REGULARITY AND ASYMPTOTIC BEHAVIOR OF NONLINEAR
STEFAN PROBLEMS*
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ABSTRACT. We study the following nonlinear Stefan problem

us — dAu = g(u) for z € Q(t),t > 0,
uw =0 and u; = M\V¢u|2 for x € I'(¢t),t > 0,
u(0, ) = uo(x) for x € Qo,

where Q(t) C R" (n > 2) is bounded by the free boundary I'(¢), with ©Q(0) = Qq, p and
d are given positive constants. The initial function ug is positive in 0y and vanishes on
0. The class of nonlinear functions g(u) includes the standard monostable, bistable
and combustion type nonlinearities. We show that the free boundary I'(¢) is smooth
outside the closed convex hull of Qo, and as t — oo, either Q(t) expands to the entire R",
or it stays bounded. Moreover, in the former case, I'(t) converges to the unit sphere when
normalized, and in the latter case, v — 0 uniformly. When g(u) = au — bu?, we further
prove that in the case Q(¢) expands to R™, u — a/b as t — oo, and the spreading speed
of the free boundary converges to a positive constant; moreover, there exists u* > 0 such
that Q(t) expands to R"™ exactly when p > p*.

1. INTRODUCTION

In this paper, we study the following nonlinear Stefan problem

uy — dAu = g(u) for z € Q(t),t > 0,
(1.1) u =0 and u; = p|Vyu* for z € T(t),t >0,
u(0,x) = up(z) for x € Qy,

where Q(t) C R" (n > 2) is bounded by the free boundary I'(¢), with Q(0) = Qo, ¢ and d
are given positive constants. We assume that )y is a bounded domain that agrees with the
interior of its closure Qg, 9 satisfies the interior ball condition, and ug € C(Q0)NH ()
is positive in ¢ and vanishes on 9€)y. For the nonlinear function g, we make the following
assumptions:

(i) g(0) = 0 and g € C1*([0, &]) for some dp > 0 and « € (0,1),

1.2
(1.2) (ii) g(u) is locally Lipschitz in [0, 00), g(u) < 0 in [M, c0) for some M > 0.
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We note that these conditions are satisfied by standard monostable, bistable and com-
bustion type nonlinearities. Less restrictions on g will be assumed in the main body of
the paper when it is possible to do so.

By [8], (1.1) has a unique weak solution u(t, z) defined for all ¢ > 0; the free boundary
is understood as I'(t) = 98(t), Q(t) = {z : u(t,xz) > 0}. The following theorems are the
main results of this paper.

Theorem 1.1. For any fized t > 0, [(t) := T(t) \ @(Q) is a C> hypersurface in R™,
and I := {(t,z) : x € T(t), t > 0} is a C*>“ hypersurface in R"TL. In particular, the free
boundary is always C>* smooth if Qg is conver.

Here ©6(29) stands for the closed convex hull of €.

Theorem 1.2. €(t) is expanding in the sense that Qg C Q(t) C Q(s) if 0 <t < s. More-
over, Qoo := U=0S2(t) is either the entire space R™, or it is a bounded set. Furthermore,
when Qoo = R™, for all large t, T'(t) is a smooth closed hypersurface in R™, and there exists
a continuous function M (t) such that

d
(1.3) T(t) C {x: M(t) — 5% <zl < M)}
and when Qoo is bounded, lim¢ o [|u(t, )| oo (o)) = 0-
Here dj is the diameter of .

Theorem 1.3. If g(u) = au—>bu? with a,b positive constants, then there exists u* > 0 such

that Qoo = R™ if > p*, and Qo is bounded if p € (0, u*]. Moreover, when Qs = R™,

the following holds:
M(t)

lim ——= =k li
A e = R, e

mm@—%:@%e@%Mm,

where ko(p) is a positive increasing function of p satisfying lim, o ko(p) = 2V ad.

There exists R* > 0 such that p* > 0 if () is contained in a ball with radius R*, and
p* =0 if Oy contains a ball of radius R* (see Theorem 5.11). The asymptotic spreading
speed ko(u) is determined by a class of traveling wave solutions, called semi-wave solutions
in [7] and [3]; detailed analysis of the function ko(x) and the associated semi-wave solutions
can be found in [3].

Problem (1.1) reduces to the classical one phase Stefan problem when g(u) = 0, which
describes the melting of ice in contact with water, with u(z, t) representing the temperature
of the water. In the setting of (1.1), the water region €(¢) is surrounded by ice, and the
free boundary I'(t) = 0€(t) represents the interphase between water and ice. A nonlinear
Stefan problem of the form (1.1) may arise if water is replaced by a chemically reactive and
heat diffusive liquid surrounded by ice, with g(u) representing the reaction. As explained
below, in this work, u may also be viewed as the population density of an invasive species.

In the classical Stefan problem, it is often assumed that the water region Q(t) is bounded
by two surfaces: a fixed surface I'g, where a Dirichlet boundary condition is prescribed
(u = ¢(t,x) for x € T'yp and t > 0), and a moving surface I'y (¢) representing the water ice
interphase. But we will only consider the situation described by (1.1).

The classical one phase Stefan problem has been extensively investigated in the past 50
years (see, for example, [4, 11, 12, 13, 14, 16, 20] and the references therein). In contrast,
the nonlinear Stefan problem is much less studied.
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Problem (1.1) is also closely related to the following Cauchy problem:

L4 U —dAU = g(U) forzeR" t>0,
(14) U(0,2) = up(x) for x € R",
where ug(x) is given in (1.1) but extended to R™ with value 0 outside €. It was shown in
[8] (Theorem 5.4) that if u,, denotes the unique weak solution of (1.1), with §,(t) = {z :
uy(t,x) > 0}, then as p — oo, Q,(t) = R"™ (V¢ > 0) and

u, — U in CLF72170((0, 00) x R™) (V6 € (0,1)),

loc
where U is the unique solution of (1.4).

The Cauchy problem (1.4) arises in a variety of applied problems and has been ex-
tensively studied. For example, in the classical work [1], for monostable, bistable or
combustion type nonlinearities, it was shown that if liminf, ., U(¢t,z) > 0, then there
exists ¢* > 0 such that, for any small € > 0,

lim max U(t,z)=0
t—00 |z|>(c*+e)t
and

lim  min U(t,x) > 0.
t—00 |z|<(c*—e)t

The number ¢* is usually called the spreading speed, and is determined by certain traveling
wave solutions associated to (1.4). In particular,

¢ =2Vad = lim ko(p)
=00

if g(u) = au — bu?.
Our work here was motivated by recent research on the following special case of (1.1),

u — dAu = au — bu? for x € Q(t),t > 0,
(1.5) u =0 and u; = p|Vyul* for x € T(t),t >0,
u(0,2) = up(z) for x € Q.

Problem (1.5) was introduced in [9, 7, 8] to better understand the spreading of invasive
species, where u represents the population density of the species, and the free boundary
stands for the spreading front (see [3] for a deduction of the free boundary condition based
on ecological assumptions).

In space dimension 1, and in several space dimensions with radial symmetry, it was
proved in [9] and [7] that problem (1.5) exhibits a spreading-vanishing dichotomy: as
t — oo, either Q(t) expands to the entire R” and u converges to the positive steady-state
a/b (spreading), or Q(t) stays bounded and u — 0 (vanishing). In these cases the free
boundary and the solution are smooth due to the special geometry used, which greatly
simplifies the analysis. It is natural to ask whether the spreading-vanishing phenomenon
is retained in a general geometric setting. A positive answer to this question would suggest
that the spreading-vanishing dichotomy is a rather robust phenomenon.

A first step in this direction was made in [8], where the existence and uniqueness of
a weak solution for (1.1) with a general {2y was established by adapting ideas from [12].
As mentioned above, it was also shown in [8] that as y — oo, the weak solution of (1.1)
converges to the solution of the corresponding Cauchy problem (1.4). Moreover, for the
special problem (1.5), it was shown in [8] that under suitable conditions on the initial
values, as t — oo, (t) expands to the entire space R"™ and u converges to the positive
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equilibrium solution a/b, and under a set of different conditions €2(¢) remains bounded and
u converges to 0. However, these two sets of conditions are not complementing to each
other, and whether there is a sharp spreading-vanishing dichotomy as in the special cases
studied in [9] and [7], was unclear. The regularity of the free boundary and the solution
were not considered in [8]. These issues are now addressed here. In particular, our Theorem
1.3 gives a complete answer to the question on the spreading-vanishing dichotomy.

The formulation of weak solutions in [8] alone appears insufficient for the purpose of
proving the regularity of the free boundary. In section 2, we give a new approach to the
existence problem for (1.1), by using ideas of [14], where the classical one phase Stefan
problem was formulated as a parabolic variational inequality suggested in [11]. However,
unlike in the classical case, due to the reaction term g(u) in our problem, a nonlocal term
appears in the new weak formulation of our problem, which causes great difficulties. For
example, comparison type of arguments are not directly applicable anymore, and hence
a uniqueness result as in [14] is difficult to obtain. We show that any weak solution here
corresponds to a weak solution in the sense of [8]. Thus it must be unique due to the
result in [8], and the two formulations of weak solutions are equivalent.

The regularity of the free boundary of the weak solution is invesstigated in sections 3
and 4, where both weak formulations of (1.1) are employed. In section 3, we use the weak
formulation of section 2 to show that if the free boundary is Lipschitz, then the techniques
for proving C' and higher regularity of the free boundary developed by Caffarelli [4] and
Kinderlehrer-Nirenberg [16] can be adapted to treat the case here. A crucial fact is that the
nonlocal term in the equation is smooth enough near a free boundary point (see Lemmas
3.7 and 3.14).

The Lipschitz regularity of the free boundary outside the closed convex hull of g is
proved in section 4 by employing the weak formulation in [8]. This formulation allows us to
apply a monotonicity method along the lines of [20], where the classical one phase Stefan
problem was treated. Similar to [20], by a reflection and comparison argument we prove the
monotonicity of the solution in certain spatial directions. The Lipschitz regularity of the
free boundary is a consequence of this monotonicity property of the solution. Combined
with the regularity results established in section 3, this proves Theorem 1.1.

The reflection and comparison argument also shows that for any point on I'(t) \ €@6(Q),
the inward normal line to I'(¢) at that point intersects ©6(2). It was demonstrated in
[20] that such a normal line property implies some strong geometric constraints on the
free boundary of the classical one phase Stefan problem. In section 5, we make use of
this property and some novel techniques to prove Theorem 1.2. We first show by this
normal line property that (1.3) holds for I'(t) \ ©6(€2) if we assume that the free boundary
is unbounded as ¢ — oo. To show that (1.3) holds for I'(¢), we need to understand the
large-time behavior of I'(¢t) Nc6(€), where the regularity of the free boundary is unclear
for non-convex €2y, and singularity may occur. We show that if I'(¢) becomes unbounded
as t — oo, then I'(t) NTo(p) must be empty after a finite time (see Theorem 5.4). This
relies on a new device based on the Harnack inequality. To prove that u — 0 as t — oo
when T'(t) stays bounded, a situation where the regularity of the free boundary is again
unclear unless € is convex, we rely on an energy inequality (see Lemma 5.6). Theorem
1.3 is largely a consequence of Theorem 1.2 and results of [7] and [8].



NONLINEAR STEFAN PROBLEMS 5

2. WEAK SOLUTIONS

For the study of regularity of the weak solution of (1.1), the definition in [8] seems
difficult to use directly. In this section, we give a different yet equivalent definition of
weak solutions to (1.1), and then obtain some basic properties of the weak solutions.
From now on in this paper, we will actually treat the following more general problem

—dAu = g(z,u) for z € Q(t),t > 0,
(2.1) u=0and u; = p|Vyul* for x € T(t),t >0,
u(0,2) = up(z) for z € Qy,

where g satisfies the following conditions:

g is continuous for (z,u) € R™ x [0, 400),
(2.2) g(x,0) =0 and g(x,u) is locally Lipschitz in u uniformly for x € R™,
there exists C' > 0 such that g(z,u) < Cu for all u > 0 and z € R".

Our assumptions on Qg and ug are the same as in (1.1).
Following [14], for an arbitrarily given £ > 0, take a smooth function . defined on R,
such that

B:(t) =0 for t > ¢,
(2.3) B:(0) = -1,
B.>0and B <0 fort<e.
For given T' > 0, take R > 0 large enough (in particular, Qy C Bg(0)). Define

B UO(.%‘), T € QQ,
@4) @ ={ e Ba0\ a0
We denote by f.(z) a family of functions smooth in Br(0), uniformly bounded, and

decreasing to f(x) as e decreases to 0.
Now consider the following parabolic equation with a memory term

t

(0y — dA)ue = g(x,u:) — d,tf%é(/ U (T, Jf)dT)’LLE in (0,7) x Bg(0),
0

ue =0 on (0,7) x 0Br(0),

Ue = fo+dp? on {0} x Bg(0).

The existence and uniqueness of a global solution in C'+2:27%((0, T] x Bg(0)) to (2.5) can
be proved as usual; see for example [15].
Define we(t,z) = fot ue (7, z)dr. Then noticing that

(2.5)

/t Opue (1, x)dr = uc(t, ) — ue(0,2) = Spwe(t, ) — fo(x) — dp™,
0
and
we (t,x)
Q/wam_/ B (w)dw = fe(we(t,2)) + 1,

we obtain, by integrating (2 5) over (0,t), that

t
(0 — dA)w;: + 55 W, :/ g(x, 0w )dT + f- in (0,T) x Bg(0),
0
we =0 on 9,((0,7) x Br(0)).

(2.6)
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Here 0, denotes the parabolic boundary.
Proposition 2.1. There exists K(T') > 0 such that 0 < dyw, < K(T') in (0,T) x Bgr(0).
Proof. By (2.2) and the boundedness of u., 3C; > 0 such that
—C.ue < g(x,us) < Cug.
In view of 5. > 0, we obtain from (2.5) that
—(Ce +dp™ ' BL(we))ue < (9 — dA)ue < Cue in (0,T) x Bg(0).
Thus we can apply the maximum principle to (2.5) to conclude that
0<u <K in (0,T) x Bg(0)
for some constant K depending on 7" but independent of ¢ (for all small € > 0). O
A direct consequence is
Corollary 2.2. There exists K1(T) > 0 such that 0 < w. < K1(T) in (0,T') x Br(0).
Denote .
H(u)(t,z) := / g(x,u(r,z))dr.
Because dywe > 0 and |g(z,u)| < Cru for 1? € [0, K(T)], a simple calculation shows that
there exists another constant C' = C(T") > 0 such that
(2.7) |H (0w )| < Cwe.
In view of (2.7) and —1 < .(w.) < 0, we may use (2.6) and Corollary 2.2 to obtain
|(0r — dA)we| < Kao(T).

