SPREADING SPEED AND PROFILE FOR NONLINEAR STEFAN PROBLEMS
IN HIGH SPACE DIMENSIONS

YIHONG DU', HIROSHI MATSUZAWA# AND MAOLIN ZHOU?

ABSTRACT. We consider nonlinear diffusion problems of the form u; = Au + f(u) with Stefan type
free boundary conditions, where the nonlinear term f(u) is of monostable, bistable or combustion
type. Such problems arise as an alternative model (to the corresponding Cauchy problem) to describe
the spreading of a biological or chemical species, where the free boundary represents the expanding
front. We are interested in its long-time spreading behavior in the radially symmetric case, where
the equation is satisfied in |z| < h(t), with |z| = h(¢) the free boundary, and lim;_, h(t) = oo,
lim; o0 u(t, |z]) = 1. For the case of one space dimension (N = 1), Du and Lou [8] proved that

limy_yoo U8 = ¢* for some c¢* > 0. Subsequently, sharper estimate of the spreading speed was
t Y: g

obtained by the authors of the current paper in [11], in the form that lim;_,eo[h(t) — ¢*t] = H € R*.
In this paper, we consider the case N > 2 and show that a logarithmic shifting occurs, namely there
exists ¢, > 0 independent of N such that lim;—eo[h(t) — ¢t + (N — 1)c.logt] = h € R'. At the
same time, we also obtain a rather clear description of the spreading profile of u(¢,r). These results
contrast sharply with those for the corresponding Cauchy problem, where the logarithmic shifting for
the monostable case is significantly different from that for the bistable and combustion cases.

1. INTRODUCTION

We are interested in obtaining exact long-time limit of the spreading speed and profile determined
by the following free boundary problem:

ur = Au+ f(u), 0<r<h(t), t>0,
1.1 ur(t70) =0, u(t7 h(t)) =0, t>0,
(-0 WD) =~ B(), 10

]’L(O) = hOa U(O,T) = UO(T)a 0 S r S h07

where Au = up + yur, r = h(t) is the moving boundary to be determined, y and hg are given

positive constants. The initial function wug is chosen from
(1:2) H (ho) = {w € C2([0, ha) : 4/(0) = w(ho) = 0, %(r) > 0 in [0, ho) |-

For any given hg > 0 and ug € # (hg), by a classical solution of (1.1) on the time-interval [0, 7] we
mean a pair (u(t,r), h(t)) belonging to C1?(D7) x C1([0,T7]), such that all the identities in (1.1) are
satisfied pointwisely, where

Dy :={(t,r): t € (0,T), r € [0,h(t)]}.
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The nonlinearity f(u) is assumed to be of monostable, bistable or combustion type, whose meanings
will be made precise below.

When f(u) =0, (1.1) reduces to the classical one-phase Stefan problem, which arises in the study
of melting of ice in contact with water. Our motivation to study the nonlinear Stefan problem (1.1)
mainly comes from the wish to better understand the spreading of a new species, where u is viewed
as the density of such a species, and the free boundary represents the spreading front, beyond which
the species cannot be observed (i.e., the species has density 0).

The spreading process is usually modeled by the Cauchy problem

{Ut—AU:f(U) for z € RN, t > 0,

(13) U(0,z) = Up(z) for z € R,

where Up(z) is nonnegative and has nonempty compact support. In such a case, U(t,x) > 0 for
all x € RN once t > 0, but one may specify a certain level set I's(t) := {z : U(t,z) = §} as the
spreading front, where § > 0 is small, and Qs(t) := {z : U(t,z) > ¢} is regarded as the range where
the species can be observed. A striking feature of the long time behavior of the front I's(¢) is that,
when spreading happens (i.e., U(t,x) — 1 as t — 00), I'5(t) goes to infinity at a constant asymptotic
speed in all directions, namely, for any small ¢ > 0, there exists T" > 0 so that

(1.4) Ds(t) C Ac(t) == {z € RN : (co — )t < |z| < (co + €)t} for t > T.

The number ¢g is usually called the spreading speed of (1.3), and is determined by the well-known
traveling wave problem

(1.5) Q' —cQ +f(Q)=0,Q>0inR', Q(—00) =0, Q(+o0) =1, Q(0) = 1/2.

More precisely, in the monostable case, ¢y > 0 is the minimal value of ¢ such that (1.5) has a solution
Q. (more accurately Q. exists if and only if ¢ > ¢p); in the bistable and combustion cases, ¢ is the
unique value of ¢ such that (1.5) has a solution Q.. Moreover, Q. is unique when it exists for a
given ¢. When Up(z) is radially symmetric, then U(¢, z) is radially symmetric in z for any ¢ > 0, and
better estimates of the spreading speed and the profile of U near the front are available, which will
be recalled briefly below.

Problem (1.1) is the spherically symmetric version of the general nonlinear Stefan problem studied
in [6] and [10], which has the form

up — Au = f(u) for z € Q(t),t > 0,
(1.6) u =0 and u; = p|Vyu* for z € T(t),t >0,
u(0,x) = up(z) for x € Qy,

where Q(t) C RV (N > 1) is bounded by the free boundary T'() (i.e., T'(t) = 09(t)), with Q(0) = Qo,
which is a bounded domain that agrees with the interior of its closure g, 0§ satisfies the interior
ball condition, and ug € C () N H(p) is positive in Qg and vanishes on 9Qq. If ug(z) in (1.6) is
radially symmetric, then (1.6) reduces to (1.1).

It follows from [6] that (1.6) has a unique weak solution which is defined for all ¢ > 0. One of the
main results in [10] for the general problem (1.6) implies the following:
Theorem A. Q(t) is expanding in the sense that Qo C Qt) C Q(s) if 0 < t < s. Moreover,
Qoo 1= U=082(t) is either the entire space RN or it is a bounded set. Furthermore, when Qs = RV,

for all large t, T'(t) is a smooth closed hypersurface in RY, and there exists a continuous function
M (t) such that

(1.7) I(t) c{x: M(t) — %77 < |z| < M(t)};

and when Qo is bounded, limy o [[u(t, -)|| Lo (o)) = 0. Here do is the diameter of Q.
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It can be shown (see [9]) that when spreading happens (i.e., u(t,z) — 1 as ¢ — 00), there exists
c¢* > 0 such that
M(t
(1.8) lim M) =c

t—woo

*

The number ¢* is therefore called the asymptotic spreading speed of (1.6), which is determined by
the following problem,

(1.9) ¢"—cd + f(g) =0, ¢>0 in (0,00), ¢(0) =0, g(oo) =1.

The above discussion shows that when spreading happens, (1.3) and (1.6) exhibit similar asymp-
totic behavior: Their fronts can be approximated by spheres, which go to infinity at some constant
asymptotic speed. Moreover, by [6], if u and €(t) in (1.6) are denoted by u, and €,(t), respectively,
then as pu — oo,

Qu(t) = RV (VE>0), u, — U in CU2((0,00) x RY) (Wr € (0, 1)),

loc

where U is the unique solution of (1.3) with Uy = ug. Thus the Cauchy problem (1.3) may be
regarded as the limiting problem of (1.6) as u — oc.

It turns out that underneath these similarities, there exist fundamental differences between (1.6)
and (1.3). This paper is devoted to revealing these differences. It is our hope that this may provide
further insights to the understanding of the mechanisms underlying so many different spreading
processes.

For such a purpose, we will restrict to the simpler spherically symmetric case (1.1), for which we
are able to gain deeper understanding of the spreading profile of the free boundary model. If we take

o) = { Lo 1o <o

1.10
( ) Oa |‘T| > h0>

with up given in (1.1), then the unique solution of (1.3) is radially symmetric: U = U(t,|z|). Thus
for such Uy, (1.1) provides an alternative to (1.3) for the description of the spreading of a certain
species with initial density ug. We will closely examine the spreading behavior determined by (1.1)
and compare it with that of (1.3).

While the Cauchy problem (1.3) has been extensively studied in the past several decades and
relatively well understood (some relevant results for (1.3) will be recalled below), the study of the
nonlinear free boundary problem (1.1) is rather recent. Problem (1.1) with f(u) = au — bu® was
investigated in [5], continuing a study initiated in [7] for the one space dimension case. A deduction
of the free boundary condition based on ecological assumptions can be found in [4], but generally
speaking, the role of this free boundary condition in the mechanism of spreading is still poorly
understood.

In [8], problem (1.1) with a rather general f(u) but in one space dimension was considered. In
particular, if f(u) is of monostable, or bistable, or combustion type, it was shown in [8] that (1.1)
has a unique solution which is defined for all ¢ > 0, and as ¢t — oo, h(t) either increases to a finite
number Ao, or it increases to +00. Moreover, in the former case, u(t,r) — 0 uniformly in 7, while in
the latter case, u(t,7) — 1 locally uniformly in 7 € [0, +00) (except for a transition case when f is of
bistable or combustion type). The situation that

u—0and h = he < +00

is called the vanishing case, and
u— 1 and h — +oo

is called the spreading case.
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When spreading happens, it was shown in [8] that there exists ¢* > 0 such that
h(t
lim hit) =c".
t—oco t

The number ¢* is the same as in (1.8). These conclusions remain valid in higher space dimensions

([9]).
Next we will describe the results more accurately. Firstly, let us recall in detail the three types of
nonlinearities of f mentioned above:

(fa) monostable case, (fp) bistable case, (fc) combustion case.

In the monostable case (fy1), we assume that f is C! and it satisfies
f(0)=f(1)=0, f(0) >0, f/(1) <0, (1 —u)f(u) >0 for u>0,u#1.

I
A typical example is f(u) = u(l — u).
In the bistable case (f;

B), we assume that f is C' and it satisfies
{ f(0) = f(0) = f(1) =0,
f(u) <0in (0,0), f(u) >0in (6,1), f(u) <0in (1,00),
for some 6 € (0,1), f/(0) <0, f/(1) <0 and

/0 F(s)ds > 0.

A typical example is f(u) = u(u — 0)(1 — u) with 6 € (0, 3).
In the combustion case (fc), we assume that f is C! and it satisfies
f(w)=0in[0,6], f(u)>0in (6,1), /(1) <0, f(u) <0in [1,00)
for some 6 € (0, 1), and there exists a small o > 0 such that
f(u) is nondecreasing in (6,60 + dp).
The asymptotic spreading speed ¢* is determined in the following way.

Proposition 1.1 (Proposition 1.8 and Theorem 6.2 of [8]). Suppose that f is of (fm), or (fg), or
(fc) type. Then for any p > 0 there exists a unique c* = c*(u) > 0 and a unique solution g+ to (1.9)

with ¢ = ¢* such that ¢.(0) = %

We remark that this function g, is shown in [8] to satisfy ¢l.(z) > 0 for z > 0. We call ¢~ a
semi-wave with speed c*, since the function v(t,z) := ge~(c*t — x) satisfies
v = Ve + f(v) for t € RY 2z < c*t,
v(t,c*t) =0, —pvy(t, c*t) = c*, v(t,—oc0) = 1.
In [11], sharper estimate of the spreading speed in one space dimension was obtained. More
precisely it was shown in [11] that when spreading happens for (1.1), there exists H € R such that

(1.11) tlirgo(h(t) — ¢t —H) =0, lirglo B (t) = ¢,
(1.12) lim sup |u(t,7) — ge=(h(t) —7)| = 0.

t—00 1.c[0, h(t)]

In this paper, we consider the case that the space dimension N > 2, and spreading happens for
(1.1), namely

lim A(t) = oo and lim u(¢,r) = 1 locally uniformly for r € [0, c0).
t—o0 t—o0
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We will show that in such a case, we still have (1.12) and lim;_,» h/(t) = ¢*, but there exists ¢, > 0
independent of N such that
(1.13) lim [h(t) — 't + (N — 1)c,logt] = h € R

t—o00

Moreover, the constant c, is given by
X

1 C=1+ c
o =—, (= —.
¢t 12 57 g (2)2e "2 dz

The term (N —1)cylogt in (1.13) will be called a logarithmic shifting term. For simplicity of notation,
we will write ¢y = (N — 1)c,. Thus from (1.13) and (1.12) we obtain

lim  sup |u(t,r) — g (¢t — ey logt + h —7)| = 0.
£ re0, A(t))]

For convenience of comparison, we now recall some relevant results for the corresponding Cauchy
problem (1.3). The classical paper of Aronson and Weinberger [2] contains a systematic investiga-
tion of this problem (see [1] for the case of one space dimension). Various sufficient conditions for
lim¢ oo U(t,z) = 1 (“spreading” or “propagation”) and for lim; ,o, U(¢,2) = 0 (“vanishing” or “ex-
tinction”) are known, and the way U(t,x) approaches 1 as ¢ — oo has been used to describe the
spreading of a (biological or chemical) species. In particular, when spreading happens, it was shown
in [2] that, in any space dimension N > 1, there exists ¢y > 0 independent of N, such that, for any
small € > 0,

(114) { hmt_)oo ma’XIx‘Z(COJFE)t U(t7 x) = 07

limt_mo maxmg(%,e)t |U(t, LI?) - 1| =0.

