξ2/2,

and

Bm(ξ) = αm(ξ)ξ, B(ξ) = α(ξ)ξ = ξ2.

From the definitions of αm and α, we easily see that

Am → A and Bm → B uniformly over any bounded subset of [0,∞).

We now multiply (4.2) by um and integrate over [T, T + δ] × BR for an arbitrary T > 0,
and use integration by parts. It results

(5.13)

∫ T+δ

T

∫
BR

(
∂t[αm(um)]um + d|∇um|2

)
dxdt =

∫ T+δ

T

∫
BR

g(um)umdxdt.

Since um is uniformly bounded and um → u in L2, we have

lim
m→∞

∫ T+δ

T

∫
BR

g(um)umdxdt =

∫ T+δ

T

∫
BR

g(u)udxdt.

Since ∫ T+δ

T
∂t[αm(um)]umdt =Bm(um(T + δ, x))−Bm(um(T, x))

−Am(um(T + δ, x)) +Am(um(T, x)),

we find that

lim
m→∞

∫ T+δ

T

∫
BR

∂t[αm(um)]umdxdt

=

∫
BR

[
B(u(T + δ, x))−B(u(T, x))−A(u(T + δ, x)) +A(u(T, x))

]
dx

=

∫
BR

1

2

[
u2(T + δ, x)− u2(T, x)

]
dx.

Here we have used the fact that um(t, ·) → u(t, ·) a.e. in BR, which is guaranteed by the
strong convergence of um → u in L2((0, T )×BR) and the fact that um(t, ·) are uniformly
bounded in H1(BR) (see the energy inequality of um in Lemma 3.3 of [8]).
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It now follows from (5.13) that

(5.14)

lim
m→∞

∫ T+δ

T

∫
BR

d|∇um|2dxdt

= −
∫
BR

{1

2

[
u2(T + δ, x)− u2(T, x)

]
−

∫ T+δ

T
g(u)udt

}
dx.

Therefore

(5.15)

Eδ(T ) : = lim
m→∞

∫ T+δ

T
E(um)(t)dt

= −1

2

∫
BR

{1

2

[
u2(T + δ, x)− u2(T, x))

]
−

∫ T+δ

T

[
g(u(t, x))u(t, x)− 2G(u(t, x))

]
dt
}
dx,

and for T > 0,

lim
δ→0

δ−1Eδ(T ) = E(T ),

with

E(T ) :=

∫
BR

{
− 1

2

[
ut(T, x)− g(u(T, x))

]
u(T, x)−G(u(T, x))

}
dx.

Since u(t, ·) = 0 in BR \ Ω(t), clearly E(T ) = E(u)(T ). Letting m → ∞ in (5.12), we
obtain

(5.16) Eδ(T2)− Eδ(T1) ≤ −δ
∫ T2

T1+δ

∫
BR

|∂tu|2dxdt.

Diving this inequality by δ and letting δ → 0, we obtain (5.11).
Since we have a uniform bound for all um, for arbitrary T > 0 and δ > 0,

0 ≤ lim
m→∞

∫ T+δ

T

∫
BR

d

2
|∇um|2dxdt

= lim
m→∞

∫ T+δ

T
E(um)dt+ lim

m→∞

∫ T+δ

T

∫
BR

G(um)dtdx

≤ Eδ(T ) + δC0,

where C0 > 0 is independent of T and δ. It follows that

E(T ) = lim
δ→0

Eδ(T )δ
−1 ≥ −C0, ∀T > 0.

The proof is complete. �

The above energy inequality plays a key role in the proof of the following result.

Lemma 5.7. For any sequence ti → +∞, vi(t, x) := u(ti + t, x) converges to 0 in
L2((−1, 1)×BR).

Proof. Let BR ⊃ Ω∞. By Lemma 5.6 we have, for T ≥ T0 > 0 and δ > 0,∫ T+δ

T

∫
BR

|∂tu|2dxdt ≤ E(u)(T )− E(u)(T + δ) ≤ E(u)(T0) + C0.



40 Y. DU, H. MATANO AND K. WANG

By (5.14) and the fact that 0 ≤ u ≤M , there exists C1(δ) > 0 such that∫ T+δ

T

∫
BR

|∇u|2dxdt ≤ lim
m→∞

∫ T+δ

T

∫
BR

|∇um|2dxdt ≤ C1(δ), ∀T > 0, ∀δ > 0.

Thus ∃C > 0, such that for all i,∫ ∫
(−1,1)×BR

(
|∇vi|2 + |∂tvi|2

)
dxdt ≤ C.