Then Vp > 1, by the LP estimate for parabolic equations, w. is uniformly bounded in
W,y2((0,T) x Bgr(0)). Thus we can find a subsequence of e, say gj — 0, such that w,
converges to w weakly in Wp1’2((O,T) x Bgr(0)), ¥p > 1. By the Sobolev embedding
theorem, w,, converges to w in Hy~([0,7] x Br(0)), Vy € (0,1). Here and in the rest of
this paper, we use the notation

Hypsr(Q) = O 25 FH7(Q) for k=0,1,2, v € (0,1) and Q € R™1,

We will eventually show that w = lim._,ow. and it is uniquely determined, but for the
time being, w just stands for the limit of w, along the sequence ;. By Proposition 2.1,

(2.8) 0 < w, < K(T) in (0,T) x Br(0).

Moreover w is continuous in [0, 7] x Br(0), and is zero on the parabolic boundary of this
set, so {w > 0} := {(t,x) € (0,T) x Br(0) : w(t,x) > 0} is an open set in R"*!. We
denote B

Q) = {w(t,-) > 0},

which is an open set in R™. From (2.8) we obtain

Proposition 2.3. §~2(t) is expanding as t increases, that is, for 0 < t1 < to, we have
Q(tl) C Q(tg).

We also have

Proposition 2.4. Q(t) D Qg for t > 0.
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Proof. By (2.6), (2.7) and the definitions of f. and f, in (0,7 x Qy,
Oywe — dAw, > —Cwe + up.
Thus we > w, where w is the solution to the initial boundary value problem
w;, — dAw = —Cw + ugp in (0, 4+00) X o,
{w =0 on 9,((0, +00) x Q).
Because ug > 0, we have w > 0 in (0, +00) x €. By the comparison principle we have

w. > w in (0,T) x Q. It follows that w > w > 0 in (0,T) x Q. Hence Q(t) D Qq for
t>0. (]

In fact, by the interior ball condition on 92, we have Q(t) > € for ¢ > 0, which can be
easily proved after the equivalence of the weak solution here and that in [8] is established;
see Proposition 2.10.

In the following, we denote

u:=w; and {u > 0} := {(¢t,z) € (0,T) x Br(0) : u(t,z) > 0}.
Proposition 2.5. {u > 0} = {w > 0}, and u € Hi1({u > 0}) for all v € (0,1).

Proof. Assume (tg,z9) € {w > 0} and so 26 := w(tp, z9) > 0; then in some neighborhood
V = (to — o,to + o) x By(xq) of (tg,xg) we have w > §, where the small positive constant

o depends only on § due to w € Hy,((0,7] x Br(0)). By the uniform convergence of
We;, for €; small,

0,
We,; > 3 in V.
By the definition of S, for all large j,
fBe;(we;) =0in V.

Thus in V, for all large j, we; satisfies the equation

t

(2.9) (00— ddyur, = [ gl v, (ro))dr + 1,
0

and Jywe; satisfies

(2.10) (0r — dA)Oywe; = g(z, Opwe;).

By the uniform bound of d;wy;, applying standard parabolic regularity theory, we can get
a uniform bound for dywe, in W,y ?(K) (Vp > 1) for any compact subset K of V. Because

Oywe; converges to Jyw weakly in L?((0,T) x BR(0)), we must have Orwe; converges to dyw
in Hity0c(V) (V7 € (0,1)). In particular, v = w; satisfies

(0 — dA)u = g(z,u) in V.

Standard interior regularity shows that u € Hi - joc(V') for any v € (0,1). By Propo-
sition 2.1, w > 0. Since g(x,0) = 0 and g is locally Lipschitz continuous in u, by the
strong maximum principle, either wu(to,zo) > 0 or u = 0 in [ty — 0,tp] X Bs(xg). If the
latter happens, then Vt € [ty — o,to], w(t,x0) = w(ty,z0) = 2 (by integration in ¢). In
particular w(typ — o,x¢) = 20 > 0. We may now repeat the above argument with (¢, z¢)
replaced by (tgp — o,29) to deduce that w(t,zg) = 20 for t € [to — 20,1t9]. After finitely
many steps we deduce w(t,zg) = 26 in (0,tp]. This contradicts the assumption that
w(0,x0) = 0. Therefore we must have u(tp,z9) > 0 and this proves {u > 0} D {w > 0}.
Note also that the above argument implies that v € Hyy, in {w > 0}. Since w; > 0
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and w > 0, we find that if w(tg,z9) = 0 with ¢y > 0, then w(t,z9) = 0 for ¢t € [0, o]
and therefore u(to, xg) = wy(to, o) = 0 whenever wy(to, zp) exists. Thus we must have
{u>0} ={w >0} a.e., and u € Hi,({u > 0}). O

The following result implies that (2.7) holds for w, too.
Proposition 2.6. H(0;w.;) converges to H(w;) uniformly in (0,T) x Br(0).

Proof. Assume the contrary; then by passing to a subsequence, we may assume that there
exist X, € (0,T) x Br(0) and ¢ > 0, such that

H (., )(Xe,) — Hw)(Xe,)| = 8, %5 > 1.

Without loss of generality, we can assume X, converges to Xo € [0,T]x B Bg(0). We divide
the problem into two cases
Case 1. w(Xp) < 607 with C given in (2.7).

Because we; converges to w uniformly, for £; small enough, w., (Xp) < % Then by the
uniform continuity of w and we, for &; sufficiently small, we, (X¢;) < % nd w(Xe;) < 4‘50

By (2.7),
|H (Opwe,; )(Xe;) — H(we)(Xe;)| < Clwe(Xe) +w(X:] < 0.

This is a contradiction.

Case 2. w(Xp) > %.

Write Xo = (to, 7o) and X, = (t;,2.,). Because w is nondecreasing in t and w(0, zo) =
0, we can take a t; € (0,%9) such that

) 0

@ < w(tl,xo) < @

By the uniform convergence of w,,, for £; small we also have

6C < we; (t1, 1) < 30

In view of 0;w > 0, we have
)
U](t,l'()) > @ for t € [tl,T]

Much as in the proof of Proposition 2.5, we can find a small neighborhood V' of [t1, T x {0}
in (0,7] x Bgr(0) such that Oywe; — Oyw in Hy1,(V). It follows that, as j — oo,

te .
/ ’ |g(ee,, Bewe, (7, 22,)) — g(ae, , Opo(r, 2, ))|dr — 0.

t1

Hence
[ H (Opwe; ) (Xe;) — H(we)(Xe,)|
te.
< [ 7 lgtes 0w, (i) = gl Buutr)dr
t1
+ |H(8tw8j)(t17 xé’:‘j)‘ + |H(wt)(t17 J:Ej)‘
< 9,
for €; small and we get a contradiction again. O

Finally we give the equation satisfied by w. For convenience of notation, we write
Q1 = (0,T) % Br(0).
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Proposition 2.7. The function w is a Wy'*(Qr g)-solution of

t
—dAw = / g(z, we(T, x))dr + d;flx{w:o} +f  inQrgr,
0
w=20 on 8p(QT,R).

(2.11)

Proof. Take ¢ € C°°(Qr g) which vanishes near [(0, T] x 9Bg(0)]U[{T} x Bg(0)], multiply
the equation of w,; by ¢ and integrate by parts; it results

/ /Q (e, (gt — dAQ) + du B, (w2, ) — H(@rwe, Yo — fo, 0] dtdz = 0.
T.R

Without loss of generality, we may assume that as ; — 0, 3, (we,) converges to some Sy
weakly in L2(QT7 r). Then in view of the definition of f. and the previous propositions,
we obtain by letting j — oo,

(2.12) //Q [w(—¢r — dAP) + du ™" Boop — H(w;) — fo]dtdz = 0.

Since w € Wp1 ’2(QT,R), by standard parabolic regularity theory, (2.12) implies that w
solves, in the I/Vp1 2 sense,

(2.13) wy — dAw = H(wy) —dp ™ Beo + f  in Qrp,
' w=0 on Oy(Q7.R).
To complete the proof, it remains to show S = —X{w=0} a.e. in Qpg. In fact, for any

(to,z0) € {w > 0}, we have 3, (w;) = 0 for all large j in a small neighborhood of (%, xo),
and so Bs = 0 in this small neighborhood. It follows that So =0 in {w > 0}.

By (2.7), we have H(w;) = 0 in {w = 0}. Moreover, (0; — dA)w = 0 a.e. in {w = 0}.
So we obtain from (2.13) that du~'8. = f a.e in {w = 0}. By Proposition 2.4 we have
Qo C Q(t) for t > 0. It follows that {w = 0} C [0,7] x (Br(0) \ ), and thus, by
definition, f = —dp~! on {w = 0}. Therefore B, = —1 a.e. in {w = 0}. It follows that
Boo = —X{w=0}- g

Proposition 2.8. w; € L2(QT7R) N L>®(Qr Rr) satisfies

(2.14) //QT,R [wt(—dAgZ))—a(wt)qbt]dtd:p—/BR(O) (i) p(0, z)dz = //QT’R g(z, wy)pdtdz

for every function ¢ € C®(Qr g) that vanishes near [(0,T] x 0Br(0)] U [{T} x Br(0)],
where

(2.15) alf) =¢— du_lx{ggo}, g = ug in Qo, tg = 0 outside .
Proof. From (2.11) we obtain
// pr — dAp) — dp~ X w—oyp — H(wi)p — feo|dtdz = 0
Qr r

for every ¢ € C*°(Qr g) which vanishes near [(0,T] x dBg(0)] U [{T} x Bg(0)]. Taking
p = —¢¢, and using integration by parts in ¢, we deduce
(2.16) // [wt(—¢t —dA¢) + duflx{wzo}qﬁt —g(z, wt)¢] dtdx = / f(z)p(0, z)dx,

Qr.r Br(0)

where we have used w = 0 and |H (w¢)| < Cw = 0 on {0} x Br(0).
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Clearly f(x) = a(tg(x)). Moreover, by Proposition 2.5, we have X {w—0} = X{w,—0} a-€.
in Q7 r. Therefore, due to wy > 0, we have

wy — dp” X weoy = we — A X (w,—0y = o(wy).
Substituting these into (2.16) we obtain (2.14). O

If wy € HY(Qrr) N L®(QrR), and if R is large enough so that G = Bg(0) meets
the requirement in [8], then the above proposition implies that w; is a weak solution to
(2.1) in the sense of [8] (see Definition 2.1 there). Therefore, under these assumptions,
by the existence and uniqueness results in [8], w; must coincide with the unique weak
solution determined by Theorems 3.1 and 3.2 there. Since we have only proved w; €
L%(Qr r) N L>®(Qr r) here, we could not apply these results of [8] directly. However, the
uniqueness proof of Theorem 3.2 in [8] does not use the fact that the weak solution there
is in H'. Checking this proof one finds that uniqueness also holds for solutions satisfying
(2.14). Since the weak solution obtained in [8] also satisfies (2.14), we thus conclude that
wy coincides with the unique weak solution of [8]1. This implies that w is the unique
solution of (2.11), and w, — w weakly in Wpl’z(QT,R) (Vp>1)ase—0.

Summarizing the above discussions, we have the following result.

Theorem 2.9. For any givenT' > 0, suppose that R > 0 is chosen so large that G = Br(0)
satisfies the requirements in Definition 2.1 of [8], then w. obtained from (2.6) satisfies
lim. 0 we = w weakly in WI}’Q(QTyR) (Vp > 1), where w is the unique solution of (2.11),
and wy is the unique weak solution of (2.1) as determined in [8].

We are now in a position to improve the conclusion in Proposition 2.4.

Proposition 2.10. Q(t) D Qg fort > 0.

Proof. We have proved Q(t) D € for ¢ > 0. It remains to show that w(t,z) > 0 if t > 0
and x € 09Qy. Otherwise, we can find ¢ty > 0 and zy € 9y such that w(tg,z9) = 0. By
the interior ball condition of 99, we can find a ball B = Bpr,(yo) C Qo that touches 9
at xg. Let vg be a C? radially symmetric function in B such that 0 < vy < ug in B and
vo = 0 on dB. Choose Cy > 0 such that g(w(t,z)) > —Cow(t,z) for z € Q(t), t € [0,T]
with T > tg. We now consider the auxiliary radially symmetric problem

v — dAv = —Cyv, t>0, 0<r<hlt),
v (t,0) =0, w(t,h(t))=0, t>0,

2.17) /( ) (t, h(t))
R'(t) = —pv.(t, h(t)), t>0,

h(O) = Ry, ’U(O,T‘) = UO(T)7 0 <r <Ry

By Proposition 4.3 of [8], we know that (2.17) has a unique solution v defined for all ¢ > 0,
and the Hopf boundary lemma guarantees that h'(¢t) > 0 for all ¢ > 0. The extended v (by
0) is a weak solution of (2.1) with g(x, u) replaced by —Cpu. Hence we can apply Theorem
4.2 of [8] to obtain 0 < v(t, |z —yo|) < we(t,z) in {(¢,z) : [x —yo| < h(t),0 <t < T}. Since
xo € OBR,(yo) and K'(t) > 0, we find that |zo — yo| = Ro < h(to) and hence wy(t, z¢) >
v(t, Rg) > 0 for all ¢ close to tg. This implies that w(tg,z¢) > 0, a contradiction. O

lAlternatively, as in section 3 of [14], it is possible to prove separately that w, € H'(Qr r) by estimating
the H' norm of w.. Moreover, we can get an energy inequality similar to Lemma 3.4 therein for d;we,
which shows that for any ¢, w:(t,-) € H*(Bgr(0)).
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3. REGULARITY OUTSIDE THE CONVEX HULL OF ()

In this section we discuss the regularity of the free boundary 0{w > 0}. We will show
that it is smooth outside ©6(€2), the closed convex hull of .

By Proposition 2.5, 9{w > 0} = 0{u > 0}. So the study of the regularity of the free
boundary for (2.1) is equivalent to the study of that of (2.11). We will take advantage of
the fact that the latter can be viewed as a perturbation of the one phase Stefan problem
for which powerful techniques have already been developed. Let us recall that Q(t) =
Q(t) ={x € Br : u(t,z) > 0} is an open set for each ¢ € (0,T"). Also, from

[H (w;) (L, )| < Cwlt,x),

we easily see that

¢

(3.1) h(t,2) = H(w)(t, ) = / o, wy(r, 3))dr
0

is continuous, and vanishes on {w = 0}.