Clearly (1.4) is a consequence of (1.14) (with the same ¢g). The relationship between the spreading
speed determined by (1.1) and that determined by (1.3) is given by (see Theorem 6.2 of [8])

cop = l}l_)ngoc ().

More details on the spreading behavior of the Cauchy problem can be found, for example, in [1, 2,
13, 14, 18, 19, 20, 24].

As we will explain below, fundamental differences arise between the free boundary problem and
the Cauchy problem when we compare their spreading profiles closely. While the spreading profiles
of all three basic cases (fu), (fs) and (fc) can be described in a unified fashion for the free boundary
model (see (1.11), (1.12) and (1.13)), where no logarithmic shifting occurs in space dimension N = 1,
and a synchronized logarithmic shifting happens in dimensions N > 2, this is not the case for
the Cauchy problem, where the monostable case behaves very differently from the other two cases:
The monostable case gives rise to logarithmic shifting in all dimensions N > 1, and the shifting is
significantly different from the other two cases.

More precisely, in one space dimension, a classical result of Fife and McLeod [13] states that for f
of type (fg), and for appropriate initial function Uy that guarantees U(t,x) — 1 as t — oo, where U
is the unique solution to (1.3), the spreading profile of U is described by

U (t,2) — Qe (cot + x4+ C_)| < Ke ! for z <0,
U(t, ) — Qey(cot — x + C1)| < Ke " for > 0.

Here (cp, Qc,) is the unique solution of (1.5), Cx € R, and K, w are suitable positive constants. So
no logarithmic shifting occurs in this case.

The monostable case of (1.3) has very different behavior. Firstly we recall that (1.5) already
behaves differently in the monostable case. Secondly, a logarithmic shifting occurs: When (fyr) holds
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and furthermore f(u) < f/(0)u for u € (0,1) (so f falls to the so called “pulled” case), there exist
constants C+ such that

lim max |U(t,z) — Qc, <cot _3 logt — o + C’+> =0,
Co

t—oo x>0

and

tlggo max U(t,z) — Qc (cot - j)logt +x+ C’,) = 0.
Here the logarithmic shifting term % logt is known as the logarithmic Bramson correction term; see
[3, 17, 22, 24] for more details.

For space dimension N > 2, if Up(z) is given by (1.10) and hence the unique solution U of (1.3) is
spherically symmetric (U = U(t, |z|)), results in [16, 25] indicate that the Bramson correction term
for the monostable case (with some extra conditions on f) becomes

N +2 N -1
+ logt (for the pulled case of f), or

- logt (for the pushed case of f),
0

that is, there exists some constant C' such that for the pulled case of f,
N +
o

lim sup
t—o0 2€RN

2
U(t7|$‘)_Qco<COt_ lOgt—|—C—|1’|)‘ =0,

and for the pushed case of f,

lim sSup U(t7 ’x‘) - QCO (COt - logt +C - ‘.’L")‘ =0.

In the bistable case (as well as the combustion case), the Fife-McLeod result should be changed to
(see [25])
N -1
Co

Ut 2]) = Qe (cot

lim sup
0 zeRN

logt+ L — |$>‘ =0,

where L is some constant.

The above comparisons indicate that the singular behavior of the monostable case observed in the
Cauchy problem does not exist anymore in the free boundary model, where all three cases behave in
a rather synchronized manner.

The rest of the paper is organized as follows. In section 2, we describe how the constant cy in the
logarithmic shifting term is defined. In section 3, we estimate h(t) in several steps until the sharp
term cy logt appears in the upper and lower bounds of h(t). The main convergence results of this
paper are proved in section 4, where our arguments are based on the estimates obtained in section 3,
and on a new device very different from the energy methods used in [11] and [13].

A key step in this research is to find the exact form of the logarithmic shifting term ¢y logt. This
relies on the discovery that sharp upper and lower solutions to (1.1) can be obtained by suitable
perturbations of

h(t) = c*t — ey logt, u(t,r) = ¢(u(c* — cNt_l),r — h(t)),
with the functions ¢(u, z) and (&) defined in (2.1) and (2.6), respectively. This approach is completely
different from that used for treating the corresponding Cauchy problem, and from that used to handle
the one space dimension case in [11].
Our method to prove the convergence result in section 4 also relies on innovative ideas. The method

is very powerful and should have applications elsewhere. The spirit of the method is close to those
in [26] and [12].
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2. FORMULA FOR cp

In this section, we describe how ¢y in the logarithmic shifting term is defined, and also give a key
identity (see (2.7) below) to be used in the next section.

Let g. be given by Proposition 1.1 and we define ¢(z) to be the unique solution of the following
initial value problem

(2.1) ¢" + "¢+ f(¢) =0, $(0) =0, ¢'(0) = —c"/p.
Clearly
d(2) = gex(—2) for z < 0.
To stress its dependence on p, we write ¢(z) = ¢(u, z). Similarly we write ¢* = ¢*(u). It is easily
seen that for each given ugp > 0, we can find ¢y > 0 such that ¢(u, 2) is defined for z € (—o0, €] with
Gx(p,2) <0, ¢(p,€0) < —mo < 0 for p € [po/2,2p0] and z < €.

From [8] we see that j — c*(u) is strictly increasing. We will show below that it is a C? function.
To this end, we need to recall some details contained in [8]. Under the assumptions of Proposition
1.1, it was shown in [8] that there exists a unique ¢y > 0 such that for each ¢ € [0, ¢g], the problem

(2.2) P =c— fg]) in [0,1), P(1)=0, P'(1) <0

has a unique solution P,(q), which necessarily satisfies

_ 2 _Af(1
Py = VST g
Furthermore, the following monotonicity and continuity result holds.

(¢) > 0in (0,1).

Lemma 2.1 (Lemma 6.1 of [8]). For any 0 < c¢; < ca2 < ¢y and ¢ € [0, ¢,
Pey(q) > Pe,(q) in [0,1), lim Pe(q) = Pe(q) uniformly in [0, 1].
Moreover, P (0) =0 and P, (q) >0 in (0,1).
From the proof of Theorem 6.2 in [8], we see that, for p > 0, ¢*(u) is the unique solution of

P0)— £ =0, ce0,cl.
o
We show below that ¢ — P.(0) is a C? function for ¢ € (0, cp).
Fix ¢ € (0,¢p) and let h # 0 be sufficiently small so that ¢+ h € (0,¢p). We then consider

A Peyn(q) — Pe(q)

Pr(q) = - ;¢ €[0,1].
Clearly
(2.3) Pl(qg) =1+ Mﬁh(q) in [0,1), Py(1) = 0.

The unique solution of (2.3) is given by

N 1 ff —f(s) ds
Py(q) = — / ¢t PP de, g € [0, 1).
q

Let us note that for ¢ close to 1, f(g) is close to f’(1)(¢—1) and P.(q) is close to P.(1)(¢—1). Hence,
for fixed ¢ € [0,1),

f& —f(s)

Sas 5 ds . .
e’? Pel)Fern(3)™ 5 (0 as € — 1 uniformly in ¢, h.
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It follows that the integrand function

0
e PP 4

is uniformly bounded in the set {(¢,£) : 0 < ¢ < € < 1}. Letting h — 0 in the expression for Py (q)
we obtain

f§ —f(g)st
lim Py (q) = 4 Pe()2 7 dE g €[0,1).
h—0 q

Therefore

—f(s)

d ! s ds
(2.4) ch( q) = —/ e’ P27 d¢ < 0 for g € [0,1).
q

By Lemma 2.1, we easily see from the above identity that %Pc(q) is continuous in ¢ for ¢ € (0, ¢p).
Moreover, %Pc(l) = 0 and the continuity of %Pc(q) in ¢ is uniform in ¢ € [0, 1].
From (2.4) we further obtain

P2 T g =t g a,
R = — Pe(s)?
(25) an0 =2 [ | / e ets)ds| de

provided that we can show the integral above is convergent. By (2.4) we can find Cy > 0 such that

|7 ()] < Cy for s € [0,1].

For € € (0, 1) sufficiently small, there exist C, C5 > 0 such that

1) - et (SO el
( ) 02(1 ) 9 ’Pc( ) | CS(1 ) fi € [1 71]'

Hence, for £ € [1 —¢,1],
fO pf / d d
‘ 3dc (s)
JE =) g 1—e
e[ ]
1—e C

< CyCeC i) tds [C +C’3/ (1—8)264
1

—€
<C[1-9P+(1-9=7,

where we have used C, to denote various positive constants that depend on €. Clearly this implies
the convergence of the integral in the formula for d22P (0) in (2.5). Moreover, by the continuous
dependence of P.(q) and 2 P.(q) on ¢, we find from (2.5) that d 42 Pe(0) is continuous in ¢ for ¢ € (0, co).
We have thus proved the followmg result.

Lemma 2.2. The function ¢ — P.(0) is C? for c € (0,¢p).

Define ((c, u) := P.(0) — & Then

d 1 1

60C<C,,U,) = %Pca)) - ; < _ﬁ < 0.

Hence by the implicit function theorem we find that the unique solution ¢ = ¢*(u) of {(e, ) = 0, as
a function of y, is as smooth as ¢, and hence is C2. Moreover

() = el ) p2et(p)
9e(c* (1), 1) 9eC(c*(p), 1)

>0,
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and

I I

c*(p) / c(p) e (w) -2 x _
< H > 2 e ) [_Nacc 1} <0
since —0.¢ > pu~ L.

From [8] we further have

im < o tim W po) > 0.
p—oo [ u—>0 Hu

We now fix pp > 0 and denote ¢ = ¢*(up). Therefore for each £ € (0, uoPy(0)) there exists a unique
= (&) such that

) _ €
uE) o’
Here we have used the implicit function theorem and p — /S 1) is O2 to conclude that E— () is
Cc?.
Let g(¢) := ¢*(u(€)). Then g is C? and ¢/(&) = ¢*'(u(€)) 1/ (€) < 0. The following identity will play
a crucial role in the estimates of the next section.

(2.6) &= p(€)is %, W'(€) <0, plch) = po.

* — % £ — ]- —
(2.7) g(cg—ent™) — g(cf) = —g'(cg) (ent™) + igll(et)(c?vt %)
with 6; € (¢ — ent™ 1 ,Ch), where ¢y is given by
L-IN -1
(2.8) v =[1-g@)] =
G

and ¢'(c}j) can be calculated by the following formula:

Lemma 2.3.