Because of the uniform bound for all vi, by the compactness embedding theorem for
Sobolev spaces, we find a v such that, subject to passing to a subsequence, vi converges
to v weakly in H1((−1, 1)×BR) and strongly in L2((−1, 1)×BR).

Since E(T ) ≥ −C0, by Lemma 5.6, lim
t→+∞

E(t) exists. Moreover,∫ ∫
(−1,1)×BR

|∂tvi|2 ≤ E(ti − 1)− E(ti + 1)),

which converges to 0 as i→ +∞. By the weak convergence of ∂tvi to vt in L
2((−1, 1)×BR),

we get ∫ ∫
(−1,1)×BR

|vt|2 = 0,

that is, v is independent of t.
The remaining part is to prove v ≡ 0. By definition of the weak solutions, ∀φ ∈

C∞
0 ((−1, 1)×BR),

(5.17)

∫ ∫
(−1,1)×BR

α(vi)φt + vi∆φ+ g(vi)φ = 0.

We claim that

lim
i→+∞

∫ ∫
(−1,1)×BR

α(vi)φt = 0.

This can be seen by decomposing the region of integration into three parts:

∆1
i := (−1, 1)× Ω(ti − 1), ∆2

i := (−1, 1)× [BR \ Ω∞]

and

∆3
i := (−1, 1)× [Ω∞ \ Ω(ti − 1)].

Over ∆1
i , vi > 0 and hence α(vi) = vi. Over ∆2

i , vi = 0 and hence α(vi) = −dµ−1; thus
the integral is 0. Since Ω(t) expands to Ω∞ as t → ∞, we find that |∆3

i | → 0 as i → ∞.
Therefore we have∫ ∫

(−1,1)×BR

α(vi)φtdtdx =

∫ ∫
(−1,1)×Ω∞

viφtdtdx+

∫ ∫
∆3

i

[α(vi)− vi]ϕtdtdx.

Our claim now follows by letting i→ ∞, since v is independent of t.
By passing to the limit in (5.17) and choosing suitable test functions of the form

φ(t, x) = ξ(t)ϕ(x), we obtain∫
BR

[
v∆ϕ+ g(v)ϕ

]
dx = 0 ∀ϕ ∈ C∞

0 (BR).

That is, v ∈ H1(BR) is a solution of

−∆v = g(v) in BR.
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By our construction, v ≥ 0 in BR and v = 0 in BR \ Ω∞. Then by the strong maximum
principle, v ≡ 0. This implies that the entire sequence vi → 0 in L2((−1, 1)×BR). �

The convergence of vi → 0 can be improved.

Lemma 5.8. Let vi be defined as in Lemma 5.7; then vi converges to 0 uniformly in any
compact subset of (−1, 1)×BR.

Proof. For any T > 0, by (2.5) we easily deduce that∫ T

0

∫
BR

[−uϕt + d∇u · ∇ϕ]dxdt−
∫
BR

ũ0(x)ϕ(0, x)dx ≤
∫ T

0

∫
BR

g(u)ϕdxdt

for every nonnegative ϕ ∈ C1((0, T )×BR) satisfying ϕ = 0 near ([0, T ]×∂BR)∪{T}×BR.
Thus u satisfies (in the weak sense) ut − d∆u ≤ g(u) in (0,∞)×BR,

u = 0 on (0,∞)× ∂BR,
u = ũ0 on {0} ×BR.

It follows that vj satisfies (in the weak sense)

vt − d∆v ≤ g(v) in (−1, 1)×BR, v = 0 on (−1, 1)× ∂BR.

Let K be any compact subset of (−1, 1) × BR. We now choose Rj ∈ (0, R) and sj ∈
(1/2, 1) such that as j → ∞, Rj decreases to some R0 > 0 and sj decreases to some s0, such
that BR0 ⊃ Ω∞ and K ⊂ (−s0, s0)×BR0 . For j = 1, 2, ..., denote Qj := (−sj , sj)×BRj ,
and define {pj} by

p1 = 2,
1

pj+1
=

{ 1
pj

− 2
n+2 if pj <

n+2
2 ,

2
n+3 if pj ≥ n+2

2 .

Clearly there exists k > 0 such that for j = k, pj = pk >
n+2
2 . Let V j

i be the unique
solution of 

Vt − d∆V = g(vi) in Qj ,
V = 0 on (−sj , sj)× ∂BRj ,
V = vi on {−sj} ×BRj .

Then by the maximum principle we deduce vi ≤ V j
i in Qj . Moreover, by the interior Lp

estimates, we have
∥V 1

i ∥W 1,2
p1

(Q2)
≤ C1∥vi∥L2(Q1),

and by the Sobolev embedding theorem (see Lemma 3.3 in Chapter II of [18]),

∥V 1
i ∥Lp2 (Q2) ≤ C∥V 1

i ∥W 1,2
p1

(Q2)
≤ C2∥vi∥L2(Q1).