Proposition 3.1. Let (to, o) € O{w > 0} with to > 0 and h(t,z) be defined as above.
Then there exists rog > 0 such that

(3.2) dAw — wy = (dp™' — h)X{w>o0y 1 Pry(to, o),

where

P.(t,x) := (t — %t + %) x B,(x).

Proof. By Proposition 2.10, we find that xo € Qo and there exists rg > 0 small such that
By (z0) € Qo. Thus for z € B,,(70) we have f(x) = —du~! and

A X =0y + f = dp™ (X w0y — 1) = —dp™ X gus0y 10 Py (to, o).
Substituting this into (2.11) and recalling h = 0 on {w = 0}, we immediately obtain
(3.2). O

Using (3.2), as in [2] we may follow the arguments of [6], [5] or [4] to obtain the following
results, where C' denotes various constants which depend only on the space dimension n,
the solution w and the nonlinear function g, but are independent of (¢,x) in the given
range.

Lemma 3.2. (Growth bound) 3C > 0, such that for any (to,z9) € {w = 0} with
to > 0,
SUPp, (g,20) W < Cr? for all small v > 0.

Proof. We may follow the first part of the proof of Lemma 4.2 in [6] and then argue as in
the proof of Lemma 4.3 there. O

Lemma 3.3. (Nondegeneracy) 3C > 0, such that for any (to,xo) € {w > 0} with
to > 0,
SUDe B, (g) W(to, ) > Cr? for all small v > 0.

Proof. Since w; > 0, w(t, -) satisfies
dAw > (dp~" = h)X{uw>0}-

In view of h(to,z0) = 0 we find that (du™" — h)xquws0y > (1/2)dp™" in P,(to,z0) for all
small r > 0, say r € (0,7¢].
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For r € (0,70/2], choose a sequence (t;,z;) € Pr(to,z0) N {w > 0} such that (¢;,z;) —
(to,xo) as j — oco. Then define
%

1
vi(z) = w(tj,z) — m’x — &y

Clearly

Av; > 0 in By(z;) NQ(t5), vi(x;) = w(tj, ;) > 0.
Therefore supp, (,,)nq(,) vj i positive and is achieved on the boundary of By (z;) N €(t;).
On B, (x;) N0Q(t;), w(tj,z) = 0 and so v; < 0. Hence the positive supremum is achieved
at some y; € 0B, (z;) N Q(t;):

0< sup v =v;(yy) = w(tj,y;) — —1°
Brayrety) © P A
It follows that
1
sup w(tj, x) > sup  w(tj, ) > w(t,y;) > —r2
By (x)) By (2,)N02(t;) inp
Since w is continuous, letting j — oo we obtain sup w(tg,z) > ﬁr? O

Br(z0)

A simple consequence of Lemma 3.3 is the following result, which indicates that ()
expands continuously as t increases.

Proposition 3.4. Let to € [0,T). For ¢ > 0 small, Q(tyo + €) is contained in a small
neighborhood of Q(to).

Proof. Otherwise 3z; € 0Q(to+¢;) with ¢; > 0 and €; — 0 such that dist(x;, Q(tg)) > 6 > 0.
Since x; is a bounded sequence, by passing to a subsequence we may assume that z; — xg
as i — oo. Thus dist(wo, (t9)) > ¢ and w(to,z) = 0 in Bs/a(zo).

On the other hand, by Lemma 3.3, there is a constant C' > 0, such that

sup w(ty + €, ) > C6% > 0 for all i > 1.
B6/4(33i)

Letting ¢ — oo and using the continuity of w we obtain

sup w(to, ) > C6* > 0.
Bs4(z0)

This contradiction completes the proof. O
A direct corollary is
Corollary 3.5.
o0(t) = {x: (t,2) € ofw > 0}}, vt > 0,
3.1. Lipschitz-Ho6lder regularity. From now on, we assume that
(3.3) g(x,u) = g(u) is independent of x.
We have the following result.

Theorem 3.6. Let (3.3) hold, and tg > 0, zo € I'(tp) \ €0(2). Then there exists a fized
open cone Ky C R™ (depending on xq) with vertex at the origin, and a small rg > 0, such
that the following three conclusions hold:
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(i) Monotonicity:
For any & and © € B,,(v0), T — v € Ko implies wi(t,T) < we(t,z) (Yt > 0) and
hence w(t,z) < w(s,x) (Vt > 0).

(ii) Cone property:
For any (t,xz) € 0{w > 0} N Py, (to, xo),

{ (x + Ko) N Byy(z0) C {z:w(t, z) =0},
(x — Ko) N By, (z0) C {2z : w(t, z) > 0}.

(iii) Lipschitz-Holder representation of the free boundary:
There exists a coordinate system (s,y) € R x R™, with (to,x0) as its origin, s =
t—to, and the yy direction parallel to the azis of Ko, such that 0{w > 0}N Py, (to, zo)
can be expressed as

Y < f(say/)v (S7y) € N[),

with f Lipschitz continuous iny', %—H{')’lder continuous in s, and f(0,0) = 0, where
Y = (y2,..-,Yn), and No is a small neighborhood of (0,0) € Rt x R*~1.

Therefore we may write
(3.4) Ky = {y Y > 50]y/|}, 0o > 0.

The proof of Theorem 3.6 uses the monotonicity method and is given in section 4 below.

3.2. C! regularity in space variables. In this subsection, we assume that (3.3) holds
and make use of Theorem 3.6 to show that the free boundary is C* in space (for fixed time
t) and the solution w is C? in the space variables in {w > 0} up to the boundary near a
free boundary point (o, o). This is achieved by showing that Caffarelli’s result in [4] can
be applied to the setting here.

We now fix such a point (o, o), and consider the free boundary in Py, (to,zo). It is
convenient to use the new coordinate system (s,y) given in conclusion (iii) of Theorem
3.6, and so (o, xo) is replaced by (0,0), and the conclusions (i) and (ii) in Theorem 3.6
become
(3.5) ws(s,7) < ws(s,y),w(s,g) <w(s,y)if s >0, —y € Ko and y,7 € B, (0),
and

y—+ Ko) N B (0) C{z:w(s,z) =0},
(3.6) ( )51y (0) € Lz ws,2) =0} V(s,y) € d{w > 0} N Py, (0,0).
(y — Ko) N By, (0) C {z: w(s,z) >0},

To further simplify the notations, we normalize the parameters in (3.2). Through a
simple scaling change of w, t and h (t — dt, w — pw, h — d~'ph), the constants d and
dp~1 in (3.2) can both be reduced to 1. Therefore, without loss of generality, in the rest
of this section we assume that w satisfies

(37) Aw — Wg = (1 - h)X{w>0} in P’ro (0,0)
Recall that in the new coordinate system (0,0) € O{w > 0}.

Lemma 3.7. The functions h(s,y) and ws(s,y) in (3.7) are both Holder continuous in
P,,(0,0) provided that ro > 0 is small enough.
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Proof. Since h and w; are identically 0 outside {w > 0}, it suffices to show that they are
Holder continuous over {w > 0} N P, (0,0). In this region, u(s,y) = ws(s,y) satisfies

us — Au = g(u) in {w >0} N P, (0,0), u =0 on d{w > 0} N P, (0,0).

Since ¢g(0) = 0, and g(u) is locally Lipschitz continuous and w is bounded in the L
norm, we may write g(u) = c¢(s,y)u with ¢ € L>. The Lipschitz-Hélder smoothness of
o{w > 0} N P,(0,0) in property (iii) of Theorem 3.6 allows us to use standard interior
and boundary parabolic regularity (see Theorem 6.33 in [19]) to conclude that w is Holder
continuous over {w > 0} N P, /2(0,0). Thus u (extended by 0 outside {w > 0} ) is Holder
continuous in P, (0,0).

Recall that in the original (¢, z) coordinates

h(t,:c):/o g(u(r,x))dr.

To deduce the Holder continuity of h(t, z) near (¢o, z¢), we need to consider the smoothness
of u(t,x) for all t € (0,%p]. Our above discussion shows that the extended w is Holder
continuous in P, 2(to, ¥o). We show next that the extended u is Holder continuous in
[0,to + 7] X By(z0) for some r > 0.

Since xg € €6(£2), we can find 7 > 0 small such that B,(z9) N Qy = (). By Proposition
3.4, there exists t; € (0,%0) such that u(¢,z) =0 for all ¢ € [0,¢;] and = € B,(z¢). Thus u
is in particular Holder continuous over [0, 1] X By (o).

For each (t,z) € [t1,t0] X Br(x0), if w(t, ) > 0, then we can apply the interior regularity
to the above equation for u to see that u is Holder continuous in a small neighborhood
of (t,x). If (t,x) € 0{w > 0}, then we can apply Theorem 3.6 with (¢o,z¢) replaced by
(t,x) and repeat the above argument to conclude that u is Hélder continuous near (t, z).
If (t,x) ¢ {w > 0}, then w is identically O in a neighborhood of (¢,z). Thus we can use a
finite covering argument to conclude that u is Holder continuous in a small neighborhood
of [tl,to] X BT(SU()).

Hence u is Holder continuous in [0, ¢y + 7] X By(z¢) for some small » > 0. The Holder
continuity of h(s,y) near (0,0) is now obvious. O

Lemma 3.8. There ezists C > 0 such that, for j, k € {1,...,n},
]wyjyk(s,yﬂ < CVY(s,y) € {fw>0}nPF,(0,0).

Proof. Since h is Holder continuous in P,,(0,0), away from the free boundary in {w >
0} N P,,(0,0), we can apply classical Schauder estimates to see that w € Hai,. Therefore
it suffices to show that for any sequence (s;,v;) € {w > 0} N P,,(0,0), (si,vi) = (s0,%0) €
O{w > 0} N Py (0,0), |wy,y, (si,y:)| has a bound that does not depend on the choice of the
sequence.

Denote d; = dp((si,yi),0{w > 0}), where d, denotes the parabolic distance. Then
define

wi(s,y) = d; 2w(s; + di s, yi + diy).-
Clearly
Awi — 8sw7; =1- hi in P1(0, 0),

where h;(s,y) = h(s;+d?s,y;+d;y), and thus h; is uniformly Holder continuous in P; (0, 0).
Moreover, by Lemma 3.2,

wi(s,y) < C(1+ s>+ |y|) in P1(0,0)
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for all 4. Therefore we can apply classical interior Schauder estimates to the equation of
w; to conclude that

[ (Wi)y,4,| < C in Pyjp(0,0) for all 4 > 1,

where C only depends on ||w||~. In particular,

|wyjyk (56, 9i)| = |(wi)yjyk(070)| <C
for all 7. 0

From (3.6) we find that (0,0) is a density point on the free boundary. With the help of
Lemmas 3.7 and 3.8, we can apply Caffarelli’s result [4] as in Lemma 9.11 on page 236 of
[13] to obtain the following result.

Theorem 3.9. The function y1 = f(s,Y2,....,Yn) in Theorem 8.6 is a C' function in
(Y25 s Yn), uniformly with respect to s. Moreover, wy,,. (i,j € {1,...,n}) are all continu-

ous in y, uniformly with respect to s, for (s,y) € {w > 0} N P,,(0,0).

3.3. Higher regularity. In this subsection, we will apply the partial hodograph-Legendre
transformation introduced by Kinderlehrer and Nirenberg [16] to obtain higher regularity
for the free boundary and the solution w. In order to do this, we first need to obtain L
bound for |wy,| (i = 1,...,n) and |ws,| in {w > 0} N P, (0,0). Recall that in the new (s,y)
coordinate system, (0,0) € 9{w > 0} and 0 ¢ co(£).

Let (s,y) € {w > 0} N P,,(0,0). Since 0 & ¢o(£) and |y| < 79, by shrinking o we
may assume that y & ©6(y). Thus there is a first time moment 7(y) € (—tg, s) such that
(1,y) enters {w > 0} as 7 increases across 7(y), namely w(7,y) = 0 for 7 < 7(y), and
w(r,y) > 0 for 7 > 7(y).

Since Q(s) = {y : (s,y) € {w > 0}} is expanding continuously as s increases (Proposi-
tions 2.3 and 3.4), there exists ¢ > 0 small such that Q(s) N By, (0) = 0 for s < —ty+ 4
provided that ry is small enough so that Ba,,(0) N co(£29) = 0. The choice of ¢ implies
that 7(y) > —to + 0 whenever (s,y) € {w > 0} N P,,(0,0). Moreover, for each such (s,y),
dy(7) := dist(y, 0Q(7)) is a nondecreasing function of 7 for 7 > 7(y) (due to the fact that
Q(7) is expanding). It follows that, for (s,y) € {w > 0} N P,,(0,0),

dist ((7,y), 0{w > 0}) < dy(7) < dy(0) < ro V7 € (T(y), —r{)-
For 7 € (=73, s], we have (1,y) € P,(0,0) and hence
dist((,y),0{w > 0}) < dist((7,y), (0,0)) < rp.

Thus by Lemma 3.7 (applied to all points (7,y) in {w > 0} near the free boundary with
T € [ty +9,9]), lws(7,y)| < Cr§ for some o € (0,1) and C' > 0 independent of (s,y).
Therefore we have the following result.

Lemma 3.10. There exist 0 € (0,1), § > 0 and C > 0 such that for all small ro > 0 and
all (s,y) € {w >0} N P, (0,0),

T(y) > —to + 67 U(T,y) = ’UJS(T, y) < C?"g VT € (—t(],S]-

Due to (3.5), we can find k; > 0 large enough such that for any fixed s, w(s,y) and
ws (s, y) are nonincreasing in the direction y—zq for y € By, (0), where zo = (—k1,0,...,0) €
R™. We now establish a polar coordinate system (p, 8) = (p, 01, ...,0,—1) with origin at zo,

and write ) )
Aw = wp, + n;wp + —5Agn1w,
p P
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where Agn—1 denotes the Laplace-Beltrami operator on the unit sphere {p = 1}. The
choice of zy ensures that d,w < 0 for y € B, (0). We define, as in [17],

vg = —pdyw.
Clearly vg > 0 in {w > 0} N P,,(0,0). Since all the partial derivatives of w vanish on
O{w > 0}, we have vgp =0 on {w > 0} N P,,(0,0).
Lemma 3.11. There exists My > 0 (depending on g) such that
Osvp — Avg + Movg > 1 in {w > 0} N P, (0,0).

Proof. Using the polar coordinates, one easily calculates Avg = —p~19,(p*Aw). It follows

that
Osvg — Avg + Moy

=-—p 1o, [/JQ(wS — Aw)] + 2ws — Mopd,w
= p—l(‘)p [,02 _ p2/ g(ws (T, y)dT] + 2wy — Mopd,w

—to

> 92— 2/8 g(ws(T,y))dr — p s 9p9(ws(T,y)) + Mows(, y)] dr.