(2.9) 4(c5) = %

g JoT s (2)2e e
Proof. By definition, ¢/(c) = ¢/ (1o)p'(cf). Using ¢*(u(€)) = pg €u(€), we obtain

o rey — 1 / ey — :“81/‘(5)
(LN (&) = pg (&) + & ()], 1 (E) TGE) = i TE

Hence )
1/ *x
'(co) =
(o) — po €5
By our earlier calculation, we have
-2 x
*/ Ko Co
) = = et
P e(0) Ho e=c
Hence
g/(c*) _ C*I(MO) _ 1 _ 1
0/ — -1 % —1 % % -1
(o) =o'y 1= pg e’ (o)™t poePe(0)| .

From (2.4) we obtain

§ —f(s)
/ O Pc(5>2

P.(s) = P.(qe(2)) = ¢.(2) with s = q.(2), or equivalently z = ¢, ' (s).

From [8] we know that
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Therefore, making use of the change of variable s = q.(z), and the identity f(g.(z)) = —¢”(z) +cq.(z),

we obtain
[ 5 0= [ L
) /Oqc <::) Wdz

} — e (8).

It follows that

d bope s 4
—P.(0) = — 0 Pe(2 %
Gr == [ :

[ aa M (€) e
= /0 Lo ¢ *

_ *q(2) o,
- _/o g (0)° el

Hence

3. SHARP BOUNDS

In this section we give some sharp estimates for h(t). We always assume that f satisfies the
conditions of Proposition 1.1. We fix 119 > 0 and suppose that (u(t, ), h(t)) is the unique solution of
(1.1) with p = po. Let ¢ and ¢y be defined as in the previous section (see (2.8)), and suppose that
spreading happens:

(3.1) tlg]go h(t) = oo, tliglo u(t,r) = 1 uniformly for r in compact subsets of [0, co).
We make these assumptions throughout this section. Our aim is to show the following result.
Theorem 3.1. There exist positive constants C and T such that

(3.2) |h(t) — (cot — enlogt)| < C fort > T.

Moreover, for any ¢ € (0,cf), there exist positive constants M and o such that

(3.3) lu(t,r) — 1| < Me " for t >0, r € [0,ct].

These conclusions will be proved by a sequence of lemmas.

3.1. Rough bounds. We start with some rough bounds for v and h.

Lemma 3.2. The following conclusions hold:

(i) For any c € (0,¢}) and 6 € (0,—f'(1)), there exist a positive constants Ty > 0 and M > 0 such
that

u(t,r) <1+ Me %, h(t) > ct for t > T, and r € [0, h(t)].
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(i) There exists & € (0,¢5), 6 € (0, —f'(1)), and T > 0, M > 0 such that
u(t,r) >1— Meo for r€[0,ét] and t > T..

Proof. (i) Consider the equation n'(t) = f(n) with initial value 7(0) = ||ug||z+1. Then 7 is an upper
solution of (1.1). So u(t,x) < n(t) for all t > 0. Since f(u) < 0 for u > 1, () is a decreasing function
converging to 1 as t — co. Hence there exists T, > 0 such that n(t) < 14+p and n'(t) = f(n) < §(1—n)
for t > T,. It follows that

u(t, ) < n(t) <1+ pe 0T for 0< |z| < h(t),t > T..

Next we take any c € (0, ¢fj) and show that for all large ¢, h(t) > ct. We construct a lower solution
similar to the proof of Lemma 6.5 in [8]. Let us recall that for each ¢ € (0, ¢fy), there exists a function
¢°(z) defined for z € [0, 2¢] such that

q" —cqd + f(g) = 01n [0,2; ¢(0) = ¢'(2°) = 0; ¢'(2) > 0in [0, 2°).
Moreover, Q¢ := ¢°(2°) < 1 and as ¢ /" ¢,
Q° N1, 2% 7 +00, [14° = geg Il Lo (po,2¢)) — O
See page 38 of [8] for details.
We now choose c1, ¢z € (¢, ¢f) satisfying ¢; < ¢a, f(Q%) > 0, and define
N-—-1

k(t) :== 2% 4 cot —
1

logt.

We can find 77 > 0 such that
N -1

C1

Clt < CQt — 10gt

for t > T7. Set

2 (k(t) — t—N=llogt <r < k(t
w(t,r) == a2 (k({l) =), e o %8 Nif_ (®)
q?(22), 0 <7 <ot —=—logt.
Since spreading happens we can find T5 > T} such that
k(1Y) < h(T>)
w(Ty,r) <u(Ty,r) for r €[0,k(Ty)]

‘We note that
N -1

C1

wy(t,7) =0 when 0 <7r < cot — log t.

Moreover, by (6.7) in [8],
N -1

F(t) =co— < cp < p(q®)'(0) = —pawy(t, k(t))

and

wy — Aw
=K () () (k(t) —7) = ()" (k(t) —7) + al (g™)'(k(t) =)

— F@ (D) — ) + (N —1 N- 1) @) (k(t) — 1)

r cit
< f(w)

-1
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for r € [czt - Nc—zl log t, k(t)} C [e1t, k(t)] and
we — Aw =0 < f(Q?) = f(w)

for r € [ , chllogt}
Since w is C! in r, the above discussions show that (w(t — Ty + T1,7), k(t — Ty + T1)) is a lower
solution of (1.1) for ¢ > T,. Hence there exists some T35 > T5 such that for ¢t > T3,

-1
log(t —To +T1)
c1

h(t) > k’(t — T+ T1) = 2% 4 Cg(t — Ty + Tl) —
> 2 +Cl(t—T2 +T1) >ct
and
u(t,r) > w(t — Ty +Ti,r) for r € [0,k(t—T1 +T2)] D[0,ct].
(ii) Since w(t — To + T1,7) = ¢2(22) = Q2 > Q° for r < ct for all t > T3, we find from the above
estimates for v and h that
(3.4) h(t) > ct, u(t,r) > Q  for 0 <r <ct, t >T;3
Since f'(1) < 0, for any 6 € (0,—f'(1)) we can find p = p(d) € (0,1) such that
F(u) > 6(1—u) (e [1—p 1)), fu) <6(1—w) (ue 1,1+ ).
Since Q¢ — 1 as ¢ 7 ¢, we may assume that Q¢ > 1 — p.
Now for a given domain D we consider a solution ¥ = ¥p to the following auxiliary problem:
wt_A¢:_6(¢_1)’ t>0,$ED,
(3.5) P = Q°, t>0,z€0D,
Y = QF, t=0,z€D.
The function ¥ = ¥p = e%(¢hp — Q°) satisfies
— AU =621 -Q°), t>0,2¢€D,
(3.6) v =0, t>0,z€0D,
T =0, t=0,2€D.
Take
D=Qeir ={zeRN|-el<z;<el, i=1,2,--- ,N}
with & = ¢/V/N. Let G(z,t;&,7) be the Green function for the problem (3.6). From page 84 of [15]
one sees that this Green function can be expressed as follows:

:L' t; {, H 1'ut glv

where G is the Green function of the one space dimension problem:

Uy — Uy :g(t,J)), t>0,—cT'<x<cT,
U =0, t>0,r ==+cT,
v =0, t=0,—cl' <x<cT.

Thus

t
V.. (t,2) = /0 6e°T(1 — Q°) N G(x,t; €, 7)dédT
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For € € (0,1), consider (t,z) € RV*! satisfying

2~2T
|:cz-|s(1—e>éT,z‘=1,2,--~,N,oslts“jl .

From the proof of Lemma 6.5 in [8] we find that for such (¢, x), there exists Ty > T3 such that for
T > T47
cr 4 /2
Gz, t;&,7)dg > 1 — —e /% > 0.
e ' VT
Hence, for sufficiently large T" > 0 there exists My > 0 such that

Gz, t;&,7)de > 1 — Mye™ /2.
Qer
From the above estimate we obtain
t

0

= (1-Q°)(1 = Moe™"?)(e = 1)

for T > Ty, |z;) < (1 —¢)eT,i=1,2,--- ,N,0<t < 52452:,1'

Since Bsr C Qe C B VNer © B.r, using (3.4) and a simple comparison argument we obtain

¢Q5T<t7$) < chT(t7x) < u(t +T, ‘$|) for t > 0, z € Qer.

Hence
(3.7) u(t + T, |x|) > g, (t,z) for t > 0,z € Qer.
Fix T > T,. We have
V. (t,x) =Y, (t,m)e_at +Q>1— Mye T2 — =0t

g2¢e?

for ;] <&T(1—€),i=1,2,--- ,N,0<t<ZET. Taking t = ¢

272
YQer (640T, x) > 1 — Mye™T/2 _ g=e*@8T/4,

T we obtain

We only focus on small € > 0 such that €225 < 2 so

2~2
VQur <E46T7 x) >1- Moe*52525T/4 _ 6762526T/4

=1—(My+ 1)6_52526774.
This holds for |x;| < (1 —¢€)eT,i=1,2,--- ,N, T > Ty. Thus, by (3.7), for such T and z, we have

22 }
u (646T + T, |x|) > 1— (M + 1)e ="@0T/4,

Finally, if we rewrite

e2¢?
t=—-T+T
1 +
then
22\ —1
g“c
T=(1+— t
<+ 4) ’
and



14 Y. DU, H. MATSUZAWA AND M. ZHOU

2

o\ —1 . } o\ —1
for|xi|§(1—e)<1+¥) 5t,z':1,2,-~-,Nandt2T5Where<5::52%(1—1—#) 0 and

N o\ —1
Ts = 52462 Ty + Ty. This is also true for |z| < (1 — ¢) (1 + %) ¢t. Since this is true for any
¢ € (0,¢5/VN) and for any small € > 0, the above estimate implies the conclusion in (ii). This
completes the proof. O

Lemma 3.3. For any c € (0,¢{) there exist M’ >0, T > 0 and ¢’ € (0,—f'(1)) such that
u(t,r) >1—M'e % h(t) > cit — M'logt forr € [0,ct] and t > T'.
Proof. We first construct a lower solution. Define
u(t,r) = (1= Me™")qe ((t) — ),
N-1 1 t
o
5T

koK

h(t) = §(t — Tur) + ETon — _ o N (e~ _ Bt),

g(t) =ét,
where M, 6 and ¢ are given in Lemma 3.2, ¢ > 0 and Ty, > T (T as in Lemma 3.2) will be chosen
later. We will check that (u, g, h) is a lower solution, that is,

N -1
(35) = (1t 2 ) < ) for ¢ Toglt) < < 100
(3.9) u<wfor t> T, r=g(t),
(3.10) u=0, h'(t) < —pu, for t>Tw, r=h(t),
(3.11) hTei) < h(Ths), W(Ths,7) < w(Ths, ) for r € [g(Ths), A(Ths)]-

We first see that h(Ty.) = Ty < h(T4s) from Lemma 3.2. Thus we have

W(Ton,7) < 1= Me 5 < u(Ton,7) for v € [g(Ton), h(Te)]
from Lemma 3.2. Similarly we have
u(t,g(t)) = u(t, ét) < 1— Ne < u(t,ét) = u(t, g(t))
for t > Ty, by Lemma 3.2.
Clearly u(t,h(t)) = 0. Next we calculate

N-1 - : e
W (t)=ci— ——= —oMde % < ¢t — aéMe*‘St,
0 0

ct

B - * *M—St
u, (1, h(1)) = (1 — Me™)ql. (0) = - L0
7]

— (1, (1)) = ¢ — M.
Hence if we take o > 0 so that ¢ < o6, then

W (1) < —pu, (1, h(1)) for > T...
N

It remains to prove u, — (u,, + £=2u,) — f(u) < 0. Put ( = h(t) — r. Since

uy = 3Me e () + (1 Me ) (£)g)s (€),
u, = —(1— Me™")ql. (©),

upy = (1= el (0),
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we have for ¢t > T\, and r € (ét, h(t)),
N —1
uy — (u + ,,,ur> — f(u)
= 0Me " qe(C) + (1 — Me )l (t)qs (C)
_ N — - _§
— (1= Me )l (¢) + f(l — Me™) gl () — (1 — Me™)qq(C))

N-1 —6t /
ot —UM5€ ) CS(C)

= Gt Vg (€) + (1 1) (< -

(U= Mg (Q) + (1 = e D)l (0) — (1~ Me )5 (0))

= 3N e (¢) + (1 — Me ) (chale () — ¢/ (O))

- odtde (1= Bty + (1= 1) (- B2 g0

— (1 = Me™)qe(C))
< OMe ey (¢) — o Mde (1 — Me™)q (C)
+ (1= Me™™) faes (€)) = F((1 = Me)q5(C)).
Let us consider the term (1 — Me ™) f(ges (€)) — f((1 — Me=%)ge: (¢)), which is of the form
(L4 f(u) = f((1+u).
The mean value theorem implies that
Ef(u) + fu) = FI(L+&u) = Ef (u) — £f (u+ O uu)u
for some 6 ,, € (0,1). Since 0 < § < —f'(1), we can find an 7 > 0 such that

{5§—f(u) for 1—-n<u<1+n,

(3.12) flw)>0 for 1—n<u<l.