Thus
∥vi∥Lp2 (Q2) → 0 as i→ ∞.

By a simple induction argument we deduce

∥V j
i ∥W 1,2

pj
(Qj+1)

≤ Cj∥vi∥Lpj (Qj) → 0 as i→ ∞

for every j ≥ 1. Then by Lemma 3.3 in Chapter II of [18],

∥V k
i ∥L∞(Qk+1) ≤ C∥V k

i ∥W 1,2
pk

(Qk+1)
→ 0 as i→ ∞.

It follows that
∥vi∥L∞(Qk+1) → 0 as i→ ∞.
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Since K ⊂ Qk+1, we thus deduce vi → 0 uniformly in K. �

Clearly Theorem 5.5 is a consequence of Lemma 5.8. The proof of Theorem 5.1 is thus
completed.

5.2. The spreading-vanishing dichotomy with logistic nonlinearity. In this sub-
section we use Theorem 5.1 combined with results of [7] and [8] to obtain the spreading-
vanishing dichotomy described in Theorem 1.3.

Theorem 5.9. Suppose that Ω∞ = Rn, g(x, u) = au− bu2, and M(t) is given in Theorem

5.1. Then there exists a constant k0(µ) ∈ (0, 2
√
ad) such that

lim
t→∞

M(t)

t
= k0(µ),

and for every c ∈ (0, k0(µ)),

(5.18) lim
t→∞

max
|x|≤ct

∣∣∣u(t, x)− a

b

∣∣∣ = 0.

Proof. Since Ω∞ = Rn, from Theorem 5.1 we see that M(t) → ∞ as t → ∞. For T > 0
to be determined later, we consider the auxiliary radially symmetric problem

(5.19)


vt − d∆v = av − bv2 t > 0, 0 < r < h(t),

vr(t, 0) = 0, v(t, h(t)) = 0 t > 0,

h′(t) = −µvr(t, h(t)) t > 0,

h(0) = R0, v(0, r) = uT (r) 0 ≤ r ≤ R0,

where R0 =M(T )− d0
2 π and uT (r) is a C

1 function that satisfies uT (R0) = 0 and

0 < uT (|x|) ≤ u(T, x) for |x| ≤ R0.

By [7], there exists R∗ > 0 (determined by a, d and the dimension n) such that when
R0 ≥ R∗, the unique positive solution (v, h) of (5.19) satisfies

lim
t→∞

h(t)

t
= k0(µ).

We now choose T > 0 such that R0 =M(T )− d0
2 π ≥ R∗.

We then consider the problem

(5.20)


Vt − d∆V = aV − bV 2 t > 0, 0 < r < k(t),

Vr(t, 0) = 0, V (t, k(t)) = 0 t > 0,

k′(t) = −µVr(t, k(t)) t > 0,

k(0) =M(T ), V (0, r) = uT (r) 0 ≤ r ≤M(T ),

where uT (r) is a C
1 function that satisfies uT (M(T )) = 0 and

uT (|x|) ≥ u(T, x) for |x| ≤M(T ).

Denote O(t) = Bh(t)(0) and G(t) = Bk(t)(0). Then by Theorem 6.1 of [8], we have

O(t) ⊂ Ω(t+ T ) ⊂ G(t) ∀t ≥ 0.

Hence

h(t) ≤M(t+ T )− d0
2
π < M(t+ T ) ≤ k(t).
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By [7], we also have

lim
t→∞

k(t)

t
= k0(µ).

Therefore we necessarily have

lim
t→∞

M(t)

t
= k0(µ).

Now (5.18) follows directly from Theorem 6.4 of [8]. �
Remark 5.10. k0(µ) is determined in Proposition 3.1 of [7]. It is an increasing function

of µ and k0(µ) → 2
√
ad as µ→ ∞. More analysis of k0(µ) is given in [3].

To complete the proof of Theorem 1.3, it remains to show the following result.

Theorem 5.11. Suppose that g(u) = au − bu2. Then there exists µ∗ ≥ 0 such that
Ω∞ = Rn for µ > µ∗, and Ω∞ is bounded when µ ∈ (0, µ∗]. Moreover, µ∗ = 0 if Ω0

contains a ball of radius R∗ :=
√

d
aλ1, where λ1 is the first eigenvalue of

−∆ϕ = λϕ in B1(0), ϕ = 0 on ∂B1(0),

and µ∗ > 0 if Ω0 is contained in an open ball of radius R∗.