—to —to
We now choose My > 0 such that g(u) = g(u) + Mou is increasing in the interval
[0, [[ws|oo]- It follows that
9y(ws) = § (w)dpw, < 0

in view of the monotonicity of ws for y € B,,(0). Therefore

s

Osvg — Avg + Movg > 2 — 2/ g(ws(7,y))dr

—to

>2—Cuw(s,y) >1
in {w > 0} N P,,(0,0) provided that ry is small enough. O

Lemma 3.12. There exist ¢; > 0 and ca > 0 such that for any (so,yo0) € 0{w > 0} N
Pr0/2(07 0)7

0 < ws(S,y) < Cl|y - y0|2 + 021}0(57:‘/) in {U) > O} N PTO(()?O)'

Proof. Denote Qy = {w > 0} N P,,(0,0) and denote by 0, its parabolic boundary. On
O{w > 0} N9y, ws =0, and for y € 9, \ 0{w > 0}, |y — yo| > co > 0. Therefore we
can find ¢; > 0 such that

ws(s,y) < cily — 3/0|2 Y(s,y) € IpS2o.
‘We now choose ¢ > 0 such that
(0s — A+ Mo)cily — yol® + cavo(s,y)] = —2nc1 + ¢z > 1.

Next we compare ws and W := ¢1|y — yo|? + c2vo(s, y) over Qg by the maximum principle.
Clearly wy, < W on 0,€. Since

(0s — A+ Mp)ws = g(ws) + Mpws < 1 in Qo
provided that rg is small enough, we conclude that ws < W in . O

We are now ready to prove the L° bound for the second order derivatives of w not
covered by Lemma 3.8.
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Lemma 3.13. There exists C > 0 such that
Y| wsy,| < Cin {w >0} N P,y /4(0,0).
If further g € CH2([0,680]), then we have
|wss| < C in {w >0} N P, 6(0,0).

Proof. To simplify notations we will write Py, instead of P,,(0,0), etc.
Step 1. Boundedness of ¥, |wgy,|.

We follow the ideas of the proof of Theorem 6 in [4]. Choose a function ¢ € C§°(F,,/3),
0<¢<1, withp=1in P, . For (s,y) € {w > 0} N P, we have

(pu)s — Alpu) = @g(u) + (ps + Ap)u — Iy (20y,u)y,;
— 0T, 0,b,
with
a = pg(u) + (ps + Ap)u, b = 2py,u.

We note that a and b; are well defined over P,,, and by Lemma 3.7, they are Holder
continuous, say a,b; € C*(P,,). Therefore the problem

vs —Av=a— XL ,0,b; in P,
v=20 on O, Py,

has a unique solution v € Hy4(P,,) (see Theorem 6.45 in [19]).
We now consider the function V = v — ¢u. Clearly

Vi— AV =0in {w > 0} N P,,.

For any unit vector £ € R”, consider the difference quotient

Vils,) = 11V(s,+h&) = V(s )]

Define
Qo ={w >0} NP3, Q= {(s,y) € Qo : dist(y,0(s)) > h}.
Evidently
0sVy, — AV, =0 in Q.
For any (s,y) € Qo with dist(y, 9Q(s)) = h € (0, {5), there exists yo € 9€(s) such that
|y — yo| = h. By Lemma 3.12,
0 < u(s,y) < cily —yol* + cavo(s,y) < csh
since vgp = —pd,w is a Lipschitz function in the space variables due to Lemma, 3.8; similarly,
0 < u(s,y+ h&) < Cily + hé — yol* + cavo(s, y + hé) < cah.
It follows that for (s,y) € Qo with dist(y, 9(s)) = h € (0, 13),
1

[un(s, y)| < 3 [uls, y + he) +uls, y)] < s +cu.

Hence there exists ¢; > 0 such that
|Vh| < ¢5 on 09y, for all small h > 0.
Applying the maximum principle to V}, over € we deduce

V| < ¢5 in Q.
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Letting h — 0 we obtain
|65V| S Cs in Qo,
which implies that
|8§u\ < ¢ in {w > 0} N PT0/47
and therefore
Ui |[wsy,| < nee in {w >0} N Py /4.

Step 2. Bound for |wss].
We first observe from the estimate proved in Step 1 that
|0svo| = |pOpsw| < ez in {w >0} NP, /4.
It follows that for (s — h,y) € 0{w > 0} N P, ;4 and h € (0,72),

0< sup u(r,y) < sup covp(T,y) < csh.
|7—s|<h |7—s|<h

Denote
"= {(s,y) € {w > 0} N Py 5 s = 7(y) > 20},
0, u

and recall that u(7(y),y) = (7,y) > 0 for 7 > 7(y). For (s,y) € Q" define

L 1 s+h
u (Say) = h/ u(Tvy)dT'

(It is crucial that we define u" this way instead of using mollifiers as on page 266 of [17].)
Clearly

Oyt = 1 [uls + hy) — u(s,y),
and so for all small h > 0,
05u™| < ¢ for (s,y) € Q" with s = 7(y) + 2h,
and

1 s+h
|Vuh| = 'h/ Vu(r,y)dr| < sup Vu| <ecg V(s,y) € Or.
s {w>0}mPr0/4

Choose a function ¢ € C§°(P,5), 0 < ¢ < 1, with ( = 1 in P, /6, and define, with
positive constants u and o to be specified,
W = ¢2(9su")? + p|Vu" > + 0.

We are going to apply a Bernestern type argument to show that W has an upper bound
in Q" that is independent of h.

Since we now assume that g € C1%([0, 5o]), by setting ro small enough, we may assume
without loss of generality that 0 < u(s,y) < do in {w > 0} N P,,. Hence from the equation

us — Au = g(u) in {w >0} N Py,

we see by the interior Schauder estimates that us and u,, (i =1, ...,n) belong to Haj o ({w >
0} N P,,). In particular, W € Ha;(Q").
Let us also observe that, for (s,) € Q" and all small h > 0,

Osu" — Aul = [g(u)]" with |[g(u)]"| < e,

0ulg)]"| = lg(u(s + h,9)) — g(uls, )] < el
Vig(u)]'] = llg () V"] < exs
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We compute, for (s,y) € Q"

AW + W — W,
= 2u%; j(u")y,,. + 8COu"V( - V(9su) + 2¢%|V (95u™)|?

+2(|VCR + CAC = (G ) (@ul)?
+2uVul - V(A" — 9u") + 2¢2(9u™) 05 (Au — Osu™)
+ 2 (0u™)? + p| VU ? + o
> 208 (), — 8IVCI(O5ul)?
+2(|VCR + CAC = ¢G ) (@u")?
= 2u|Vu | |V[g(w)]"| = 2¢%|0u"] |0s[g(w)]"|
+ C2(9uM)? + p| VUl 2 + o
> 2%y (13, — SIVC (D)2
+2(1VCR + CAC = (G ) (@pu)?
— 2¢10p| VUl — 2¢2¢11 (Dsu™)?
+ ¢ (0su™)? + p| VU P + o
= 2085 ("), — (0su")?% + p(|Vu"| = e12)” + 0 — ¢y,
where 1 is a bounded function (independent of h). Since
(85u™)? = (A" + [g(w)]")? < 2(Au™)? + 2|[g(w)]"[* < 20?81, (u")5,, + 2¢H,
we easily see that if u > n?|y| and o > c3yu + 2¢3y|1|, then
AW + W — W, > 0 in Q" for all small h > 0.
Applying the maximum principle to e™*W, which satisfies (e 7*W)s — A(e *W) < 0 in
Q" we obtain, for (s,y) € Q"N Py /65

(DsuM)? < supW < e"8/36 sup(e W) < e"5/36 sup(e *W)
Qh Qh onh

2
<eBsup W < e’ (c2 + pct + o).
o

Letting h — 0 we obtain
05ul? < erg(cg + pcg + o) for (s,y) € {w > 0} N P, 6.
The proof is complete. U

We next establish a key smoothness lemma for h(s,y).

Lemma 3.14. Suppose that g € CY([0,00]). Then the function h(s,y) is Lipschitz

continuous in {w > 0} N P,y (0,0). Moreover, if u(s,-) = ws(s,-) € CL¥(Qy,(s)) uniformly
for s € [—to + 0,73], where § is given in Lemma 5.10 and

Qo (s) = {y € Q(s) : dist(y, 002(s)) < ro} N By, (0),

then h(s,-) € CH*(Qy,(s)) uniformly for s € [—r3,r3].
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Proof. Step 1. h is Lipschitz.

Since Osh(s,y) = g(u(s,y)), it is clear that Jsh is uniformly bounded in P,,(0,0). (It is
actually Lipschitz, recalling the conclusions in Lemma 3.13.)

Let (s,y) € {w > 0}NP,,(0,0), and v € R™ be a unit vector. We now consider 9, h(s, y).
We first prove the following formula

S

(3.8) Byh(s,y) = / SO

If 7(y) is a C! function, this formula would follow directly from differentiating the
equation h(s,y) = ff(y) g(u(r,y))dr. Since it is unclear whether 7(y) is C!, a proof is
needed.

For small € > 0,0 > 0, we consider
I.:=¢t [h(s, y+ev) — h(s,y)]

=L /TS g(u(r,y + ev))dr — e /T g(u(r,y))dr

(yFev) W)
= / e g(u(my +ev)) — glu(r,y)]dr [=: 1]
T(y)+o
7(y)+o
T / e Hglu(r,y + ev)) = glulr,y))]dr [=: 1]
T(y)
7(y) 1 B

We observe that limsup,_,o 7(y+ev) = 7% < 7(y) for otherwise we would have w(7*,y) =
0 with 7 > 7(y), contradicting the definition of 7(y). Therefore we may assume that
T(y + ev) < 7(y) + o for all small e. By Lemmas 3.10 and 3.13, there exists C' > 0 such
that

(3.9) |Oyu(T,y)| < C V7 € [T(y),rg], Yy € By, (0).

It now follows easily that

L= / § (ulr, 9))Bu(r,y)dr + oc(1)
T7(y)+o

-/ ( /07,7 + 0 (1) + O(o).

where 0.(1) — 0 as € — 0 uniformly in o, and |O(0)| < Co for some C > 0 independent
of e.
To estimate I2, we note that for 7 € [7(y), 7(y) + o],

lg(u(r,y + ev)) = g(u(T, )| < Cilu(T,y + ev) — u(7, y)| < Cae
due to the fact that u = w;s is Lipschitz in view of Lemma 3.13. It follows that

IQ == O(O‘)
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Since (7(y),y) € {w = 0}, we have, noting 0 < g(u(r,y + ev)) < Cu(r,y + ev),

|I3] < e ‘/( Cws(T y+€u)d7"
y+ev)

e 1 Cuw(r(y),y + ev)

Thus I3 = o.(1) and

- ( 9 wr )l g)dr] = o(1) + 0(0).

Letting € — 0 followed by letting o — 0, we obtain (3.8).
Using (3.9) and (3.8) we obtain

|0uh(s,y)| < CV(s,y) € {w >0} N P, (0,0).
This proves the first part of the lemma.
Step 2. h(s,-) is Ch.
Suppose now u(s,-) € C*(Q,,(s)) uniformly for s € [~ty + §,73]. Fix s € [-rd,rd]
and y € Q,,(s). For small ¢ > 0 and fixed unit vector n € R"”, we may assume that

y +en € Qpy(s). For definiteness, we assume that 7(y) < 7(y + en). (The other case is
handled similarly.) Then

Je: = [Oyh(s,y + en) — yh(s,y)]

= /S e % (u(t,y + en))Oyu(r,y + en)dr — / e (u(r,y))0u(r,y)dr

7(y+en) T(y)
— [ ety apdautny e - o ot y)dr (=)
T(y+en)
(y+en) .
— /( | e %g (u(r,y))dpu(r,y)dr. [=:—Jo ]
(y

To simplify notations, for fixed 7 € [7(y), s] we write

G(2) = ¢ (u(r,2)), U(z) = dyu(r, 2).
Then
e “[Gly+en) — G(y)]
_ g (u(r,y+en) —g'(u(r,y)) <|u(7', y +en) —u(r, y)\)“
lu(T,y + en) — u(r,y)|* €
<C;

for some C; > 0 independent of € and 7, since ¢’ is C* and u(r,-) is C?.
It follows that

[J1| < (to +18)e |Gy + en)U(y + en) — G(y)U(y)|
< (to+13) (e Gy +en) — GW)| - |U(y + en)]
+e U +en) - Ul IGy))

< (Ch.
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To estimate Jo, we observe that 7 € (7(y), 7(y+en)) implies y € Q(7) and y+en & Q7).
Therefore the line segment in R™ joining y and y + en intersects 9€(7) at some point
z(1) € 9Q(7). By the known smoothness of the free boundary, z(7) is a continuous
function of 7 € [7(y),7(y + en)], with z2(7(y)) = y and z(7(y + en) = y + en. More
importantly we have |z(7) — y| < e. We thus similarly have, for fixed 7 € [7(y), 7(y + €n)],

e G(y)U(y) — G(2(1)U(2(7))| < C3

for some C3 > 0 independent of € and 7. This implies that if the integrand function
G(y)U(y) in J is replaced by G(z(7))U(z2(7)), the change in Js is bounded by a constant,
namely

7(y+en) -
’JQ —/ e_ag/(u(T,Z(T))@VU(T,Z(T))dT| < Ch.

Moreover, (1, 2(7)) € 9{w > 0} implies u(7, z(7)) = 0 and ¢'(u(7, 2(7)) = ¢’(0). So

T(y+en) T(y+en)
/ e g (u(r, 2(7))Ou(r, 2(7))dr = e_o‘g'(O)/ Opu(r, z(T))dr.
7(y) T(y)

We further have
e *|oyu(r, (7)) — dyu(r,y)| < e “Culz(r) —y|* < Cy,
and due to d,u(r,y) = &; [w,(7,y)], and the fact that w, = 0 on the free boundary, we

have
T(y+en)
/ opu(T,y)dr ‘
7(y)

= ¢ |w, (T(y + en), y) — wo(r(y), v)]

= ¢ wy(r(y +en),y) —wu(r(y +en),y + en)
< Cs.