Since g (¢) — 1 as ¢ — oo, there exists ¢, > 0 such that g (¢) > 1—n/2 for ¢ > (;. We may assume

that Me=0 < 5/2 for t > T.,.
For ¢ > (;, we have

Uy — <u7”7" + Ar_l“r) - f(ﬂ)
< §Ned qe: (€) —aMae—f“( Me—&)qc ©)
= 817 P (Q)) — £ (45 (€) = O Me P (O)) s (O)}

NI g () — o Be ‘“(1 ~ e ()
+ 2 (4e5 () — 0 M q5(0)) + 3 paey (€) <0,
for some 0, € (0,1). Here we have use the fact that

Ges () = 6 Me™qus (C) > us (O) — Me g (O) > 1— 1)

and hence f’(qes (¢) — H’UMe_gtch(C)) +0<0.



16 Y. DU, H. MATSUZAWA AND M. ZHOU

For 0 < ¢ < ¢, we have
N-—-1
Uy — (u + rm) — f(u)

<OMe g5 (¢) — oMBe™ (1 — Me™)ql4 (C)

— 817 Flaeg (€)) = £ (a5 (€) = O M5 () acs ()}
= — Me™ f(ge(Q)) — o Me (1 — Me™)qq ()

+ 2 (4eg () = O M q15()) + 3 baes (€)
< — Me™ min f(s) — oMbe "' (1 — Me~*")q}, (¢)

= Me_St{ — min f(s) + max f'(s) 46 — od(l — Me_gt)qéa(g)}

0<s<1 0<s<1
<0,

for sufficiently large o > 0 and all large ¢t. Finally we note that we can take Ty, > T, so large that
the above holds and ¢t < h(t) for ¢ > T..
Thus we have shown that (3.8)-(3.11) hold and (u, g, k) is a lower solution of (1.1). It follows that

u(t,r) > u(t,r), h(t) > h(t) for t > Ty and 7 € [g(t), h(¢)].

Hence
ult,r) > (1— Me™*)qey ((t) — )
> ges (h(t) — 1) — Me™
for t > T, and ¢t < r < h(t).

For any ¢ € (0, ¢f) and any « € (0, ¢§—c), there exists Ti. > 0 such that for ¢ > Ty and r € [0, ct],

we have
N—l1 t

0

&T

*k

Since there exist C' > 0 and 8 > 0 such that g.; satisfies qu(Z) > 1—Ce P% for z > 0, we thus obtain

h(t) —r > (¢f — )t — + &y — oM > ki,

(3.13) ut,r) > 1—Ce Pt — Me =1 — M'e™®"
for t > Thw and 7 € [ét, ct], where &' = min{fk,0}.
Moreover, if My > (N —1)/¢, then
N-—-1

h(t) > h(t) = ¢yt — logt — C > ¢t — Mylogt for all large t.
Thus combined with (3.14) and Lemma 3.2, we find that
u(t,r) >1—Me ) h(t) > cit — M'logt

for t > T" and r € [0, ct] provided that M’ and T" are chosen large enough. This completes the proof
of Lemma 3.3. O

Clearly (3.3) follows directly from Lemmas 3.2 and 3.3. Let us note that from the proof of Lemma
3.3, we have, for t > T" and r € [, ¢t — M'logt],

ult,r) > (1 — Me %)qs (cit — M logt — 7).
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Since
ez (2) > 1 — Mie™ for z € [0,00) and some Mj,d; > 0,
we immediately obtain
(3.14) u(t,r) > (1 — Me ) (1 — Mye91(cht—M logt=r))
for ¢ > T" and r € [¢t, ¢t — M’ log t].
3.2. Sharp bounds. We now make use of the rough bounds for v and h to obtain sharp bounds for
h. We first improve the estimate for h(t) in Lemma 3.3.
Lemma 3.4. There exist C > 0 and T > 0 such that
h(t) > cgt — ey logt — C fort > T,
where cy is given by (2.8).
Proof. With B > 0 a constant to be determined, and ¢(z) = ¢(u, z) given in (2.1), we set
k(t) = cit — ex logt + Bt logt,
o(t,r) = ¢ (u(cg —ent ™), r — l?:(t)) —t2logt.
We have v(t, k(t)) = =t 2logt < 0 for t > 1, and
ot k() —t71) = ¢ (u(ch — ent™), —t71) =t 2logt = — ¢, (110, 0)t ™ +0(t™) >0
for all large t. Moreover,
v, (t,r) = ¢p (,u(c(’; —ent™h,r — l;:(t)) <0 for all t > 0 and r € (0, k(t)].

Therefore, there exists a unique k(t) € (k(t) —t~*, k(t)) such that
v(t, k(t)) = 0 for all large t.

By the implicit function theorem we know that ¢ — k(t) is smooth, and by the mean value theorem
we obtain

(61 (110, 0) + o(1)] [&(t) — k(8)] = ¢ 2log .
Since ¢r(p0,0) = —cfy/ 10, we thus obtain
(3.15) k() — k(t) = [—'uf + 0(1)] t2logt for all large t.
o
Using vy(t, £() + 2, (£, K(£)K(£) = 0 we obtain
Gp- - ent™2+ ¢y - [K (1) — K ()] + [1+o(1)]2t P logt = 0.
It follows that 3
) =kK@t)+01t %) =c; —ent™ — Bt 2logt + O(t™?)
for all large t.

We want to show that there exist positive constants M and T such that (v(¢,r), k(t)) satisfies, for
t>T and k(t) — Mlogt < r < k(t),

(3.16) u(t, k(1) =0, K'(t) < —pov,(t, k(1))
(3.17) v(t, k(t) — Mlogt) <u(t+s,k(t+s)— Mlog(t+s)), Vs >0,
(3.18) Yy~ Uy — N_lyr—f(y) <0.

r
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Moreover, we will show that the above inequalities imply
(3.19) k() <h(t+T1), v(t,r) <u(t+Ty,r) for r € (k(t) — Mlogt,k(t)) and t > T.

Clearly the required estimate for h(t) follows directly from (3.19) and (3.15).
By the definition of k(t), we have v(¢,k(t)) = 0. We now calculate
0, (t k(1) = dp(u(ch — ent ™), k(t) — k(1))
= 0 (u(c5 — ent™),0) + [brr (110,0) + o(D)] [E(t) — k(1)]
= 7L(CS —ent™) + [frr(p0,0) + o(1)] [/{8 - 0(1)] t~2logt.
Ho Co
Using
(brr(MO, T) + CS¢7’(NO: T) + f((b(ﬂOy T)) =0
and f(¢(po,0)) = f(0) =0, we obtain

0*2

Grr(110,0) = —cior (10, 0) = =
Ho

It follows that
—pov, (8, k(1) = ¢ — ent™ + pocgt > logt + o(t~* log t)

> ¢ —ent ! — Bt 2logt + O(t™?)

= K'(t) for all large t.
Hence (3.16) holds.

Since
ot — M'logt — [k(t) — Mlogt] = (exy + M — M')logt + o(1) > (M/2)logt
for all large ¢, provided that M > 2M’, we obtain from (3.14) that
u(t, k(t) — Mlogt) > (1 — Me™%) (1 — Mlt—dlM/Q) >1—t2
for all large ¢, provided that M > 4/§;. We now fix M such that M > max{2M’,4/6;}. Thus
u(t + s, k(t+s) — Mlog(t+s)) >1— (t+5) 72 >1—t2logt > v(t, k(t) — Mlogt)

for all large ¢ and every s > 0. This proves (3.17).
Next we show (3.18). We have, with & = ¢} — eyt ™1,

vy =G (&), r — k()i (ent™ — ¢ (u(€),r — k(t))E () + 2t logt — 72
=0t %) + ¢, (—c+ent '+ Bt 2logt — Bt ?),

and B -
Qr(tv ’I") = ¢T(M(£)ar - k(t))v er(t7r) = ngT(u(f)vr - k(t))
Hence,
N -1
U= Y — 0 — f(2)
-2 . —1 -2 o N-1 -2
=0t ) + ¢ [—co+cNt + Bt *logt — Bt —r} — ¢ — f (¢ —t " logt)
=0(t™2) + ¢, [g({) —g(ch) +ent ™ 4+ Bt 2?logt — Bt™% — Nr_ 1]

—9(&)or — b — f (QZ) —t72 logt)
=0t ) + ¢ + f(¢) — f (¢ —t 2logt),
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where

N -1
—

J:=g(€) —g(c}) + ent ' 4+ Bt 2logt — Bt™2 —
For r € [k(t) — M logt, k(t)], we have
r > k(t) — Mlogt

= k(t) — Mlogt + O(t 2 logt)

= cit — (en + M) logt + Bt 'logt + O(t *logt)

> ¢yt — Malogt for all large ¢,
where My = ¢y + M. It follows that, for such r,

N -1 < N -1

r ¢yt — Malogt
N—-1 (N—-1)Msylogt
= + 7. [1+0(1)].
o 't

Therefore

N-1 N —1)M:
J > —g'(cg)ent™ +ent™h — ——t7" + [B - (*2)2} t2logt + o(t*logt)

*

0

N —1)M
= B—(*2)2—|—0(1)} t~2logt >0

for all large ¢, provided that B is large enough.
~ We now fix ep > 0 small so that f'(u) < —o¢ <0 for u € [1 — 2€9, 1 + 2¢p]. Then when ¢(u(€),r —
k(t)) € [1 — €9, 1] we have
f(¢) = f(¢ —t7*logt) < —oot ™" logt
for all large t. Hence in such a case,
O(t™2) + ¢r + f(¢) — f(¢ —t *logt) < O(t™?) — ot logt < 0
for all large t.
If p(u(€),r — k(t)) € [0,1 — €], then we can find o1 > 0 such that ¢, < —o, and hence

(N —1)M,
082
On the other hand, there exists o9 > 0 such that

f(p) — f(¢p —t 2logt) < oot > logt.

¢rd < —o1 |B— +o(1) |t 2logt.

Thus in this case we have

O(t™2) + ¢rd + f(9) — f(é — " *logt)

< -0y |B - w +o(1) |t 2logt + oot 2 logt + O(t™%)
€

<0

for all large ¢, provided that B is large enough. This proves (3.18).
We are now ready to show (3.19). Since as t — oo, h(t) — oo and u(t,r) — 1 locally uniformly in
r € [0,00), we can find 77 > T such that

h(T") > k(T), u(T',r) > v(T,r) for r € [k(T) — MlogT, k(T)],
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where T' > 0 is a constant such that (3.16), (3.17) and (3.18) hold for ¢ > T. We may now use a
comparison argument to conclude that
R(T' +1t) > k(T +t), w(T' +t,r) > v(T +t,7)

fort >0, r € [k(T+t) — Mlog(T +t),k(T + t)], which is equivalent to (3.19) with T} =T7" - T. O
Lemma 3.5. There exist C >0 and T > 0 such that

h(t) < cot —cenlogt+ C fort > T,
where cy is given by (2.8).
Proof. With B > 0 and C' > 0 constants to be determined, and ¢(z) = ¢(u, z) given in (2.1), we set

k(t) = ¢t — enlogt — Bt~ logt + C,
W(t,r) = ¢ (e — ent™),r = k(t)) +1 2 log .
We have o(t, k(t)) = t~2logt > 0 for t > 1, and
Bt k() +t7Y) = ¢ (u(ch — ent™),t71) +t 2 logt = [¢r (10, 0) + o(1)]t 71 < 0

for all large ¢. Moreover,

U (t, 1) = ¢y (,u(c’{) —ent™Y),r — l%(t)) <0 for all t >0 and r € (0, k(t)].