Proof. Choose a small ball B∗ ⊂ Ω0 and consider problem (1.5) with Ω0 replaced by B∗,
and with u0 replaced by a radially symmetric function u0 satisfying 0 < u0 ≤ u0 in B∗ and
u0 = 0 on ∂B∗. This is a radially symmetric problem with a unique radially symmetric
solution u∗ and we can use the result of [7] to conclude that there exists µ∗ > 0 such that
spreading happens when µ > µ∗. By Theorem 4.3 of [8], we have u ≥ u∗ and hence we
necessarily have Ω∞ = Rn for µ > µ∗.

Define

µ∗ := inf{µ0 > 0 : Ω∞ = Rn for µ > µ0}.
Clearly µ∗ ≤ µ∗. If µ∗ = 0, then there is nothing to prove.

Suppose next that µ∗ > 0. We claim that for any µ ≤ µ∗, Ω∞ is bounded. To show this
we need to consider the continuous dependence of the solution of (2.11) on the parameter
µ. So we denote the unique solution by wµ to stress this dependence. For fixed T > 0,

and µn → µ0 > 0, from (2.11) we find that wµn is bounded in W 1,2
p (ΩT,R) for any p > 1.

Therefore by passing to a subsequence wµn converges weakly in W 1,2
p (ΩT,R) to some w0

which satisfies (2.11) with µ = µ0. By uniqueness, w0 = wµ0 . Hence the entire sequence
converges to wµ0 . By Sobolev embedding, the convergence hold inH1+γ(ΩT,R), ∀γ ∈ (0, 1).
Therefore wµ → wµ0 uniformly in compact subsets of (0,∞) × Rn as µ → µ0 > 0. (We
assume that wµ(t, ·) and wµ0(t, ·) are extended by zero outside their supports.) This proves
the continuous dependence of the solution on µ.

Let us also observe that Ωµ(t) ⊃ Ωµ0(t) for µ ≥ µ0 > 0, where Ωµ(t) = {x : uµ(t, x) > 0}
and uµ is the unique solution of (1.5). Indeed, by Theorem 3.5 of [8], uµ ≥ uµ0 , which
implies Ωµ(t) ⊃ Ωµ0(t) for all t > 0.

We now come back to the proof of the claim. Suppose by way of contradiction that it
is not true. Then there exists µ0 ∈ (0, µ∗] such that Ω∞ = Rn when µ = µ0. By Theorem
5.3, m(t) → ∞ as t → ∞, and therefore for any R > 0, there exists T > 0 such that we
can put a ball B2R of radius 2R inside Ωµ0(T ). By the continuity of wµ in µ, there exists
ϵ > 0 depending on T and R such that BR ⊂ Ωµ0−ϵ(T ). By Theorems 2.1 and 2.5 of [7],
if R ≥ R∗, problem (1.5) with Ω0 replaced by BR, and with u0 replaced by any smooth
radially symmetric function u0 positive in BR and vanishing on ∂BR, has a unique radial
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solution vµ and spreading happens for all µ > 0. We now fix R > R∗ and choose the
radially symmetric u0 such that u0 ≤ uµ0−ϵ(T, ·) in BR. By Theorem 4.3 of [8], we have
uµ0−ϵ(T + t, ·) ≥ vµ0−ϵ(t, ·), which implies that Ωµ(t) → Rn as t → ∞ for µ = µ0 − ϵ and
hence for all µ ≥ µ0 − ϵ due to the monotonicity of Ωµ(t) in µ. But this contradicts the
definition of µ∗ since µ0 − ϵ < µ∗. The claim is proved.

Let B∗ be a ball such that Ω0 ⊂ B∗. We want to show that in this case µ∗ > 0. Consider
(1.5) with Ω0 replaced by B∗ and u0 replaced by a radially symmetric u0 satisfying u0 ≥ u0
in Ω0, u0 is positive in B

∗ and vanishes on ∂B∗. This new problem has a radially symmetric

solution u∗ and u ≤ u∗. By [7], if the radius of B∗, denoted by R, is less than R∗ =
√

d
aλ1,

then there exists a unique µ∗ > 0 such that vanishing happens for the new problem when
µ ∈ (0, µ∗]. Therefore Ω∞ must be bounded when µ ≤ µ∗, which implies that µ∗ ≥ µ∗ > 0.

On the other hand, if Ω0 contains a ball of radius R∗, then we denote this ball by B∗
and argue as at the beginning of the proof; we obtain that µ∗ ≤ µ∗ = 0. Therefore µ∗ = 0.
This completes the proof. �
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