6—0{

Thus we have

670&

(y+en)

/ 8,,u(r,z(7'))d7" < Cs

7(y)

and |.Jo| < C7. Hence we have a constant C' independent of s, € and 1 such that |J| < C.
For the remaining case s € [—73,73] and y € 9Q(s), if y + en € IQ(s), then s = 7(y) =

7(y + ev) and from (3.8) we find
Oh(s,y+en) = 0,h(s,y) =0;
if y +en € Qy(s), then using s = 7(y) and 9, h(s,y) = 0 we obtain
e [&,h(s, y+en) — O h(s, y)]

T(y)
_ / g (u(r,y + n))du(r,y + en)dr,
T(y+en)

and our argument used for estimating Js above can be applied to obtain a bound for this
quantity.
Thus for each y € Q,,/5(s), we can find a small ball B.(y) (with e depending on y) such

that 9,h(s,-) is in C*(Be(y) Ny, /2(s)). The required conclusion now follows from a finite
covering argument, recalling that the constants bounding the Hélder norms in each step
of our arguments are independent of s. O

We are now ready to prove our higher regularity result.
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Theorem 3.15. Suppose that g € C*([0,80]). Then d{w > 0} N P,,(0,0) is of class
C?%, and therefore the function y1 = f(s,y2,...,yn) in Theorem 3.9 can be chosen to be
C?°: moreover, fs > 0.

Proof. For clarity we divide the proof into several steps.

Step 1. The partial hodograph-Legendre transformation.

Through a suitable rotation of the y coordinate system around the origin, we may
assume that the function f satisfies additionally f,,(0,0,...,0) = 0 for i = 2,...,n. It
follows that wy,, (0,0) = 0 except for wy,y,(0,0) = 1. We recall that w,, is Lipschitz

continuous in {w > 0} N P,,(0,0), and for fixed s, it is C! in y with modulus of continuity
independent of s. As in [16], we extend w,, into a full neighborhood of (0,0) keeping the
above smoothness property, and consider the partial hodograph-Legendre transformation

6 = (Ela 7571) = (_wylayQa "'7yn)7 v = Elyl +w = —Y1Wy, + w.

From [16] we know that for fixed s, y — & is a C' local diffeomorphism near 0, and the
mapping (s,y) — (s,€) and its inverse are both Lipschitz continuous, and it changes the
free boundary y; = f(s,y2, ..., yn) into part of the hyperplane {(s,&) : & = 0}, with

Vs = Ws, Vg; = Y1, Vg, = Wy,

__ Wsyy _ ..
(3.10) Us€r = Ty g, 0 Vst = Wsyi i,7 €42,...,n}.
_ __1 _ Y4 _ Ve
Wyyyy = Vggy Wy y; = ”5151’ Wy;y; = Vejg; U§1§i Vg;rs

Hence (3.7) over {w > 0} N P,,(0,0) becomes
1 1

%3131 Ve1&

in Non{(s,§) : & < 0}, where Ny is a small neighborhood of (0,0) in R xR™. Furthermore,
from the definition of v and (3.10), in view of Lemmas 3.8, 3.13 and Theorem 3.9, one
finds that v, vs and vg, (i = 1, ...,n) are Lipschitz in No N {(s,£) : & < 0}, and for fixed s,
v(s, &) is C? in ¢ with modulus of continuity independent of s. In particular, v belongs to
W2 (No N {(s,€) : & <0}) for 1 < p < o0.

We now denote the above fully nonlinear equation as

(3.11) F(D*v) —vs =1 — h(s,ve,, &2, s &),

E?:Q”fi& - 2?222}21& —vs=1- h(S, 3B €2a ) fn)

where D?v is the Hessian of v in the space variables. To simplify notations, we write
Qo ={w>0}NP,(0,0)}, T'o=0{w >0} N P, (0,0),

and use O and ¥ to denote their images in the (s,£) space under the transformation
(s,y) = (s,£). We note that ¥ is contained in the hyperplane & = 0, and T’y can now be
represented by

(312) Y1 :v£1(8707y27"'7yn)'

When 7 in the above definitions is replaced by some 7(, € (0,70), we denote the corre-
sponding sets by €, I'j, O" and ¥, respectively. We also write

Qo(s) ={y:(s,y) € Q}, To(s) ={y: (s,y) € T}, etc.

Step 2. vg, (s,-) (k= 1,...,n) belong to C17(O(s) UX(s)) for any v € (0,1).
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Since h(s,y) is Lipschitz in Q¢ U TI'g and wve, is Lipschitz in O U X, we find that
h(s,ve,, &2, ..., &2) is Lipschitz in O U ¥. Thus the function

B(S,g) =1- h(57v§1)£2a "'aén)

is Lipschitz in O UX. Since vy is Lipschitz in this set, h = v, +his also Lipschitz in OUX.
For fixed s € [—r3, ], we may now rewrite (3.11) as

F(Dv?) = h(s,-) € % in O(s), v =0 on %(s).
In the direction &, k # 1, the difference quotient of v(s, -),
v(s, -+ eer) —v(s,-)

Afv(s,-) = -,
€
satisfies the equation
(3.13) Ea%(Afv)&gj = AFhin O'(s), AFv =0 on ¥'(s),
with
1
(3.14) af-j(s, y) = /0 &jging[(l - t)“iiﬁj (s,9) + tug;e; (s,y+ Eek)]dta

which is uniformly continuous in O’(s) U X'(s), and the equation is uniformly elliptic in
O'(s) (see [16]). Therefore one can apply standard LP theory to conclude that AFuv(s, )
has a W?2P bound that is independent of €, for any p > 1, since the right hand side of
the differential equation is uniformly bounded in L. It follows that vg,(s,-) belongs to
W2P(0O(s)) for any p > 1 and hence, by Sobolev embedding, vg, (s,-) € C7(O(s) U £(s))
for any v € (0,1). We further notice that the bounds for ve, in the norms of these spaces
are independent of s. We finally obtain the same bound for v¢, from the differential
equation and the bound for ve,, k = 2,...,n.

Step 3. v € C2(OUY).

Using (3.12) we now see that I'g(s) € C17 uniformly in s € [—73,73]. Moreover the
above smoothness conclusion on v implies that wy,,.(s,-) € C7((s) UT'o(s)) uniformly
in s € [-r, 73] (see page 351 of [16] for more details).

For fixed s € [—r3, 8], the function u = ws(s, -) satisfies

Au = wgs — g(ws) € L™ in Qo(s), u =0 on Iy(s).

Since I'y(s) € C*7, by Lemma 3.1 of [17], u(s,-) € C7(Qo(s) UTy(s)), and its modulus
of continuity is independent of s.

For later use, we note that since the above analysis can be applied near any point on
oH{w > 0} N ([~to + 6,73 x Byy(0)), we find that u(s,-) € Cl’"’(Qré(s)) uniformly for
s € [—to + d,73] (with 7 sufficiently small).

We thus find that wgy,(s,-) € C7(Q(s) ULg(s)) uniformly in s. Let us recall from Step
2 that the same conclusion holds for wy,,,. On the other hand, since h and hs are Holder
continuous, by standard interior parabolic estimate we know that w € C?(€). Therefore
we would have w € C%(Qp U Ty) if we can show that Wy, , Wy,y; are all continuous along
[p. This can be done in the same way as on page 270 of [17]. We have thus proved that
w € C?(QyUTy). It follows that v € C2(OUY).

Step 4. v, and ve, (k= 1,...,n) belong to Hi4,(O UX) for any v € (0,1).
We now return to (3.11) and view it as a fully nonlinear parabolic equation of the form

(3.15) F(D*v) —vs=heC% in O, v=0o0n X.
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In the direction &, k # 1, the difference quotient AFv satisfies
(3.16) Sag; (AFv)ee, — (AFv)y = AFhin O, Afv=0o0n Y,

with ag;(s,y) given by (3.14), which are uniformly continuous in O" U ¥’ (due to the
continuity of vg,¢; in OUX), and the equation is uniformly parabolic in O’ UY'. Therefore
one can apply standard LP theory for linear parabolic equations to conclude that A¥v has
a VVp1 2 bound that is independent of small € > 0, for any p > 1, since Afﬁ is uniformly
bounded in L*°. It follows that ve, belongs to W; ’2(0’ ) for any p > 1, and hence, by
Sobolev embedding, ve, € Hi4(O"UY') for any v € (0,1). We can do the same in the
direction of s to deduce that v, € Wz} 2(0'"), and the bound for ve, finally follows from the
differential equation and the bound for vs,vg,, k = 2,...,n. Therefore Og,ve, (1 =1,...,n)
and Osvg, all belong to C7(0' UY), for any v € (0,1). In view of (3.12), we have proved
that T'g € C'7 for any v € (0,1).

Step 5. Completion of the proof.

In Step 3 we have shown that u(s,-) € CLW(QT{) (s)) uniformly for s € [—to + 6, 7] (with
r(, sufficiently small). Therefore we may apply Lemma 3.14 to conclude that h(s,-) €
Che(Qf(s) UTy(s)) uniformly for s € [—(r))?, (ry)?]. From (3.8) it is clear that 9,h(s,y)
is Lipschitz continuous in s uniformly in y. From 9sh(s,y) = g(ws(s,y)) and Lemma 3.13
we immediately see that dsh € COH(Qf UTY). Therefore h € Hyo(Q UTE). It follows
that h € Hi4o(O'UY).

We now return to (3.15) and (3.16), and notice that due to Step 4 and the above
discussion on h, the terms a;; and Afﬁ are uniformly bounded in H, (O’ UY'). Therefore
we may apply standard Hélder estimates to conclude that ve, € Hato(O' U X'). The
estimates for v, and vg, are obtained in a similar fashion as before. Therefore O¢,ve,, Osve, €
Ch(0' UY), which implies that ['y € C%.

From the equation

us — Au = g(u) in Qp, u =0 on Iy
we deduce, by the strong maximum principle, wy,s = 0y, u < 0 on I'g.

Rewriting (3.12) as y1 = f(s,¥y2,...,yn) and recalling that w,, vanishes on the free

boundary, we have

wyl (Sa f(37 y,)v y/) =0.
Differentiating this identity with respect to s we obtain

Dsf = ——25 50
Wy y1
since wy,y, > 0 on I'g due to wy,,, (0,0) =1 and rg is small. O
Corollary 3.16. Suppose (2.2) and (3.3) hold, and g € C%*([0,00]) for some small
6o > 0. Then for any t > 0, I'(t) := I'(¢) \ c0($0) is a C?% hypersurface in R", and
I:={(t,x): 2 € T(t), t >0} is a C>* hypersurface in R 1.

4. THE MONOTONICITY METHOD AND LIPSCHITZ SMOOTHNESS

In this section, we prove Theorem 3.6 by the monotonicity method. This is where (3.3)
is needed. More precisely the reflection argument to be used requires

(4.1) g(z,u) = g(u).
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Let (tg,z0) € 0{w > 0} with ¢ty > 0 and xy & ¢o6(Qy). We will first show that I'(¢y) is
Lipschitz continuous near xg. The Holder continuity in ¢ then follows from a blowing up
argument.

The Lipschitz continuity of I'(¢y) near z( follows from a simple reflection and comparison
argument as employed in [20]. This argument shows that v = w; is monotone in certain
directions, which implies the Lipschitz continuity of I'(¢g) near xg.

This monotonicity method was applied in [20] to the classical one phase Stefan problem
corresponding to the weak formulation (2.11) in this paper. However, in our situation
here, due to the nonlocal term H(w;) in (2.11), comparison arguments are difficult to
apply directly. Instead, we will apply the comparison argument to u = w;, which is the
unique weak solution to (2.1) as defined in [8].

Fix (to, o) as above, then fix T' > ty. By Theorem 3.1 of [8], u = wy is the weak limit in
H'((0,T) x Br) and strong limit in L2((0,T) x Br) of a sequence of approximate solutions
Uy, satisfying

Olotm (um)] — dAuy, = g(uy,) in (0,T) x Bg,
(4.2) Up, =0 on (0,7) x 0Bg,
Um (0, 2) = up(x) in Bp,
where Bp is a ball of radius R with center a fixed point in €2y, R is chosen large enough

so that Q(t) C Bpg for t € (0,T] (see [8] for the choice of R), tip(x) is the zero extension of
uo(z), and a,, is a sequence of smooth functions with the following properties:

m (€) = a(§) uniformly in any compact subset of R\ {0},
am(0) = —dp~t, ol (&) > 1 for all £ € RY,
E—dpt <€) <€ forall € € RY

where «(§) is defined in (2.15).

For any given zp ¢ ¢0({2), we can associate a uniquely determined open set of unit
vectors S, and an open cone C, with vertex 0 in the following way:

S, ={veRY: [y =1,v-(z—2)<0Veecc(Q)},

Cyp ={: A€ (0,1), veS5,}
C, has the following geometric characterization: For any =z € zo + C,, let [y denote

the straight line passing through zp and x; then the hyperplane passing through zy and
normal to ly does not intersect ¢o().

Lemma 4.1. For s € (0,T), z € Br \ ©0() and v € S,, we have dyum(s, z) < 0.

Proof. Let P = P, be the hyperplane passing through z with normal vector v. P divides
Bpg into two parts. Denote ST the part containing Qo and S~ the other part. This is
possible because by the definition of v, ¢6(€y) C {z: v (z — 2z) < 0}.

For x € S7, let  be the reflection point of z in P. We claim that for (¢,z) € (0,7) xS,

U (8, ) < up(t, T).

In fact, this is true on the parabolic boundary 9,((0,7") x S7), and both w,,(t,z) and
Um(t, ) = um(t, T) satisfy the first equation in (4.2) over (0,7") x S™, so this claim follows
from the comparison principle (see Lemma 3.2 in [8]). From this claim, we immediately
obtain 0, um(s,z) < 0. O
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Lemma 4.2. For (s,z) € (0,T) x [Br \ ©0(0)], and all v € S, we have d,u(s,z) < 0.
Moreover, for every sop € (0,T'), z0 € Q(s0) \ ©0(Q0) and v € S,,, we have d,u(sg, z9) < 0.

Proof. Since u,, — u weakly in H'((0,T) x Bg), the first part of the lemma follows directly
from Lemma 4.1.

We now consider the second part. Recall that u is continuous in {w > 0} = {u > 0}.
Therefore from u(sg, z0) > 0 we can find 79 > 0 small such that for (s,z) € Py, (so0, 20),
u(s, z) > u(so, 20)/2 > 0 and z € Q(s) \ €o().