~ ~

Therefore, there exists a unique k(t) € (k(t), k(t) +t~1) such that
v(t, k(t)) = 0 for all large t.

By the implicit function theorem we know that ¢ — k(t) is smooth, and by the mean value theorem
we obtain

(60 (10,0) + ()] [F(t) — k()] = —t?log .
Since ¢y (p0,0) = —c/ 10, we thus obtain

(3.20) k() — k(t) = ['ZJS + 0(1)] t~2logt for all large t.
0

Using v.(t, k(t)) +0,(¢, k(t))k’(t) = 0 we obtain

bp- i ent 24y [K(t) - l%’(t)] — [1+o0(1)]2t 3 logt = 0.
It follows that B X
E'(t) =k'(t) +O0(t™2) = ¢, —ent™' + Bt 2logt + O(t™2)
for all large t.

We want to show that, by choosing B and C' properly, there exists a positive constant 7" such that
(T(t,r), k(t)) satisfies, for t > T and 1 < r < k(t),

(3.21) o(t,k(t)) =0, k'(t) > —puov.(t, k(t)),
(3.22) w(t,1) > u(t, 1),

(323) Vg — Upp — NT_ 1@7‘ - f(@) > 07

and

(3.24) k(T) > h(T), v(T,r) > u(T,r) for r € [1,h(T)].

If these inequalities are proved, then we can apply a comparison argument to conclude that

(3.25) k(t) > h(t), v(t,r) > u(t,r) for r € [1,h(t)] and t > T.
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Clearly the required estimate for h(t) follows directly from (3.25) and (3.20).
By the definition of k(t), we have T(t, k(t)) = 0. We now calculate

0t E(t)) = o (ulch — ent™), k() — k(1)

= Gr(plch — ent™),0) + [drr (10, 0) + o(1)] [R(t) — k(1)]
= —Mlo(cz‘) —ent™H + [@rr (110, 0) + o(1)] ['Zg + 0(1)] t~2logt
= —i(cg —ent ) + gt 2logt 4 o(t 2 logt).

Ko

It follows that
— 10Ty (t, k(1)) = ¢ — ent™ " — pocit 2 logt + o(t 2 log t)
<ch—cent 4+ Bt 2logt + O(t™%)
=k'(t) for all large t.

Hence (3.21) holds.
Since

o(t, 1) = ¢(p(ch — ent™),1— I;:(t)) +t2logt >1— Mle‘sl[l_k(t)] +t2logt > 1+12
for all large t, and by Lemma 3.2, u(t,1) < 1 + Me ™% for all t > 0, we find that
u(t,1) < v(t, 1) for all large ¢.

This proves (3.22).
Next we show (3.23). We have, with & = ¢} — cnt ™1,

Ty = ((€), 7 — k(1)) ()ent™ — ¢ (u(€),m — k(1)K (t) — 2t logt + 13
=0t %)+ ¢, (—cy+cnt ' — Bt 2logt + Bt?),

and R R
Up(t,7) = dr((§),r — k(t)), Upr(t,r) = Gpr(u(§), 7 — E(t)).
Hence,
Tt — Upp — ?m - (@)
=0t %) + ¢, {—cg +ent ! — Bt ?logt + Bt 2 — Nr_l] — ¢ — f (¢ +t 2 logt)
= 0(t™2) + ¢, [g({) —g(ct) +ent ™t — Bt 2logt + Bt ™2 — NT_ 1]
- g(§)¢r — O — f (¢ +¢72 logt)
=0t ) + ¢pd + f(¢) — f (¢ +t 2logt),
where
A _ _ _ N -1
J:=g(€) —g(c}) + ent™ — Bt 2logt + Bt™2 — —-

For r € [1, k(t)], we have

N—1>N—1: N -1
T T k() k()4 o(th)
_ N*—l . (N—l)chogt[leO(l)].

et 032t2

21
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Therefore, for such r,

R N -1 N-1
J<—g(ch)ent ™t et - ——t71 [B + (V= Dew *Q)CN] t~2logt + o(t *logt)
CO CO

——+ 0(1)] t2logt < 0
for all large t.

~

We now fix €9 > 0 small so that f'(u) < —og < 0 for u € [1—2€g, 142¢p]. Then for ¢(u(&), r—k(t)) €
[1 — €9, 1] we have

f(@) — f(¢+t%logt) > gt *logt
for all large t. Hence in such a case,

Ot ) + ¢pd + f(9) — f(¢p+1 2logt) > O(t2) + apt 2 logt > 0
for all large t.

If p(1u(€),r — k(t)) € [0,1 — o], then we can find oy > 0 such that ¢, < —oy, and hence

- N-1

éd > 01 | B+ % +o(1)| t 2 logt.
€

On the other hand, there exists oo > 0 such that

f(¢) — f(¢+1t 2logt) > —oot ?logt.
Thus in this case we have
O(t™2) + ¢r + f(¢) = f(¢+t 2 logt)

N -1
>0, |B+ % +o(1) |t 2logt — oot 2logt + O(t™2)
€
>0

for all large ¢, provided that B is large enough. This proves (3.23).
Finally we show that (3.24) holds if C is chosen suitably. Indeed, we set

C =h(T)—cyT + cnlogT + 2T.
Then

E(T) = k(T) + o(T™)
for T large enough.

h(T)— BT tlogT + 2T + o(T™Y) > h(T) + T
By enlarging T if necessary we have, for r € [1, h(T)],
o(T,r) > 5(T, M(T)) = p(u(cs — exT ™), M(T) = k(T)) + T~ log T
> o(ulch —eNT™Y), =T) 4+ T %logT

>1—Me T T 21ogT
>1+7T72,

while

w(T,r) <1+ Me™°T,
Therefore

o(T,r) > u(T,r) for r € [1, h(T)]
provided that T is large enough. This proves (3.24). The proof of the lemma is now complete
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4. CONVERGENCE

Throughout this section we assume that (u, k) is the unique solution of (1.1) with u = pg > 0, and
spreading happens: Ast — oo, h(t) — oo and u(t,r) — 1 for r in compact subsets of [0, 00). We will
prove the following convergence result.

Theorem 4.1. There exists a constant h € R such that
. * 7 . / %
tliglo {n(t) — [ct — cnlogt] } = h, tlgloaoh (t) = ¢
and

lim [Ju(t,-) — ges (h(t) = )|l Lo (o,e) = 0

t—o00

Again we will prove this theorem by a series of lemmas. By Lemmas 3.4 and 3.5 we know that
there exist C,T > 0 such that

—C < h(t) — [cgt — ey logt] < C for t > T.

‘We now denote
k(t) = cot — ey logt — 2C

and define
v(t,r) = u(t,r + k(t)), g(t) = h(t) — k(t), t > T.
Clearly
C<g(t)<3Cfort>T.
Moreover,

* —1
Up = Uy, Upy = Upr, Ut:'Ut_(C(]_CNt )Ura

and (v, g) satisfies

Ut — Upp — [CS - cNt_1 + TNT]:(%)} Uy = f(v)v _k(t) <r< g(t)at > T?

v(t,g(t) =0, ¢'(t) = —povr(t,g(t)) — cf +ent™t, t>T.

4.1. Limit along a subsequence of ¢, — oco. Let ¢, — oo be an arbitrary sequence satisfying
t, > T for every n > 1. Define

kn(t) = k(t + tn)a 'Un(ta ’l“) = U(t + ln, 7“), gn(t) = g(t + tn)'
Lemma 4.2. Subject to a subsequence,

. 435 1
gn — G in Cp,. 2 (RY) and ||v, — VHCHTQJM(D — 0,

loc ")

where a € (0,1), D, = {(t,7) € D : 7 < go(t)}, D = {(t,7) : —00 < r < G(t), t € R}, and
(V(t,r),G(t)) satisfies

() { Vi=Ver —gVe = f(V), (t,r) e D,
V(t,G(t) =0, G'(t) = —uoVi(t, G(t)) — ¢5, teRL

Proof. By [9] there exists Cp > 0 such that 0 < h/(t) < Cj for all ¢ > 0. It follows that
—c§ < gn(t) < Cy for t +t,, large and every n > 1.

Define

, wp(t,s) = vp(t,r).
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Then (wy(t, s), gn(t)) satisfies

Wdes Lot 4 e — ettt U

gn(t)s + kn(t)] gn(t)
for—]gczgt§<s<1t>T tn, and
(4.3) wp(t,1) =0 for t > T —t,

(wn)s(t, 1)
gn(t)

For any given R > 0 and Ty € R!, using the partial interior-boundary LP estimates (see Theorem
7.15 in [23]) to (4.2) and (4.3) over [Ty — 1,Tp + 1] x [-R — 1, 1], we obtain, for any p > 1,

(4.2) (wp)¢ —

(4.4) g, (t) = —po —chten(t+ty) Hort >T —t,.

Hwnle 2 ([To,To+1]x[-R,1]) = < CR for all large n,

where Cp is a constant depending on R and p but independent of n and Tjy. Therefore, for any
"€ (0,1), we can choose p > 1 large enough and use the Sobolev embedding theorem (see [21]) to
obtain

: <C
(4.5) HwnHCH.Qa e (g ey [ R]) S Cg for all large n,

where Cp is a constant depending on R and o’ but independent of n and Tj.
From (4.4) and (4.5) we deduce

HQnHCH%/([Two)) < () for all large n,

with C7 a constant independent of Ty and n. Hence by passing to a subsequence we may assume
that, as n — oo,

a1 1+OL

wn—>W1nC 2 (Rlx(_oovl]) gn%GlnCloc ( )’

loc

where a € (0,a’). Moreover, using (4.2),(4.3) and (4.4), we find that (W,G) satisfies in the W,
sense (and hence classical sense by standard regularity theory),
Wi — gz — (5G' () + cg) gy = (W), s € (—o0,1], t €RY,
Wi(t,1 "
Wt 1) =0, G'(t) = —po G((i)) — Cps te R
Define V' (t,r) = W(t, G(t ) We easily see that (V, G) satisfies (4.1) and

nh—>H<}o ”Un B VH 1o 1ta = 0.

C'loc2 ‘ (Dn)
]

4.2. Determine the limit pair (V,G). We show by a sequence of lemmas that G(t) = Gy is a
constant, and hence V' (¢,r) = ¢(r — Go).
Since C < g(t) < 3C for t > T, we have

C < G(t) <3C fort € R
By the proof of Lemma 3.5, we have, for r € [1 — k(t + t,,), g(t + t,)] and t + t,, large,
on(t,r) < @(plch —en(t+tn) 1), m — 3C) + (t+tn) *log(t + tn).
Letting n — oo we obtain

V(t,r) < ¢(pg,r — 3C) for all t € RY, r < G(t).
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Define
R* =inf {R:V(t,r) < ¢(po,r — R) for all (t,r) € D}.
Then
V(t,r) < ¢(po,r — R*) for all (¢,r) € D
and
C < inf G(t) < sup G(t) < R* < 3C.
teR? teR1
Lemma 4.3. R* = sup,cp1 G(1).