Fix v € S,,. Since S, varies continuously with z, we find that v € S, for all z close to
z9. Thus by shrinking 7o > 0 we may assume that v € S, whenever (s, z) € P, (o, 20)-

We may now apply Lemma 4.1 to conclude that 9, u., (s, z) < 0 for all (s, z) € Py, (S0, 20)-
By the definition of @ and ay,, and by our choice of ry, for all large m, a(uy,) = Uy, in
P (80, 20). This implies that w,, — v in Haysj0c(Pry(S0,20)) (0 < o < 1) by standard
regularity theory for parabolic equations. It follows that d,u(s,z) < 0 in P, (so0,20)-
Moreover, u satisfies

up — dAu = g(u) in PTO(SOa ZO)'
Denote v = d,u and we find that
vy —dAv = ¢(t,z)v and v < 0 in Py, (so, 20),

for some ¢ € L>(P,,(s0, 20)). By the strong maximum principle we have either v(sp, z0) <
0 or v(t,z) =0 in Py (s0,20) := {(t,x) € Py (s0,20) : t < 50}

To complete the proof, it remains to show that the second alternative cannot happen.
Suppose by way of contradiction that v = 0 in Py (so, 20). Then u(so, 20 +rv) = u(so, 20)
for r € [0,79]. Since Q(sg) C Bg, we can find a maximal 7* > 0 such that u(sg, z0 +1v) =
u(so,20) > 0 for r € [0,r*]. Set z* = zp + r*v. Since v € S,,, the hyperplane in R" that
passes through z* and is perpendicular to v does not intersect ¢o(£2y), which indicates
that v € S,». Hence we can repeat the argument used above but with zy replaced by
z* to conclude that for some r; > 0 small, either d,u(sp,z*) < 0 or dyu(sg,z) = 0 in
P (s0,2"). However, from the definition of z* we see that 0,u(sg, 2*) = 0 since u(so, -)
takes the constant value wu(sg, zp) on the line segment connecting zp and z*. Thus the
second alternative must happen, which implies u(sg, zo +7v) = u(so, 29) for r € [0, 7% +71],
a contradiction to the maximality of r*. This completes the proof. O

For any small § > 0, let
Ws:={z € R": dist(z,c0(p)) < 6}.
We now associate to each zg & ¢6(£2p) the unique open set Sgo and open cone C;SO which
are obtained by replacing ©6(29) with Wy in the definitions of S,, and C,,, respectively.

It is easily seen that for each § > 0 and zy & ©5(€)), there exists € > 0 small (depending
on dist(zp,¢06(€)) and ) such that

S8 c 8928, and C c OO C C,, if 2, Z € Be(2).
This property will be used in the proof of the next result.

Lemma 4.3. Suppose that ty € (0,T), zo € T'(tg) \ ©(Q) and 6 > 0 is small. Then
there exists € > 0 small such that u(to,z) =0 in (zo + Cio) N Be(xo), and u(to,z) > 0 in
(zo — C2,) N Be(o).

Proof. We first choose € > 0 small so that C,, D Cf;/Q D Cg for all x, & € Bac(xp), and
Bae(z0) N@0(p) = 0. We now show that u(to,) = 0 in (zo + CS,) N Be(2p). Otherwise
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there exists zo in this set such that (tg,20) € {u > 0}. We may now use Lemma 4.2
to deduce that u(to,z) > u(to,z0) > 0 for x € (29 — C’go/z) N Be(zp). This implies that
(to, o) € {u > 0}, which clearly contradicts the assumption that (o, xo) € 9{u > 0}.

We show next that u(to, ) > 0 in (zg — C3,) N Be(xo). Since I'(to) is the boundary of
the open set Q(tg), there exists x; € Q(tp) such that z; — ¢ as i — co. By Lemma 4.2,
we have u(to,z) > 0 in (x; — Cg‘zo) N Be(xo) for all large i. Letting ¢ — oo we find that
u(to,z) > 01in (g — C;ﬁo) N Be(xg). O

Because the cone C, depends continuously on z, by Lemma 4.3 it is easily seen that
for any xg € I'(tg) \ €0(20) with to € (0,7, in a neighborhood B,.(x¢) of xg, I'(tg) can be
represented by a Lipschitz graph, with the bound of its Lipschitz constant determined by
the opening angle of C’go.

Fix such a pair (tg,z¢) and fix 6 > 0 small. We now choose the coordinate system so
that xg is the origin. Moreover, if v,, € S;, is the axis of Cy,, we choose the z,-axis to
agree with v,,. Let 79 > 0 be a small number so that C? C C’géz for all x € By,(z9). By
the continuous dependence of €(t) on ¢ (see Proposition 3.4), we can find r; > 0 small
such that for ¢ € (tg — r{,t0 + 1), Ay := T(t) N {Avg, = X € R'} C B, ja(20). We may
now apply Lemma 4.3 to conclude that A; consists of a single point, say A; = {y'}, and
['(t) N By, (o) is a Lipschitz hypersurface of the form z,, = f(¢,2'), with y* = f(¢,0),
for z/ varying in a small r-neighborhood U, of 0 € R*™!, and r > 0 can be chosen to be
independent of t € (tg — 7%,t + r?).

Now we show that f(t,z) is 5-Holder continuous with respect to ¢ in (to —r?, o +17) x
Uy/a-

Lemma 4.4. 9C > 0, such that
1f(t,z) = f(s,2)] < C|t — s|% fort,s € (ty —ri,to+ 1) and 2’ € Ur/a-

Proof. Assume by way of contradiction that 3(¢;, x;) and (sj, a:;) such that ¢;, s; € (to —
2.t +12), 2’ € U, /o and

[ty a5) = f(s5,2))]

[tj — s;[1/2

— +00 as j — oo.

Without loss of generality, assume t; — s; = ’I"JZ > 0. Then by the monotonicity of Q(t) we
have f(t;,z}) > f(sj,}). Thus
[, ;) — f(s), ;)
(tj — s)1/

(4.3) — +00

Denote z; = (:c;, f(tj,x;-)) and y; = (:c;, f(sj,:c;-). Then define the rescaling

1
wj(t,x) := ﬁw(tj + r?-t, xj+rjz) for (t,z) € Pr]_—1(0,0),
J

where w is the solution of (2.11).

By Lemma 3.2, for all large j, w; is uniformly bounded in any compact set K of
(=00, +00) xR™. By rescaling the equation of w, we see (dA—0;)wj is uniformly bounded in
K. Thus for Vp > 1, w; is uniformly bounded in W,} ’2(K ). After passing to a subsequence,
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we can assume w; converges to ws uniformly in any compact set of (—oo,+00) x R™. By
Lemma 3.3, w is nontrivial. In particular,

(4.4) SUp W > C(n) > 0.
P;(0,0)

Because (s;,y;) € 0{w > 0} = 0{u > 0}, we have, with z; := (0, WM),
(—1,2;) € 0{w; > 0} = O{u; > 0},

where u; denotes the corresponding rescaling of . By the monotonicity of u;, VA > 0
such that x € x; + )\Sgo C Br/r;s

(—1,2) € {u; = 0} = {w; =0}, i.e., wj(—1,2) =0.
Passing to the limit and noticing our assumption (4.3), we see
Woo(—1,2) =0 for z € R™.
On the other hand, using (3.2), we obtain
(dA — Op)weo = dﬂ_lX{ww>0} >0 in R! x R",

and by Lemma 3.2, 0 < ws(t,z) < C(n)r? in P7(0,0) for all » > 0. Combing these three
facts we get weo =0 in (—1,00) x R™. This contradicts (4.4). O

Clearly Theorem 3.6 is a consequence of the above results.

As in [8], we know that when (2.2) holds, the weak solution u of (2.1) is defined for all

t > 0. Let us end this section by observing the following easy consequence of Corollary
3.16.

Theorem 4.5. Apart from (4.1) if we assume further that g € C*%([0,60]) and Qq is
convez, then T'(t) is C>* for t > 0, and the weak solution is classical.

Proof. By Proposition 2.4, T'(t) N Qo = @ for ¢t > 0. Hence we may apply Corollary 3.16 to
conclude. O

5. THE SPREADING-VANISHING DICHOTOMY

In this section, we study the asymptotic behavior of I'(t) and u(t,z) as t — co. We
always assume that (4.1) holds. We will also need a further restriction on g:

(5.1) g(z,u) = g(u) <0 for all u> M > 0.
In Section 2, we have proven that Q(t) is expanding in ¢; thus we can define the limit
O = [ Q).
t>0

5.1. Dichotomy for (). In this subsection we prove the following dichotomy.

Theorem 5.1. Suppose that (5.1) hold and g € CH%([0,80]) for some small 6o > 0. Then
either Qoo = R™ or it is a bounded set. Moreover, if Qo = R™, then for all large t, T'(t) is
a smooth closed hypersurface, and there exists an increasing function M(t) such that

T(t) C {zx eR™: M(t) — %W < lz| < M)}

if Qoo 18 bounded, then u(t,x) — 0 uniformly in x ast — oo. Here dy denotes the diameter
Of Qo.
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It is natural to ask: When ., = R", what is the asymptotic behavior of v as t — co?
Without further restrictions on ¢, this cannot be answered. When ¢ takes the logistic
nonlinearity, this question is answered in the next subsection. In one space dimension
with bistable or combustion nonlinearities, it is shown in [10] that the limit of u is usually
the stable positive steady-state except in the transition case, where the limit is a ground
state (for the bistable case) or the ignition constant (for combustion nonlinearity).

Theorem 5.1 is a consequence of some stronger results below. The proofs are based on
the following simple geometric result, which is an analogue of Theorem 2 in [20] but we
do not have the restriction that n > 3.

Theorem 5.2. Suppose that (4.1) holds and g € CY*([0,00]). Then at any point zo €
I'(t) \ ©o(Q0), the inward normal line to I'(t) at xo intersects €o($).

Proof. Fixt > 0 and z¢ € I'(t) \co(£2p). Then choose r > 0 small so that B,(zo)Nco(Q) =
(). To simplify notations, we will write Wy = ©o(Q).

Since u is smooth in Q(¢) N B,(zg), we can use the Hopf boundary lemma to conclude
that |V u(t, z)| # 0 on I'(t) N By (20), where Vou(t, z)|r)nB, (zy) 18 understood as its limit
when = € Q(t) goes to I'(t) N By(xp). It follows that for all small € > 0, the level set

I'. ={z eR":u(t,x) =€}

is close to I'(t) in B,(xg), and I'c N B,.(xg) is a smooth hypersurface. We will show that
any ray inward normal to I'c N B, (xg) intersects Wy. The conclusion of the first part of
the theorem then follows by letting ¢ — 0 because u is C% up to I'(t) N B.(x) and
|Viu(t,x)| # 0 on T'(¢) N By(xo).

Let z1 be any point on I'. and [ the ray inward normal to I'c at z1. Assuming that

(5.2) INWy =0,

we will derive a contradiction.

By the definition of S,, we easily see that (5.2) implies the existence of a v € Sy,
satisfying v L [. By Lemma 4.2, we have d,u(t,x1) < 0. On the other hand, since v
is tangent to the level surface I'. of u, we must have 9, u(t,z1) = 0. This contradiction
completes the proof. O

Let z, be any point in €2y and define

m(t) = min |z — x|, M(t) = max |z — x| = max |z — x|
z€l(t)\eo(Qo) z€l'(t) zeQ(t)

Theorem 5.3. Suppose that (4.1) holds, g € C**([0, o)), Bp,(z4) D €0(Qo), and there
exists to > 0 such that M(tg) > (m+1)Ro. Then fort > to, I'(t) := I'(t) \©0o(Qp) is a C>*
closed hypersurface in R™, with m(t) > M(t) — 7Ry. Thus

It)c{z eR": M(t) — 7Ry < |z — x| < M(t)}, Vt > to.

Proof. Without loss of generality, assume x, = 0 is the origin. Fix ¢t > ¢y and let zy € T'(¢)
satisfy |xo| = M (t). Since §2(t) is expanding, M (t) > M (to).

We claim that I'(t) is a closed hypersurface in R" and T'(t) N Bg(0) = 0, with R =
M (t) — mRy. Clearly the conclusions of the theorem will follow from this claim.

Let IIy be an arbitrary two dimensional hyperplane in R™ that passes through the origin
and xg. We may rotate the coordinate system so that Il is the x1x2-plane with zy having
coordinates (M (t),0) on Iy. In view of Theorem 5.2, Iy N T'(¢) contains a curve ly with
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xg € {p, and at each point on [y the normal line intersects the disc {p < Ry} on Iy, where
the polar coordinates (p, ) on Ily are used. This implies that ly can be expressed as

p=r(0), 00 <6<,

with —m <0~ < 0 < §7 < 7. The normal line property implies that Ry > /() > — Ry for
all § € (6,67). We may assume that £ is the maximal connected component of Il N T'(#)
that contains xg.

We thus obtain, for any Py = (r(6p),00) € Yo,

)
o] = r(6) = M(#) +/O Y(0)d0 > M(t) — Rolfo| > M(ty) — = Ro.

Since M (tg) —mRo > R, clearly Be(Py)Neo($) = 0, where e = M (t) — (7 +1) Ro. Hence
Be(Py) Ny NT(t) is a O curve, which necessarily forms part of £y. This implies that

0~ = —m, 07 = 7 and ¢ is a closed curve in Ily, and £ HER(O) = 0.
Since g is arbitrary, the above conclusion implies that I'(¢) is a closed hypersurface in
R™, with I'(¢t) N Br(0) = 0, as we claimed. O

5.1.1. [Qs unbounded implies Q. = R"]. Now we come to the proof of Theorem 5.1
for the case that () is unbounded. In such a case, we necessarily have

(5.3) lim M (t) = +oo.

t—+00

By Theorem 5.3, this implies

lim m(t) = +oo,
t—+00

and hence T'(t) \ ©06(€) goes to infinity in every direction. However, this says nothing
about the part I'(¢) N €o(p), which is nonempty for small ¢ > 0 if Q is not convex.

If Qg is convex, this set is empty and the proof of Theorem 5.1 for unbounded Q. is
thus complete. The case that 2., is unbounded and that €2y is not convex is covered in
the following theorem.

Theorem 5.4. Suppose that (5.1) holds and g € CH([0,00)). If Qoo is unbounded and
not convex, then there is a Ty > 0, such that for all t > Ty,

() C Q).

Proof. Without loss of generality, we assume 0 € €y. Suppose by way of contradiction
that the conclusion of the theorem is false. Then we can define
t) = max x|, Vt>D0.
P(f) zG@(Qo)\Q(t)| |
Since Q(t) is expanding as t increases, p(t) is non-increasing for ¢t € (0,00). Take R > 0
such that ¢o(£9) C Br = Br(0). By Theorem 5.3, there is a 7' > 0, such that for all
t>T,
Bin \ @0(Q) € Q(t),

and hence u > 0 on [T, +00) X [Bsg \ By, and p(t) < R for t > 0.
Since 0 € 0y and € is open, there exists 19 > 0 such that B,, C . Thus B,, C §(¢)
and p(t) > ro for all t > 0. It follows that

(5.4) poo = lim p(t) € [ro, R).
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Because 0 < wu(t,z) < M, we can write g(u) = c(t,z)u with ||c[|p~ < Cp. Since
Bsr\©0(Qo) C Q(t) for t > T, by the Harnack inequality (see, e.g., Theorem 6.27 in [19]),
we can find a constant C such that, for any ¢t > T + 3,

1
(5.5) o(t): == inf wu(t,-)>C sup u.
2 B3r\Bar [t—5/2,t—1]x (Bsr\Br)
The arguments below are divided into four steps.