Proof. Otherwise we have R* > sup;cp1 G(t). We are going to derive a contradiction.
Choose ¢ > 0 such that

G(t) < R* — 6 for all t € RL.
We derive a contradiction in three steps. To simplify notations we will write ¢(r) instead of ¢(uo, r).
Step 1. V(t,7) < ¢(r — R*) for all t € R and r < G(¢).
Otherwise there exists (to,79) € D such that

V(to,m0) = ¢(ro — R*) > ¢(—5) > 0.

Hence necessarily 79 < G(tg). Since V(t,r) < ¢(r — R*) in D, and ¢(r — R*) satisfies the first
equation in (4.1), we can apply the strong maximum principle to conclude that V' (¢,r) = ¢(r — R¥)
in Dy :={(t,r) : 7 < G(t),t < 1o}, which clearly contradicts with the assumption that G(t) < R* — 0.

Step 2. M, := infycp1 [¢p(r — R*) — V(t,7)] > 0 for r € (—oo0, R* — §]. Here we assume that
V(t,r) =0 for r > G(t).

Otherwise there exists rg € (—oo, R* — 0] such that M,, = 0, since the definition of R* implies
M, > 0 for all » < R* —§. By Step 1 we know that M,, is not achieved at any finite ¢. Therefore
there exists s, € R! with |s,| — co such that

d(ro — R*) = nlgrolo V(sn,r0).
Define
(Vo (t,7),Gn(t)) = (V(t + sn,7), Gt + 3p)).

Then the same argument used in the proof of Lemma 4.2 shows that, by passing to a subsequence,
(Vo, Gr) — (V, G) with (V, G) satisfying

(4.6) { Vi = Vip = cgVe = f(V), —o0 <1 <G(t),t € R,
V(t,G(t) =0, t e RL.

Moreover,

(4.7) V(t,r) < ¢(r — R*), G(t) < R* =8, V(0,70) = ¢(ro — R*) > 0.

Since ¢(r — R*) satisfies (4.6) with G(t) replaced by R*, we can apply the strong maximum principle
to conclude, from (4.7), that V(t,r) = ¢(r — R*) for t < 0,7 < G(t), which is clearly impossible.
Step 3. Reaching a contradiction.
Choose ¢y > 0 small and Ry < 0 large negative such that

d(r— R*) > 1—¢y for r < Ry, f'(u) <0 for u € [1 — 2, 1 + 2¢€0]-
Then choose € € (0, ¢p) such that
d(Ro— R*+¢€) > ¢p(Ry — R*) — Mpg,, ¢(r — R* +¢) > 1—2¢, for r < Ry.
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We consider the auxiliary problem
Vi—Vu—ciVe=f(V), t>0,r<Ry,

(4.8) V(t,Ry) = ¢(Ry — R* +¢€), t>0,

V(0,r)=1, r < Ry.

Since the initial function is an upper solution of the corresponding stationary problem of (4.8), its
unique solution V' (¢,r) is decreasing in ¢. Clearly V (¢,r) := ¢(r — R* +¢€) is a lower solution of (4.8).
It follows from the comparison principle that

1>V(t,r) > ¢(r—R*+¢) forallt >0, r < Ry.
Hence B

V*(r) = tlggo V(t,r) > ¢(r — R* +¢€), Vr < Ryp.
Moreover, V* satisfies
(4.9) Vi =V = f(V7) in (=00, Ry), V*(=00) =1, V*(Ro) = ¢(Ro — R” +¢).
Write 9(r) = ¢(r — R* + €). We notice that ¢(r) also satisfies (4.9). Moreover

1 —2¢p <(r) <V*(r) <1forre (—oo, R
Hence W(r) := V*(r) — ¢(r) > 0 and there exists ¢(r) < 0 such that
V() = f(@(r) = e(r)W(r) in (=00, Ro.

Therefore

—W" — W' = ¢(r)W in (—o0, Ry), W(Ryp) = 0,
and by the maximum principle we deduce, for any R < Ry,

W(r) < W(R) for r € [R, Ro].
Letting R — —oo we deduce W(r) < 0 in (—oo, Ro]. It follows that W = 0. Hence
V*(r) =9¢(r) = ¢(r — R* +¢).
We now look at V(t,r), which satisfies the first equation in (4.8), and for any t € R,
V(t,r) <1, V(t,Rp) < ¢(Ry — R*) — Mp, < ¢(Ro — R* + ¢).

Therefore we can use the comparison principle to deduce that

V(s+t,r) <V(t,r) forall t > 0,7 < Ry, s € RL.
Or equivalently

V(t,r) <V(t—s,r) forallt>sr< RyscR
Letting s — —oo0 we obtain
(4.10) V(t,r) <V*(r) = ¢(r — R* +¢) for all 7 < Ry, t € R

By Step 2 and the continuity of M, in r, we have
M, > o >0 for r € [Ry, R* — ¢].
If €1 € (0, €] is small enough we have
dp(r—R* +¢€1) > ¢(r— R*) —o for r € [Ry, R* — 9],
and hence
V(t,7) —¢(r — R* +€) <o — M, <0 for r € [Ry, R* — 6], t € RL.
Therefore we can combine with (4.10) to obtain
V(t,r) — ¢(r — R* +¢) <0 for 7 € (—o0, R* — §], t € R,

for all small €; € (0, €), which contradicts the definition of R*. The proof is now complete. O
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Lemma 4.4. There exists a sequence {s,} C R! such that

G(t+ sn) = R*, V(t+ sp,7) = ¢(r —R") as n — oo
uniformly for (t,r) in compact subsets of R! x (—oo, R*].
Proof. There are two possibilities:

(i) R* = sup;cp1 G(t) is achieved at some finite ¢ = sg,
(i) R* > G(t) for all t € R! and G(s,) — R* along some unbounded sequence s,,.

In case (i), necessarily G'(sg) = 0. Since V(t,7) < ¢(r — R*) for r < G(t) and t € R!, with
V(s0,G(s0)) = ¢(G(so) — R*) = ¢(0) = 0, we can apply the strong maximum principle and the Hopf
boundary lemma to conclude that

V,(s0,G(s0)) > ¢'(0) unless V(¢,7) = ¢(r — R*) in Dy = {(t,r) : 7 < G(t),t < sp}-
On the other hand, we have

Vi(s0,G(s0)) = —Hg ' [G'(s0) + ¢ = —pg ' c5 = ¢/(0).
Hence we must have V(t,7) = ¢(r — R*) and G(t) = R* in Dy. Using the uniqueness of (4.1) with
a given initial value, we conclude that V(t,r) = ¢(r — R*) for all r < G(t) and t € R'. Thus the
conclusion of the lemma holds by taking s, = so.
In case (ii), we consider the sequence

Vo(t,r) =V (t+ sp, 1), Gp(t) = G(t+ spn).

By the same reasoning as in the proof of Lemma 4.2, we can show that, by passing to a subsequence,

Vi, — Vin C’ . ’l—m( D), G, — G in C} (R and (V,G) satisfies (4.1),

loc
where D := {(t,7) : —oo < r < G(t), t € R'}. Moreover,
G(t) < R*, G(0) = R*.
Hence we are back to case (i) and thus V(¢,r) = ¢(r — R*) in D, and G = R*. The conclusion of the
lemma now follows easily. O

By the proof of Lemma 3.4, we have
un(t,7) 2 gb(u(CS —en(t+tn) ) = C) — (t+ty) " *log(t + tn)

for r € [k(t +tn) — k(t + tn) — Mlog(t + tn), k(t + tn) — k(t + t,)] and ¢ + ¢, large. Letting n — oo
we obtain

V(t,r) > ¢p(uo,r — C) for all t € RY, v < G(1).

Define
R, =sup{R:V(t,r) > ¢(uo, — R) for all (t,7) € D}.
Then
V(t,r) > ¢(po, v — Ry) for all (¢,r) € D
and
C <R, < inf G(t) < sup G(t) < R* < 3C.
teR! teR1l
Lemma 4.5. R, = inf,cp1 G(t), and there exists a sequence {3,} C R! such that

G(t+3,) = Ry, V(t+ 8p,7) = ¢(r — Ry) asn — 00
uniformly for (t,r) in compact subsets of R x (—o0, Rs].

Proof. The proof uses similar arguments to those used to prove Lemmas 4.3 and 4.4, and we omit
the details. m
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Lemma 4.6. R, = R* and hence G(t) = Gg is a constant, which implies V (t,r) = ¢(r — Gp).

Proof. Argue indirectly we assume that R, < R*. Set e = (R* — R.)/4. We show next that there
exists T, > 0 such that

(4.11) G(t) — R« <eand G(t) — R* > —e for t > T¢,

which implies R* — R, < 2¢. This contradiction would complete the proof.

To prove (4.11), we use Lemmas 4.4 and 4.5, and a modification of the argument in section 3.3 of
[11]. Indeed, by using Lemma 4.4 and constructing a suitable lower solution we can show that there
exists n; = nj(e) large such that G(t) — R* > —e for all t > s,,,. Similarly we can use Lemma 4.5 and
construct a suitable upper solution to show that G(t) — R. < € for all ¢t > §,,, with ny = na(e) large
enough. Hence (4.11) holds for ¢t > T := max{sy,, Sn, }. For completeness, the detailed constructions
of the above mentioned upper and lower solutions are given in the Appendix at the end of the
paper. O

4.3. Convergence of h and u.

Lemma 4.7. There exist a constant C > 0 and a function & € CY(RL) such that |£(t)] < C for all
t>0,

lim {h(t) — [cit — enlogt + £(t)] } =0, tlirglofl(t) =0,

t—o00

and
im |u(t, ) = geg (h(t) — )l Lo o,n(e))) = O-

t—o00

Proof. By Lemmas 4.2 and 4.6, we find that for any sequence ¢, — 0o, by passing to a subsequence,
h(t+tn) — k(t + tn) — Go in Cp? (RY). Hence I/(t + 1) — ¢ in C2/3(RY).
We now define
U(t,r) =u(t,r + h(t)) fort >0, r € [—h(t),0],
and
Un(t,r) =U(t + tp,7), hn(t) = h(t + t,).
It is easily checked that

(Un)t — [h;(t) + fh;nm (Un)r = (Un)rr = f(Un), t>—tn, 7 € (=hn(t),0],
Un(t70) =0, (Un)r(ta 0) = _h;z(t)/:u()a t> —ty.

(4.12)

By the same reasoning as in the proof of Lemma 4.2, we can use the parabolic regularity to (4.12)
plus Sobolev embedding to conclude that, by passing to a further subsequence, as n — oo,

lta «
Uy > Uin G2 " T(R! x (—00,0)),

loc

and U satisfies, in view of hl (t) — ¢},
Ui — c§Uy — Uy = f(U), teRY r e (00,0,
U(t,0) =0, Upy(t,0) = —ci/mo, te€RL

This is equivalent to (4.1) with V' = U and G = 0. Hence we may repeat the argument in Lemmas
4.2-4.5 to conclude that
Ul(t,r) = ¢(uo,r) for (t,7) € R! x (=00, 0].

Thus we have proved that, as n — oo,

a1t
Wt + to,r + h(t+1t0)) — ge (=) = 0in €, 2 "THR! x (—o00,0)).

0 loc
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Since {t,} is an arbitrary sequence converging to oo, this implies that

tllglo [u(t,r + h(t)) — qcé(—r)] = 0 uniformly for r in compact subsets of (—oo, 0].
Therefore, for every L > 0,
(4.13) Jim Ju(t, -) = ge; (h(8) =)l Lo (ao)—L.ww)) = 0-
Similarly, the arbitrariness of {t,,} implies that h'(t) — ¢ as ¢ — co. Hence
§(t) := h(t) — [cot — en log t]

satisfies
€(t) = 0ast— .