Step 1. There exists C' > 0 such that

(5.6) o(t)>C sup |Vu(r,y)| Vrelt—2,t—1], Vt>T+3.
yel(r)

The normal line property of I'(¢) in Theorem 5.2 implies that T'(¢) is uniformly Lipschitz
continuous for all ¢ > T. The proof of the regularity of 9{u > 0} indicates that the
C?“-norm of the local expression of the free boundary given in Theorem 3.15, y; =
f($,92, ..., yn), is determined by the modulus of Lipschitz continuity of I'(t) and the L
bound of u. Therefore, near each point (tg,zo) € I'r := {(t,x) : € I'(t),t > T}, after a

suitable rotation of the z-coordinate system, I'r can be expressed as z1 = f(t, 2, ..., p),
with f € C%® and its C%“-norm bounded by a constant independent of (to, zo). Therefore
there exists 7 € (0, R/2) and n > 1 such that for any ¢, > T + 1 and zo € I'(t), one can
find a parabolic half ball

B, ={(t,x) : |z —yol* + n(to — t) < 1*,t < to}
that touches {u > 0} at (¢g,z¢) from outside:
B.-N{u>0}=0, B,nTr=/{(to,z0)}.
We now define
A, = {(t,x) € By, \ By : n(tg — t) < r2/2}.
Clearly 9,4, = S} U S2 U S? with
St ={(t,x) € B, : n(to —t) < r%/2},
S2 = {(t,x) € OpBar = n(to — t) < 1%/2},
S3 = {(t,x):r?/2 < |z —yo|* < 3r%/2, n(to —t) = r?/2}.
For 8 > 0 to be determined, we define
v(t,z) = 7" — P with p? = |z —yol® +n(to — t).
A direct calculation gives
vy — dAv = B[ —n+ d(4B|z — yol® + 2N)}e’8p2.
In Ay, |z —yo|?> = p? — n(to — t) > r?/2. Hence
v — dAv > B[ — 1+ 2dBr? + 2Nd]eﬁp2 >kvin A,,

provided that f is chosen large enough. Here k > 0 is chosen such that g(§) < k& for all
£>0.
Clearly

(82083 N {u> 0} N B, = (52U S%) N {(to,z0)} = 0.
Therefore we can find ¢y > 0 depending only on 7 and 7 such that
|z —5ol® +n(to —t) > (1 + €o)r? for (t,2) € (S?U S2) N {u > 0}.
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It follows that
v > mg = ePHe? _ fr® iy (S2US3H) N {u>0}.

We may write
Op(Ar N {u > 0}) =S} U S?
with
St = A, no{u >0}, S? = (S?2U S n{u>0}. [ Recall S} N {u>0}=10]

Denote My = supgs, u, and define vg = %—gv. Then

u=0§voon§}, uSMogvgongf,
and
(vo)e — dAvy > kvg > g(vg) in A, N {u > 0}.

Therefore we can apply the maximum principle to conclude that vg > w in A, N {u > 0}.
It follows that, with vy = (zo — yo)/|xo — vol,

M 2
&,Ou(to,xo) S 8yovo<t0,x0) = miEQﬁTe’BT = CM(),

with C' independent of (tp,zg). Since the sphere {|z — yo| = 7} is tangent to I'(t) at zo,
we have 0y, u(to, zo) = |Vu(to, xo)|. Therefore

‘vu(toa $0)| < CMp.

Here and in what follows, we will use C' to denote a generic positive constant which does
not depend on t or ty, but its value may change from place to place.

If we denote

Ls(t) = {z € Q(¢t) : dist(x,I'(¢)) <8}, VEi>T,
then by shrinking r if necessary we can guarantee
52 ¢ Ny(to) := {(t,z) : x € Top(t),t0 — 1/2 < t < to}.
By Lemma 4.2, for all t > T,
sup U(t, ) > sup U(t,)
B3r\B2r Tar(t)
Therefore
sup u > sup u > My > C|Vu(to, xo)|.
[to—1/2,;to]x (Bsr\B2r) Nr(to)
Since xg € I'(tg) is arbitrary, this implies that
sup u>C sup |Vu(to,y)|.
[to—1/2,to]x (Bsr\B2r) y€T(to)

Taking tp € [t — 2,t — 1] and using (5.5), we obtain (5.6).
Step 2. An upper bound for o(¢). B

For any fixed s > T + 3, we choose a smooth function v* over Bsg \ B,(s) with the
following properties:

(i) v* is radially symmetric,

( ) v¥ _0'( ) linfxeBw\BEu(s,m) in BgR\BgR,

(iil) 0 <v® <w(s,-) in Bsgr \ By

(iv) v* =0 on OB5r U OB, ).
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Since g is locally Lipschitz, there exists k£ > 0 such that g(u) > —ku in [0, M]. We now
consider the problem

vy — dAv = —kv, t>s, h(t)<r <5R,
v(t,bR) =0, wv(t,h(t)) =0, t>s,

(5.7) o
h (t) - —/J,’UT(t, h(t))v t>s,

h(s) = p(s), v(s,r)=2°(r), p(s) <r <5R.

Similar to Theorem 2.1 in [7], we know that (5.7) has a unique classical solution pair
(v, h) defined on some maximal time interval [s,s + T7), with T} € (0,00], and the Hopf
boundary lemma guarantees that h/'(t) < 0 for all ¢t € (s, s + T1). By Theorem 4.3 of [8],
we find that v < win {(t,z) : t € (s,s +11),h(t) < |z| < bR}, and

(5.8) Poo < p(t) < h(t) for all t € (s,s+ T1).

This implies that 77 = oco.
Let (A1, ¢1) denote the first eigenpair of

—A¢ = \¢ in B3g \ Bag, ¢ =0 on 9(Bsg \ B2g),
with ¢1 > 0 in B3y \ Baog and ||¢1]|cc = 1. Set
Vi (t, @) = o(s)e”(PTRE=3) g (2).
We have
Opvy — dAv, = —kv, for t > s, © € B3r \ Bar,
v. =0 <wvfort>s, x€d(Bsg\ Bag),

and

vu(s,2) = 0(s)é1 < o(s) = v*(|a]) = v(s, |o]) for = € Byr \ Bor.
Therefore we can apply the standard comparison principle to conclude that

v(t, |z|) > ve(t,z) = o(s)e” ([P tRE=5)p) (z) for t > s and x € Bsp \ Bag.

In particular,
)
(5.9) v(t, |z|) > Co(s) for |z| = §R, tels+1/4,s+1],

with C' independent of s.
Step 3. Completion of the proof under an extra assumption.
We claim that
(5.10) vp(t,h(t)) > Co(t —1/6,5R/2) for t > s+ 1/4.

Assuming (5.10) we now continue with the proof. In view of (5.9), it follows from (5.10)

that
H(t) = —pon(t, h(2))
< —Co(t—1/6,5R/2)
5 7
< - f 2 syl
< —Co(s) fort € [s+ T 6]
Recalling h(s) = p(s), h(s+1) > p(s+ 1) and A/(t) < 0, we obtain

s+1 s+1
(s +1) — p(s) < h(s +1) — h(s) :/ W ()t < /+1/2 B (1) dt.
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Hence
pls +1) — p(s) < —Co(s).
Making use of (5.6), we obtain
s—1
pls+1)=p(s) <=C swp ( sup [Vu(r,y)l) <—=C [ sup [Vu(r,y)ldr.
T€[s—2,5—1] *yel(r) =2 yel'(r)

Using the above inequality for so =T + 3,511 = s; + 1 successively, we obtain

Sj—1
p(5j+1) - p(sj) <-C Sl}p |VU(T, y)|d7-a ] = 273a ()
sj-2 yel'(r)
and hence -
Poo — p(s2) < =C sup |Vu(r,y)|dr,
50 yel(r)

which yields
o0
/ sup |Vu(r,y)|dr < oc.
We show next that this leads to a contradiction.
Fix a unit vector v € R", and define r(¢t) > 0 by
r(tyy e T(t), t>T.
Then u(t,r(t)v) = 0 and it follows that
w(t, r(t)v) + ' (t)Vu(t,r(t)v) - v =0.
By the free boundary condition,
w(t, ()W) = p|Vu(t, r(t)v)>
Hence )
Vu(t, r(t
T/(t) — _M| U( ’T( )V)| .
Vu(t,r(t)v) - v
Since the inward normal line of T'(t) at r(t)v intersects co(€y) C Bg, and for t > T,
r(t) > bR, there exists a positive constant ¢y such that

—Vu(t,r(t)v) - v > co|Vu(t,r(t)v)| Vt > T.
It follows that
() < L 1vut,r@) < L osup |Vult,y)| V> T.
co €0 yel'(t)
Therefore ~
lim r(t) = r(T + 3) +/ ' (t)dt

[ee]
<r(T+3)+ ,u/ sup |Vu(t,y)|dt < oo,
€0 JT+3 yel(t)

a contradiction to the fact that r(¢) > m(t) — oo as t — co. This finishes the proof under
the assumption of (5.10).
Step 4. Proof of (5.10).

Since h(t) > poo > 0, the sphere {|x| = h(t)} is uniformly smooth for all ¢ > s. Thus
as in Step 1, one can obtain a uniform bound of the C%®norm of the free boundary
{(t,x) : |z| = h(t),t > s+ €} for any € > 0. In particular, h'(t) is uniformly bounded for
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t > s+ 1/4. Hence for each tg > s+ 1/4 and xy € 8B,~1(t0), we can construct a parabolic
half ball
B, = {(t,z) : |x — yo|* +nlto —t) <12, t < to}
such that B
B, C {v>0}, B, Nno{v >0} = {(to, z0)}
Moreover, r € (0, R/2) and n > 1 can be chosen independently of such (g, o).
Define ~
A, = {(t,z) € B, : |z — yol* > 1?/2}.
Then 8,4, = B} U X2, with
Y= {(t,2) € 9,B, : n(to — t) < r?/2},
Y2 ={(t,z): |z —yo|> =72/2,0 < n(to —t) < r?/2}.
For 8 > 0 to be determined, we define
z(t,x) = e PP — 7P with p? = |z — yol* + n(to — t).
Then ,
2 — dAz = By — d(4B|z — yo|” + 2N)]e P
< B(n — 2dBr? — QdN)e_Bp2
< —kz for (t,x) € A,,

provided that 3 is chosen large enough.
Clearly z = 0 on X! and

2 < Ny :=e P2 _ =P on 2,

We may assume that 1 > 42 with r sufficiently small. Then there exists § > 0 independent
of (to, o) such that 0 < § <r and

22 N(tg) :={(t,z) : 6+ h(t) < |z| <4R, 0 <ty —t < 1/8}.

Set ~
~ . mo
mp := inf v, zg = =—=z.
N(t()) MO
Then
zozogvonEi, zogmogvonilz
and

(z0)r — dAzp < —kz in A,

It follows from the comparison principle that zg < ¢ in A,. Hence, with v = 40=%0

= Tyo—zo]? W€
have .
m
Ou(to el 2 0yzolto, 20) = 285re " 2 = Cig,
0

that is, U,«(to,h(to)) > Cmyg.
Since limy_,o0 A(t) =: hoo € [poo, R), by enlarging T if necessary, we may assume, without
loss of generality, that
)
h(t) € (hooshoo + Z) vt >T.

Hence

1 ) 1
N(to) - [t07t0+§] X Np C {(t,l’) : Z+h(t) < ‘l" <4R, t e [to,t0+8]},
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where Np = {7 : hoo + % < |z| < 4R}.
By Harnack’s inequality,

mo = inf v > inf v > Cu(ty — 1, §R)
N(to) [to,to+5]xNr 62
Therefore
vr(to, h(to)) > Cv(to — 1/6,5R/2) for tog > s + 1/4,
which is (5.10) with ¢ = . The proof of the theorem is now complete. O

5.1.2. [Qs bounded implies u — 0]. The following result shows that vanishing happens
when (), is bounded.

Theorem 5.5. If Q is bounded and (5.1) holds, then as t — 400, u(t,x) converges to
0 uniformly.

We will prove this theorem by the following three lemmas. Note that when Q. is
bounded, then in the approximate problem (4.2), we can choose any Br(0) D Q. and
it works for all ' > 0. Moreover, if we extend u(t,x) by 0 outside €(¢), then it satisfies
(2.14) for all B D Q.

In the discussions below, we always assume that the conditions of Theorem 5.5 are
satisfied. We first prove an energy inequality. Let u be the weak solution of (2.1). Define

B(u)(t) = /Q . [- %[ut — g(u)]u— G}, with Gu) = /0 ")t

Lemma 5.6. For 0 < T} <15 < +o00, we have

T>
(5.11) B(u)(Ty) - B(u)(T}) < — /T /Q o) dadt

where u is the unique weak solution of (2.1). Moreover, there exists Cy > 0 such that
E(u)(t) > —Cy Vt > 0.

Proof. Choose any Br D Qs and let u,, be the solution of (4.2). Define

B(un)(t) = [

. [g!Vum(t, z)% = G(uml(t, x))] da.

From (4.2) we can calculate directly to get, for to > ¢1 + 0,

E(um)(t2) — E(um)(t) = /t ’ /B o ()| Oyt |2t

to
< / / — |0t |2 ddt.
t1 Br

Here we have used the fact o/, > 1. Integrating the above inequality for ¢; over [T7, T} + 0]
and then for to over [To, T» + d], we obtain

T2+5 T1+§ T>
(5.12) / E(um)(t)dt—/ E(up)(t)dt < —6 / |0t | dzdt.
Ty T T1+6 Y Bgr
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A simple comparison consideration shows that 0 < u,, < C' := max{M, ||ug||oc}. Since

Uy — u weakly in H'((0,T) x Bg) and strongly in L?((0,T) x Bgr) for any T' > 0, and
since u,, < C for all m, we have

To T
liminf/ / | Ot |? dxdt > / |Ou|>dadt
m=0 JT+6 JBg Ti+6 JBr

and
T2 T2
lim G (U, )dxdt = G (u)dxdt.
m=o0 J1 45 JBg Ti+6 JBg
We show next that for T' > 0,
T+6
Es(T) := lim E(up)(t)dt exists.
m—00 T

Define, for £ > 0,

£ 13
A(€) = /0 o (5)ds, A(E) = / a(s)ds = €2/2,

0
and

Bin(€) = an()€, B(€) = a(§)é =&~

From the definitions of a,,, and «a, we easily see that
Ay, — A and B, — B uniformly over any bounded subset of [0, c0).

We now multiply (4.2) by u,, and integrate over [T',T + 0] x Bpr for an arbitrary 7' > 0,
and use integration by parts. It results

T+6 T+6
(5.13) / / (D[ ctm (um)]tm + d|Vup,|?)dodt = / / (U ) umdxdt.
T Br T Br

Since u,, is uniformly bounded and w,, — u in L?, we have

T+5 T+6
lim / g(um)umdwdt:/ / g(u)udzdt.
m—oo Jp Bgr T Bgr

Since
T+0
/ Ot (s )tmdlt = Bt (T + 6,)) — Bon (i (T, )
T
— Ay (U (T + 0, 2)) + Ap (um (T, ),
we find that
T+6
lim Ot (Um) |um dzdt
m—oo Jp Bnr

= /B [B(u(T + 6,z)) — B(u(T,z)) — A(u(T + 6,2)) + A(w(T, z))]dx

= /B % [uQ(T +6,z) — u*(T, x)] dx.

Here we have used the fact that u,,(t,-) — u(t,-) a.e. in Bg, which is guaranteed by the
strong convergence of u,, — v in L?((0,T) x Bg) and the fact that wu,,(t, ) are uniformly
bounded in H'(Bg) (see the energy inequality of u,, in Lemma 3.3 of [8]).
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It now follows from (5.13) that

T+6
lim / |V | dxdt
T Bgr

(5.14) e s
1
=— /BR {§ [uZ(T +9,z) — u2(T,:1c)] —/T g(u)udt}dm.
Therefore
T+6
By(T) = Jim [ B0
(5.15) -5 [ G+ sa) @)
) T+
_ / [g(u(t. 2))u(t. ) — 26 (u(t,))]dt  da.
T
and for T > 0,
. 1 .
lim 61 E(T) = B(T),
with
BT = [ {= 5 lulTa) = gu(T,a)]u(T.) - G(u(T. ) .

Since u(t,-) = 0 in Br \ Q(t), clearly E(T) = E(u)(T). Letting m — oo in (5.12), we
obtain
Ty
(5.16) Es(Ty) — E5(Ty) < =06 / |Ou|dadt.
T1+6 J Bp
Diving this inequality by ¢ and letting 6 — 0, we obtain (5.11).
Since we have a uniform bound for all u,,, for arbitrary 7" > 0 and ¢ > 0,

T+06 d
0< lim / — |V, |2dadt
T Br 2

m—r0o0
T+6 T+6
= lim E(up,)dt + lim G(up,)dtdz

< E5(T) + 6Co,
where Cy > 0 is independent of T and §. It follows that
E(T) = lim Es(T)6~' > —Cy, VT > 0.
The proof is complete. O
The above energy inequality plays a key role in the proof of the following result.

Lemma 5.7. For any sequence t; — 400, vi(t,x) = u(t; + t,x) converges to 0 in
12((~1,1) x B).

Proof. Let Br O Qu. By Lemma 5.6 we have, for T > Ty > 0 and § > 0,

/T+6/ |0pul?dedt < E(u)(T) — E(u)(T + 6) < E(u)(Ty) + Co.
T Br
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By (5.14) and the fact that 0 < u < M, there exists C1(d) > 0 such that

T+6 T+6
/ / |Vu|?dzdt < lim / |Vt |2dazdt < C1(8), VT >0, V6 > 0.
Br Br

m—r0o0 T

Thus 3C > 0, such that for all i,

// (\Vvi|2 + |8tvi|2)dxdt <C.
(—1,1)><BR

Because of the uniform bound for all v;, by the compactness embedding theorem for
Sobolev spaces, we find a v such that, subject to passing to a subsequence, v; converges
to v weakly in H'((—1,1) x Bg) and strongly in L*((—1,1) x Bg).

Since E(T) > —Cj, by Lemma 5.6, lim FE(t) exists. Moreover,

t—+00

// |8tvi|2 < E(tl — 1) — E‘(tZ + 1)),
(—I,I)XBR

which converges to 0 as i — +0o. By the weak convergence of d;v; to vy in L2((—1,1)x Bg),

we get
[ oo
(-L1)xBg
that is, v is independent of t.

The remaining part is to prove v = 0. By definition of the weak solutions, Yy €
C5°((=1,1) x Bg),

(5.17) / / a(vs)pr + VA + g(v)p = 0.
( 1 l)XBR

We claim that
lim // a(vi)pr = 0.
o0 J J(-1,1)xBg

This can be seen by decomposing the region of integration into three parts:
Al = (-1,1) x Q(t; — 1), A? := (=1,1) x [Bg \ Q]
and
A2 = (=1,1) X [Qoo \ Qt; — 1)].
Over A}, v; > 0 and hence a(v;) = v;. Over A?, v; = 0 and hence a(v;) = —du~!; thus

the integral is 0. Since Q(t) expands to Qo as t — 0o, we find that |A3| — 0 as i — oco.
Therefore we have

// a(vy)prdtdr = // vchtdtda:—i—// a(v;) — vi]¢dtde.
(-1,1)xBg (-1,1)xQ A3

Our claim now follows by letting ¢ — oo, since v is independent of ¢.
By passing to the limit in (5.17) and choosing suitable test functions of the form

o(t,x) = £(t)p(x), we obtain
/B [VA¢ + g(v)p]dz =0 V¢ € C(BR).

That is, v € H'(Bg) is a solution of
—Av = g(v) in Bpg.
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By our construction, v > 0 in B and v = 0 in Bgr \ Q. Then by the strong maximum
principle, v = 0. This implies that the entire sequence v; — 0 in L?((—1,1) x Bg). O

The convergence of v; — 0 can be improved.

Lemma 5.8. Let v; be defined as in Lemma 5.7; then v; converges to 0 uniformly in any
compact subset of (—1,1) x Bpg.

Proof. For any T' > 0, by (2.5) we easily deduce that

/T/BR[—uqbt—deu-ng]d:cdt—/BR o () /OT/BRg )pdadt

for every nonnegative ¢ € C1((0,T) x Bg) satisfying ¢ = 0 near ([0, 7] x 9Br)U{T} x Bg.
Thus u satisfies (in the weak sense)
—dAu < g(u) in (0,00) X Bg,
u=0 on (0,00) x 0B,
u = g on {0} x Bp.
It follows that v; satisfies (in the weak sense)
—dAv < g(v)in (=1,1) x Bg, v=0o0n (—1,1) x 0Bp.

Let K be any compact subset of (—1,1) x Bg. We now choose R; € (0,R) and s; €
(1/2,1) such that as j — oo, R; decreases to some Ry > 0 and s; decreases to some s, such
that Br, D Qoo and K C (=50, 80) X Br,. For j =1,2,..., denote Q; := (—sj,s;) X Bg;,
and define {p;} by

:2 —_—
P1 ) 9 n+2

1 2 n+2
1 Dy n+2 if p] )
Pi+1 n+3 if pj > 5=

Clearly there exists k > 0 such that for j = k, p; = p > "+2. Let Vij be the unique
solution of _

‘/t —dAV = g(vl) mn Q]7

V=0 on (—sj,55) X 0Bg;,

V:Ui on {—Sj}XBRj.
Then by the maximum principle we deduce v; < Vij in ;. Moreover, by the interior L?
estimates, we have

1
1V laeion < Oillollzzan)

and by the Sobolev embedding theorem (see Lemma 3.3 in Chapter II of [18]),
1V 222y < CIVAlwszany < Collvllzaqan)
Thus

il Lp2 (o) — 0 as i — oo.
By a simple induction argument we deduce

"%J‘|W;;2(Qj+l) < Cjllvillpri(q,) — 0 as i — oo
for every j > 1. Then by Lemma 3.3 in Chapter II of 18],

k k .
IV; ||L°°(Q,€+1) < CV; HWpl,f(QkH) —0asi— oo.

It follows that
HUiHLoo(Qk+1) —0ast— oo.
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Since K C Qk+1, we thus deduce v; — 0 uniformly in K. O

Clearly Theorem 5.5 is a consequence of Lemma 5.8. The proof of Theorem 5.1 is thus
completed.

5.2. The spreading-vanishing dichotomy with logistic nonlinearity. In this sub-
section we use Theorem 5.1 combined with results of [7] and [8] to obtain the spreading-
vanishing dichotomy described in Theorem 1.3.

Theorem 5.9. Suppose that Qs = R", g(z,u) = au—bu?, and M(t) is given in Theorem
5.1. Then there exists a constant ko(u) € (0,2vad) such that

. M(t)
gim O g,
and for every c € (0, ko(p)),
(5.18) tlg})lo |1;r\12}c<:: u(t,z) — %‘ =0.

Proof. Since Qo = R™, from Theorem 5.1 we see that M(t) — oo as t — oco. For T > 0
to be determined later, we consider the auxiliary radially symmetric problem

vy — dAv = av — bv? t>0, 0<r<h(t),
v(t,0) =0, v(t,h(t)=0 t>0,

510 (1:0)=0, (s (1)
W (t) = —por(t, h(t)) t>0,

h(O) = Ry, ’U(O,T) = QT(T) 0 <r < Ry,
where Ry = M(T) — %OW and up(r) is a C! function that satisfies up(Rp) = 0 and
0 < up(|z]) <u(T,x) for |x| < Ro.

By [7], there exists R* > 0 (determined by a,d and the dimension n) such that when
Ry > R*, the unique positive solution (v, h) of (5.19) satisfies

We now choose T > 0 such that Ry = M(T) — %7 > R*.
We then consider the problem

Vi — dAV = aV — bV? t>0, 0<r<k(),
Vi(t,0) =0, V(t,k(t) =0 t>0,

520 (0 =0, V(tk(H)
k() = —pVi(t, k(1)) t>0,

k(0) = M(T), V(0,r)=ap(r) 0<r<M(T),
where @r(r) is a C! function that satisfies (M (T)) = 0 and
ur(|z]) > w(T,z) for |x| < M(T).
Denote O(t) = By (0) and G(t) = By (0). Then by Theorem 6.1 of [8], we have
o) cQt+T)cCgGt)vt>0.
Hence
h(t) < M(@t+T)— %w < M(t+T) < k).
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By [7], we also have

k()
A =~ = kolw).
Therefore we necessarily have
- M(1)
A St Kol
Now (5.18) follows directly from Theorem 6.4 of [8]. O

Remark 5.10. ko(u) is determined in Proposition 3.1 of [7]. It is an increasing function
of u and ko(pn) — 2vVad as p — oo. More analysis of ko(u) is given in [3].

To complete the proof of Theorem 1.3, it remains to show the following result.

Theorem 5.11. Suppose that g(u) = au — bu?. Then there exists p* > 0 such that
Qoo = R™ for p > p*, and Q is bounded when p € (0, u*]. Moreover, u* = 0 if Qg

contains a ball of radius R* := \/g)\l, where A1 is the first eigenvalue of
—A¢p = Ao in B1(0), =0 on 0B1(0),
and p* > 0 if Qo is contained in an open ball of radius R*.

Proof. Choose a small ball B, C Qg and consider problem (1.5) with g replaced by B,
and with ug replaced by a radially symmetric function g satisfying 0 < uy < ug in B, and
uy = 0 on 0B,. This is a radially symmetric problem with a unique radially symmetric
solution u, and we can use the result of [7] to conclude that there exists p* > 0 such that
spreading happens when p > p*. By Theorem 4.3 of [8], we have u > u, and hence we
necessarily have Q. = R" for pu > p*.

Define B

wi=1nf{up > 0: Qoo = R" for u > pp}.
Clearly p* < p*. If u* = 0, then there is nothing to prove.

Suppose next that p* > 0. We claim that for any p < p*, Qo is bounded. To show this
we need to consider the continuous dependence of the solution of (2.11) on the parameter
p. So we denote the unique solution by w,, to stress this dependence. For fixed T' > 0,
and p, — po > 0, from (2.11) we find that w,,, is bounded in W]}’2(QT7R) for any p > 1.
Therefore by passing to a subsequence w,,, converges weakly in I/Vp1 ’Q(QT7 Rr) to some wy
which satisfies (2.11) with @ = po. By uniqueness, wg = w,,,. Hence the entire sequence
converges to wy,,. By Sobolev embedding, the convergence hold in Hy4~(Q1 ), Vy € (0,1).
Therefore w,, — w,, uniformly in compact subsets of (0,00) x R™ as p — pg > 0. (We
assume that w, (¢, ) and wy, (, -) are extended by zero outside their supports.) This proves
the continuous dependence of the solution on pu.

Let us also observe that Q,(t) D Q,,(t) for 1 > pg > 0, where Q,,(t) = {x : u,(t,z) > 0}
and u,, is the unique solution of (1.5). Indeed, by Theorem 3.5 of [8], u, > w,,, which
implies €, (t) D Qy,(t) for all t > 0.

We now come back to the proof of the claim. Suppose by way of contradiction that it
is not true. Then there exists uo € (0, 1*] such that Q. = R™ when p = po. By Theorem
5.3, m(t) — oo as t — oo, and therefore for any R > 0, there exists 7' > 0 such that we
can put a ball Byg of radius 2R inside €,,(T). By the continuity of wy, in pu, there exists
€ > 0 depending on T" and R such that Br C €,,_(T"). By Theorems 2.1 and 2.5 of [7],
if R > R*, problem (1.5) with Qg replaced by Bg, and with ug replaced by any smooth
radially symmetric function u positive in Br and vanishing on 0Bp, has a unique radial
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solution v, and spreading happens for all 4 > 0. We now fix R > R* and choose the
radially symmetric ug such that ug < w,y—(7,-) in Bg. By Theorem 4.3 of [8], we have
Upg—e(T +t,-) > vyg—e(t, ), which implies that ©,(t) = R™ as t — oo for = pip — € and
hence for all y1 > pg — € due to the monotonicity of €,(¢) in u. But this contradicts the
definition of p* since pg — e < p*. The claim is proved.

Let B* be a ball such that Qy C B*. We want to show that in this case u* > 0. Consider
(1.5) with g replaced by B* and ug replaced by a radially symmetric ug satisfying ug > ug
in Qg, g is positive in B* and vanishes on dB*. This new problem has a radially symmetric

solution v* and uw < u*. By [7], if the radius of B*, denoted by R, is less than R* = 4/ g)\l,

then there exists a unique @* > 0 such that vanishing happens for the new problem when
w € (0,*]. Therefore Qo must be bounded when p < @*, which implies that p* > @* > 0.

On the other hand, if €y contains a ball of radius R*, then we denote this ball by B,
and argue as at the beginning of the proof; we obtain that u* < p* = 0. Therefore p* = 0.
This completes the proof. N O
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