The boundedness of £(t) is a direct consequence of (3.2).
It remains to strengthen (4.13) to

Jim lut, ) = geg ((t) = )l oo o,y = O-

Let (v(t,r),k(t)) be as in the proof of Lemma 3.4, so that (3.16), (3.17) and (3.18) hold. Since as
t — 00, h(t) — oo and u(t,r) — 1 locally uniformly in r € [0, 00), we can find 75 > 0 such that

hT3) > k(T), uw(Ty,r) > v(T,r) for r € [0,k(T)].

We note that v(T,r) is a strictly decreasing function of 7. We now choose a smooth function g(r)
such that

i1y (0) = @g(ho) = 0, dy(r) < 0, u(T,r) > dig(r) in (0, ko], and dg(r) > v(T,r) in (0, k(T)),
where hg € (k(T), h(T3)). We next consider the auxiliary problem

w = + X, + f(u), 0<r<h(t), t>0,
(4.14) u(t,h(t)) = 0, W' (t) = —pour(t,h(t)), t>0,

Let (a, iz,) denote the unique solution of (4.14). By the comparison principle we have
h(t+Ty) > h(t), u(t+To,7) > a(t,r) for t >0, r € [0, h(t)].

Moreover, since 4 (r) < 0 we can use a reflection argument to show that a,(¢,7) < 0 for ¢ > 0 and
r e (0, fz(t)] This reflection argument is similar in spirit to the well known moving plane argument
used for elliptic problems. The idea is to treat (4.14) as an initial boundary value problem for
@ = @(t,x) over the region Q := {(t,x) : t > 0,|z| < h(t)} in R! x RN. For each point o in the
ball {|z| < h(t)} but away from the origin, we consider a hyperplane H passing through zo, which
divides RY into two half spaces H~ and H', where H~ denotes the half space that contains the
origin. Denote Q7 = {(t,z) € Q: 2 € HT}, and for each point x € H", we denote by x* € H™ its
reflection in H, and define @*(t, z) = a(t, z*) for (t,x) € Q. Then on the parabolic boundary of Q7
@ — @* < 0 but is not identically 0. We thus obtain by the maximum principle that @ — @* < 0 in QT
and strict inequality holds in the interior of Q. Since @(t, zo) — @*(t, z9) = 0, we can apply the Hopf
boundary lemma to conclude that

0t z) = %8,,[11(t,x0) (¢, 20)] < 0,

where v is a normal vector of H pointing away from the origin. The conclusion 4, (¢,r) < 0 is a simple
consequence of this fact. .
On the other hand, if 7" is large enough, our assumptions on %(0, ) and ~(0) imply that spreading
(u

happens for (@, h) (see [9]). Hence we can apply Lemma 3.4 to (@, k) to conclude that there exist
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T > 0,7y > 0 such that (3.19) holds when (u,h,T,T}) there is replaced by (@, h,T,T;). We thus
obtain
u(t + Ty + To,7) > a(t 4+ Ty, ) > v(t,r) for r € [k(t) — Mlogt, k(t)] and t > T.
It follows that

1ig£fre[0{223_L] u(t,r) > liminf a(t, h(t) — L) > liminf v (t, h(t) — L) = ¢(p0, —L + C).

Therefore, for any € > 0 there exists L > 0 large such that
u(t,7) > ez (Le — C) > 1 — e for all 7 € [0, h(t) — Le] and all large ¢.
Since gz (r) < 1 is increasing in r, and by Lemma 3.2, u(t,7) < 1 + € for all large ¢, we deduce
[u(t, r) — ez (R(t) — )| < 2¢ for r € [0, h(t) — L] and all large .
We may now make use of (4.13) to obtain

liHLSUP lu(t, ) = gez (R(t) = )l Lo (o,ne)) < liﬁsup u(t, ) = gez (R(t) — Lo (o,n(t)—L) < 26

t—o00

Since € > 0 can be arbitrarily small, we obtain
Jim fu(t, ) = ges (h(8) = )l o< o.neey) = 0
as we wanted. The proof is complete. O
4.4. Improved convergence result for h.
Lemma 4.8. There exists h € R such that
tliglo [h(t) — ¢t + cn logt] = h.
Proof. By Lemma 4.7,
E(t) = h(t) — ¢t + enlogt € [-C,C] for t > 0.
Set

h = 1itrn inf £(¢).
— 00
We will show that for any given small € > 0,
(4.15) limsup&(t) < h +e.

t—o00

The required conclusion clearly follows from (4.15).
We use a comparison argument to prove (4.15). Let ¢ — oo be chosen such that £(tx) — h as
k — oo. For given small € > 0, we define

hi(t) = c(t+t,) — enlog(t +t) + Be(l1 —e ™)) + h4¢, t > 0,
Ty (t,r) = ¢ (u(ch — en(t +t5) "), r — hi(t)) + ee™, r € [0, hg(t) + €0l

where o and B are positive constants to be determined later, and ¢ is given by (2.1), which is defined
over (—oo, €g]. To simplify notations, we will write

hi(t) = h(t), ug(t,r) = u(t,r) unless their dependence on k need to be stressed.
We will choose a and B such that for all large £ and small e,

lim sup &(t + t) < h 4 Coe,

t—o00

where Cjy > 0 is a constant independent of € and k. This clearly implies (4.15).
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By definition, with the notation ¢ = ¢} — cn(t +t) 1,
Ty (t, 1) = ¢ (u(C), 7 — h(t)) < 0 for r € [0, h(t) + €o].
Moreover,
a(t, h(t)) = ¢(u(¢),0) + e * >0 (Vt > 0)
and
U(t, h(t) + €0) = d(u(Q), e0) + e <0 (vt > 0)
provided that e > 0 is small enough. Hence for such e, there exists a unique h(t) = hy(t) € (h(t), h(t)+
€o) such that
u(t,h(t)) =0 (vt >0).
Moreover, we could replace ¢y by Ce with C' > 0 sufficiently large to conclude that h(t) < iL(t) + Ck,

and we can apply the implicit function theorem to conclude that t — h(t) is a smooth function.
By the mean value theorem we have

H(tvﬁ(t)) - ﬂ(ta B(t)) = [¢T(MO’O) + Oe,k(l)] m(t) - B(t)] = —ee™ (Vt > 0)7
where o, (1) = 0 as € — 0 and k — oo, uniformly in ¢ > 0. It follows that

(4.16) h(t) — h(t) = ['ZS + oe,k(l)} ee” " (Vt > 0).
0
Using %H(t,ﬁ(t)) = 0 we deduce
b1t en(t+ 1) 24 b - [B (1) = B (1)] — ace™ = 0.
Since ¢,, - ' > 0, it follows that

R () > B (t) + [¢r] Tace

=ci —en(t+tp) ' +aBee ™ — ['uf + Oeyk(l):| ace™
0
— X -1 Ho —at
=cy—cn(t+te) + B—g—i—oe,k(l) aee (Vt > 0).
0

On the other hand, for all large k£ and small €, we have
(8, h(1)) = 6 (1(C), h(t) — h(t))
= ¢T(M(C)7O) + |:¢T7”(M03 0) + Oe,k(l)] m(t) - B(t)]

1
> _;7[68 —en(t+te)7'] (VE>0)
0
since ¢rr(110,0) = —chor(p0,0) = (c§)?/po > 0. Therefore if we choose B > ’c”—g, then for all large k

and small e,

(4.17) 7 () > —potn(t, h(t)) (vt > 0).
Next we prove that by choosing « suitably small and enlarging B accordingly, we have
N -1 _
(4.18) Ut — Uy — u, — f(u) >0 for t >0, r € (0,h(t)]

r
and all large k£ and small e.
We calculate

U= ¢y p - en(t+ )2 — o - B (t) — eae™™
> —¢p [ —en(t+ te) "L+ Beae ] — eae™ .
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Hence
N -1
Ut — Upp — ﬁr—f(ﬂ)

* -1 —at N-1 —at —at
> —¢p [ — en(t + tg) ' + Beae +T] — ¢rr — f(p+€e7) —cae
=~ + [(9) = f(d + ee™™) —eae™™,

where N1
J = —glch —en(t+tp) ™) — en(t + tg) " + Beae 4+ ———
r

For r € (0, h(t)], we have
N -1 S N -1 _ N -1
T A h(t) 4 oer(D)
N-—-1
ch(t +ty) — enlog(t + tr) + h+ 0e (1)
N—-1 (N —1)eylogt+t)

= + 14+ o0.1(1)].
it +tr) ch?(t + t1,)? [+ 0k(1)]
Moreover,
o —g(cg —en(t+t1)"") = g'(g)en(t +tr) ™+ O [(t + 1) 2]
Therefore,
- N-—-1 _ (N — 1)ey log(t + tg) ot
J > enld'(ed) — 1]+ }t-i—t Ly 14 0ci(1)| + Beae™@
{entote) -1+ T e B 1 o)

(N =1)en log(t + t)
ch?(t + ty,)?
> Beae ™ (Vt > 0)
for all large k& and small e.

Choose 69 > 0 small so that f'(u) < —op < 0 for u € [1 — do, 1 + dp]. Then for ¢ € [1 — dp, 1) we
have

[1+ 0c1(1)] + Beae ™

(@) — f(d+ee™™) > gpee™ ™.
Thus for all large k£ and small € and
(t.1) € QL = {(t.r) : dlules — en(t +t0)™)r — hit) € [1— b0, 1)},
we have
—¢pd + f(¢) — f(d+ ee™®) — eae™ > (0g — a)ee " > 0
provided that we take o = 0 /2.
For ¢ € (0,1 — dp), there exists o1 > 0 such that ¢, < —o7; moreover, for all small e,

f(9) = f(9p+ee™) > —ogee™,
where o9 = max,¢ 1] | f'(w)]. Therefore for all large k, small €, and
(t,r) € ka, = {(t, r) s p(u(cy — en(t + te) 1Y), — fL(t)) €(0,1— 50)},
we have

— & + [(9) = f(& + ee™) —cae™
> 01 Beae™ — (09 + a)ee™™

= (01Ba — 03 — a)ee™™ >0
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provided that o1 Ba > 09 + a. With a = /2, this is achieved by taking B > %. This proves
that (4.18) holds for all large k and small e.
We show below that for all large k and small e,

(4.19) h(tk) < Ek(O), u(tk,r) < ﬁk(O,T) for r € [0, h(tk)]

Since

h(tx) — hi(0) = &(tx) — h—e— —cask— oo,
we have, in view of (4.16),
h(tr) < hi(0) < hy(0)

for all large k, say k > ki(e), and all small e.

By Lemma 4.7,
Jm fu(ty, o) = éko, - — h(tk))ll 2= o,n)) = O-
Since
(e — CNtlzl) — pio, h(tg) — he(0) + € — 0 as k — oo,
we deduce

[u(th, ) — ¢(p(cs — enti '), = hi(0) + €)l| L= (o,n(e)) — 0 as k — oo.

Therefore there exists ka(€) > k1(€) such that for k > ko(e),

u(te, ) < o(p(ch — cNtlzl), r— Ek(O) +e)te

< G(ulch — ente)or — () + € = w(0,7) (vr € [0, h(t)]).

Thus (4.19) holds for all small € and k > ka(e). By enlarging ka(e) if necessary we may assume that
(4.17) and (4.18) both hold for k > ka(e) and all small € > 0.

In view of (4.17), (4.18), (4.19) and the fact that u,(¢,0) < 0, u,(t,0) = 0, we can use a standard
comparison argument to conclude that

h(t +tr) < h(t), u(ty +t,r) <u(t,r) (Vt >0, Vr € [0,h(ty +1)])
for all small € > 0 and k > ky(e). It follows that

E(t+tp) = h(t+ 1) —h(t) + Be(1 —e ™) + h+ ¢

k ]

= h(t +tg) — h(t) — [,uo + 0, k(l)} e+ Be(l1—e ™)+ h+e
0

< - [ME + 0671?(1)] e + Be(1—e ™) +h+e
o
— h+ (B+1)e ast — oo.

Therefore

limsup &£(t) < h+ (B + 1)e,

t—o00

as we wanted. This completes the proof. O
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5. APPENDIX: FURTHER DETAILS FOR THE PROOF OF LEMMA 4.6

For completeness, we give the detailed proof of the facts that for any given ¢ > 0, there exists
n1 = ni(e) and ng = na(e) such that

G(t)— R* > —€ (Vt > sp,), G(t) — Rx < € (Vt > §p,).
From the inequalities
o(r— Ry) < V(t,r) < ¢(r— R")
we have
11— V(t,r)| <Ce’r
for some C' > 0 and S >0. Therefore, for any € > 0, there exists K > 0 and 7" > 0 such that

(5.1) sup  |V(Sn, 1) — ¢(r — Ri)| <e.
ré(—oo,— K]

for 5, > T. Let H(t) = G(t) + cit, W(t,r) =V (t,r — cjt). (W, H) satisfies

59 Wy — W, = f(W),t € RY r < H(t)
(5:2) { W(t H (1)) = 0, H'(t) = oWy (£, H (1)

By Lemma 4.5 and (5.1), there exists ny = ni(¢) such that, for n > nq,

(5.3) G(3,) <R, +¢

(5.4) V(8p,7) < p(r— Ry —e)+¢e for r <R,.

We note that we can find N > 1 independent of € > 0 such that

(5.5) ¢(r— Ry —¢€)+e < (1+ Ne)p(r — R, — Ne) for r < R, +e¢.
Next we remark that for any § € (0, —f’(1)) there exists n > 0 such that

0 < —f'(u) for 1—n<u<l+n,
f(u)>0 for 1—-n<u<l.

Let us define an upper solution for problem (5.2) as follows:
H(t) := R« + Ne + ¢t + Neo(1 — 6—5(t—§n))
W(t,r) = (14 Nee =) o(r —H (1)

(t) of t > 3, such that K(t) — —oo as

Since lim,—,_o, W (t,7) > 1, there exists a smooth functiong t) of
(W, H, K) is an upper solution for ¢ > §,,

t — oo and W (t, K(t)) > 1. We will check that the triple

that is,

(5.6) Wi =Wy > f(W) for t > §n,7 € [K(t), H(t)]

(5.7) W(t,K(t)) > W(t,K(t)) for t > 5,,

(5.8) W(t,H(t)) =0,H (t) > —uoW,(t, H(t)) for t > 3y,

(5.9) H(3,) < H(3,), W(3p,r) < W (3,,7) for r e [K(3,), H(3,)]

From (5.3) we have

=
—
W

n) = G(3,) + 3, < Ry + Ne + 3, = H(5,).
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We also have, in view of (5.4),
W(sn,7) = (1+ Ne)o(r — H(5n))
= (14 Ne)o(r — Ry — Ne — c35n)
d(r— R —e —cp8p) + €
V(n,r — c58n) = W(sp, )
for r < H(Sy). Thus (5.9) holds.
We next show (5.8). By definition W (¢, H(t)) = 0 and direct calculation gives

H'(t) = ¢ + Neoe 0(t=5n),
— oW (t, H(t)) = ¢ + Neche 05,

Hence if we take 0 > 0 so that ¢ < ¢d then

This proves (5.8). o o
Since W < 1, by the definition of K (t), (5.7) clearly holds. Finally we show (5.6). Put z = r— H(t).
Since

Wi = —6Nee ®=5)g(z) — (1 + Nee U5V H (1) (2)
= —0Nee 0= (2) — (1 + Nee 2=50)) (¢h + o Nede0=50)) ¢/ (2),
and
W = (14 Nee ®t=5))g"(2),
we have
Wi =W, — f(W)
= — §Nee =505 (2) — (1 + Nee =5 (¢ + o Nede 2 =50)) ¢/ (2)
_ (1 + Nge—é(t—gn))¢//(z) _ f((l +N66—5(t—§n))¢(z))
= — ONee "Tg(z) + (L Nee 05 ) (4 (2) — 5 (2))
— oNed(1 + Nee 0t5n))e=00=5n) 4/ ()
= — 6Nee 75 (2) — gNebe 5 (1 4 Nee U =5)) ¢/ (2)
+ (14 Nee 2=5n)) f((2)) — F((1+ Nee 2 =5n))g(z)).

Now we consider the term (1 + Nee 0¢=5)) f(p(2)) — f((1 + Nee =5n)4(2)). Denote

F(§u) = (148 f(u) = f((1+&u).

The mean value theorem yields

F(&u) =&f(u) + f(u) = f((1+&u) = £f(u) — € (u+ O ubu)u

for some 0¢,, € (0,1). Since ¢(z) — 1 as z — —oo, there exists z, < 0 such that ¢(z) > 1 —n for
z < zy.
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For r — H(t) < zp, we have
Wt - Wrr - f(W)
= — 6Nee 2= g(2) — o Nede 0= (1 4 Nee0U=5)) ¢/ (2) + F(Nee 050 ¢(2))
= — oNede S5 (1 4 Nee 90=5))g/ (2) + Nee 850 f(¢(2))

+ Nee =6 (2){ - f'(6(2) + 0/ Nee P0=)g(2)) - 3}
0,

Y

where 0" = #'(t,2z) € (0,1). We note that by shrinking e we can guarantee that Ne < n and so
1+ Nee 0(=5n) <14y fort > 8ne
On the other hand for z, <r — H(t) <0, we obtain

Wt - Wrr - f(W)
= Nee 350 £(p(2)) — o Nede 050 (1 4 Nee 0050/ (2)
+ Nee 805 { f/(4(2) + 0/Nee =50 9() - 5} 6(2)

5(t—Fn) 5(t—5n)y —6(t—n) /
> Nee Qo f(s) +o0Nee Qn — Nee <0§r£1§alx+nf (s)+ 5)

= Nee (=50 { min f(s) — max f'(s)—d+ 05@7}

0<s<1 0<s<1+n
>0

)

where @, := min,, <.<o |¢'(2)| > 0 provided that o is large positive. Thus W; — W, — f(W) > 0 for
sufficiently large o > 0.
We may now apply the comparison principle to conclude that

W(t,r) <W(t,r), H(t) < H(t) fort >3, and r € (K(t), H(t)],
in particular
G(t) < R.+ Ne(o+1)
for t > §,. By shrinking £ we obtain
G(t) < R.+e¢

for t > 5, and n > n;.
Next we show G(t) > R* — € for all large t > 0. As in the construction of upper solution, for any
e > 0, there exists ny = na(e) such that, for n > no,

(5.10) R* — e < G(sn),
(5.11) ¢(r— R +¢)—e <V(sp,r) for r <R —
We note that we can find N > 1 which does not depend on € > 0 such that
(1-Ne)p(r— R*+ Ne) < p(r—R"+¢e)—¢ for r<R" —e.
Now we define a lower solution as follows:
H(t) :== R* — Ne 4 ¢jt — Neo(1 — e~00=3n))
W(t,r) == (1= Nee =)o (r — H(1)).

)
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Since V (t,7) > ¢(r — R.), there exists C' > 0 and § > 0 such that V satisfies V(¢,r) > 1 — Ce®" for
all » <0, that is, W satisfies

W(t,r) >1— Cellr=—ab),

We fix ¢ > 0 so that 6 < (c+cjy). By enlarging n we may assume that C' < Needsn, Let K(t) = —ct.
We will check that the triple (W, H, K) is a lower solution for t > s,, that is,

(5.12) W, -Ww,,. < f(W)fort>s,,re[K(),H(t)]

(5.13) W(t,K(t)) <W(t,K(t)) for t > sp,

(5.14) Wt H(1)) = 0. H'(t) > —polV, (1, H(1)) for t > s,.

(5.15) H(sp) < H(sp), W(sp,7) < W(sp,r) for re [K(sy), H(sp)]-

From (5.10) we have
H(sp) = R*— Ne+cysn < R* — e+ cysn < G(Sn) + c5Sn = H(sp)
We also have
W(sn,r) = (1= Ne)op(r — H(sn))
(1= Ne)p(r — R* + Ne — ¢Sn)
¢(r— R +e—cpsp) — €
V(sn,r — c4Sn) = W(sp,T)

for r < H(sy). Hence (5.15) holds.
We next show (5.14). By definition W (¢, H(t)) = 0, and direct calculation gives

H'(t) = ¢ — Neode 0=sn),
— polV,.(t, H(t)) = ¢ — Necje *ton).
Hence if we take o > 0 so that ¢j < 0d then
H'(t) < —poW,.(t, H(t)).

This proves (5.14).
For t > s,,, we have

W(t, K(t)) = W(t, —ct) < (1 — Nee (t=5n))
— 1 — Ngeésnef(st S 1 . Cei(;t
< 1= Ce PN SW(t, —ct) = W(t, K(1).

Hence (5.13) holds.
Finally we show (5.12). Put ( =r — H(t). Since

W, = 6Nee "0 (2) — (1 = Nee U0 H'(£)¢/(¢)
= §Nee 9= g(2) — (1 — Nee ®t=3n))(¢f — oNedet5n)) ¢/ (¢),
and

W,, = (1 — Nee %t=n))g"(¢),
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we have
wt - ETT‘ - f(E)
= 6Nee 2™ g(¢) — (1 — Nee *=))(cj — o Nede 20 —)) ¢/ (¢)
— (1= Nee ?Usn))g" () — f((1 = Nee *=)g(())

= dNee 2= (¢) + (1 — Nee 20— ) {—¢"(2) — ¢ (C)}
+ oNese =) (1 — Nee=3(t=sn))g/(¢)

= §Nee 2= (() + o Nede U=n)(1 — Nee U=5n)) ¢/ (()
+ (1= Nee =) £((¢)) — f((1 = Nee =) ¢(())

= 5Nse_5(t_s")¢(§“) + o Nebe - s")( — Nee 9(t=sn) )¢ (2) + F(— Nee 0(t=sn) ,9(C))-

>1—

Since ¢(¢) — 1 as ( — —o0, there exists ¢, < 0 such that ¢(() n/2 for ¢ < ¢,. Forr—H(t) < (,,
we have

Et - Err - f(w)
= ONee 030 () + o Nede 0t5n) (1 — Nee 0t—5n))) ¢/ (¢

)

= Nee 0 F(9(0)) = F1(6(¢) = 0" Nee ™ =)6())6(C) }

= — Nee %t=50) £((¢)) + o Nede5n) (1 — Nee t=n))g/ (()
n Nee—a(t—sn){f/(¢(<) 0" Nee U= (¢)) + 5}¢>(C)

<0

)

where 6" = 6"(t,z) € (0,1). We note that by shrinking £ we can guarantee that Ne < 1/2 and so
1> ¢(Q) = 0"Ne*U7)g() > 6(¢) — Nee *7)g(¢) > 1 — .

On the other hand for z, <r — H(t) <0 and t > s,, we obtain
W, =W, - fW)

- Ne) 1@ <>>+aNe<5e 8t=3n) (1 — Nee 8¢/ (¢)

+ Nee 300 L ((C) — 0" Nee =9 (0)) +6 } 4(¢)
< — Nee o0 8")0r<nl£11f( )+U<5N€e 0t=sn)(1 — Nee 3t=52))¢/(¢)
—(t—5n) /
+ Nee (O<I£1<alx+nf (s)+ 5)

< S(t—sn) ) o / _ AW
< Nee { Join, f(s) + ogrgffinf (s)+d—0d (1 2) Q,
<0,

by taking o > 0 sufficiently large, where Q; := min¢, <c<o[¢'(¢)| > 0.
We may now apply the comparison principle to conclude that

Wi(t,r) <W(t,r), H(t) < H(t) fort>s, and r € (—ct, H(t)],
and in particular,

R* — Ne(o+1) < G(t)
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for t > s,. By shrinking € we obtain

R*—e < G(t)

for t > s, and n > ns. O
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