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TUTORIAL PROBLEMS SET 1

1. Show that the natural numbers are not a group with respect to addition.

2. Using the definition, prove that for two integers a, b either a < b, or a > b, or

a = b.

3. Show that a nonempty set of negative integers has a largest element.

4. Show that if a and b are positive integers, then there is a smallest positive

integer of the form a− bk, k ∈ Z.

5. Show that a | b implies |a| | |b|.

6. Suppose a and b are positive integers such that a | b. Prove that a ≤ b.

7. If a and b are nonzero integers such that a | b and b | a is it true that a = b?

8. Show that if a, b, c and d are integers with a and c nonzero such that a | b and

c | d, then ac | bd.

9. Use the sieve of Eratosthenes to find all primes less than 200.

10. Find all primes that are the difference of the fourth powers of two integers.

11. Show that no integer of the form n3 + 1 is a prime, other than 2 = 13 + 1.

12. Show that if a, b and c are integers such that (a, b) = 1 and c | (a + b), then

(c, a) = (c, b) = 1.

13. Use the Euclidean algorithm to find each of the following greatest common

divisors.

(a) (45, 75) (b) (102, 222)

14. For each pair of integers in the previous problem, express the greatest common

divisor of the integers as a linear combination of these integers.

15. Find the prime factorizations of each of the following integers.

(a) 36 (b) 39 (c) 100 (d) 289 (e) 222 (f) 9999

16. Show that if a and b are positive integers with a3 | b2, then a | b.

17. Show if p is a prime and a is an integer with p | a2, then p | a.

18. Show that
√

5 is irrational.

19. Find the prime factorization of 33776925.
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20. Using Fermat’s factorization method, factor each of the following positive in-

tegers.

(i) 8051

(ii) 11021

21. For each of the following linear diophantine equations, either find all solutions,

or show that there are no integral solutions.

(a) 2x+ 5y = 11

(b) 21x+ 14y = 147

22. A student returning from Europe changes his French francs and Swiss francs

into US money. If he receives $17.06 and has received 19c for each French

franc and 59c for each Swiss franc, how much of each type of currency did he

exchange?
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TUTORIAL PROBLEMS SET 2

1. Determine whether each of the following pairs of integers are congruent modulo

7.

(a) 1, 15 (d) − 1, 8

(b) 0, 42 (e) − 9, 5

(c) 2, 99 (f) − 1, 699

2. For which positive integers m are each of the following statements true?

(a) 27 ≡ 5 (mod m)

(b) 1000 ≡ 1 (mod m)

(c) 1331 ≡ 0 (mod m)

3. Show that if a is an even integer, then a2 ≡ 0 (mod 4), and if a is an odd

integer, then a2 ≡ 1 (mod 4).

4. Construct a table for addition modulo 6.

5. Construct a table for multiplication modulo 6.

6. Show by mathematical induction that if n is a positive integer then 4n ≡ 1+3n

(mod 9).

7. Find all solutions of the following linear congruences.

(a) 3x ≡ 2 (mod 7),

(b) 6x ≡ 3 (mod 9),

(c) 17x ≡ 14 (mod 21)

8. For which integers c with 0 ≤ c < 30 does the congruence 12x ≡ c (mod 30)

have solutions? When there are solutions, how many incongruent solutions

are there?

9. Find an inverse modulo 17 of each of the following integers.

(a) 4, (b) 5, (c) 7, (d) 16

10. Show that if ā is an inverse of a modulo m and b̄ is an inverse of b modulo m,

then āb̄ is an inverse of ab modulo m.

11. What integers leave a remainder of one when divided by either 2 or 3?

12. Find all the solutions of the following system of linear congruences.

x ≡ 0 (mod 2)

x ≡ 0 (mod 3)

x ≡ 1 (mod 5)

x ≡ 6 (mod 7)
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13. Show that if a, b and c 6= 0 are integers with (a, b) = 1, then there is an

integer n such that (an + b, c) = 1. (Hint: Take n to be the product of all

prime divisors of c that are not divisors of neither a nor b. This is a difficult

problem.)
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TUTORIAL PROBLEMS SET 3

1. Using Wilson’s theorem, find the least positive residue of 8 · 9 · 10 · 11 · 12 · 13·
modulo 7.

2. Using Fermat’s little theorem, find the least positive residue of 21000000 modulo

17.

3. Show that if p is an odd prime, then 2(p− 3)! ≡ −1 (mod p).

4. Find a reduced residue system modulo each of the following integers.

(a) 6 (b) 9 (c) 10

5. Use Euler’s theorem to find the least positive residue of 3100000 modulo 35.

6. Show that aφ(b) + bφ(a) ≡ 1(mod ab), if a and b are relatively prime positive

integers.

7. Determine whether the arithmetic function f(n) =logn is multiplicative. Prove

your answer.

8. Find the value of the Euler phi-function at each of the following integers.

(i) 100 (ii) 2 · 3 · 5 · 7 · 11 · 13.

9. For which positive integers n does φ(3n) = 3φ(n)?

10. Show that a positive n is composite if and only only if φ(n) ≤ n−
√
n.

11. Find the sum of the positive integer divisors of each of the following integers.

(i) 1000 (ii) 2 · 3 · 5 · 7 · 11

12. For which positive integers n is the sum of divisors of n odd?

13. If the ciphertext message produced by RSA cipher with key (e, n) = (5, 2881)

is 0603 2421 1470 2356, what is the plaintext message?
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TUTORIAL PROBLEMS SET 4

1. Determine the following orders.

(a) ord52 (b) ord103

2. Show that the integer 12 has no primitive roots.

3. Let m = an − 1, where a and n are positive integers. Show that ordma = n

and conclude that n | φ(m).

4. Find the number of primitive roots for each of the following primes.

(i) 19 (ii) 47

5. Find the least positive residue of the product of a set of φ(p− 1) incongruent

primitive roots modulo a prime p.

6. Let p be a prime of the form p = 2q + 1, where q is an odd prime. (a) How

many primitive roots does p have?

(b) Show that for any integer a with 1 < a < p − 1, the number p − a2 is

a primitive root modulo p. (Thus in this situation we have a formula that

provides primitive roots explicitely!)

7. Let p be an odd prime. Show that the congruence x4 ≡ −1 (mod p) has a

solution if and only if p is the form 8k + 1.

8. Prove that there are infinitely many primes of the form 8k+1. (Hint: Assume

that p1, p2, · · · pn are the only primes of this form. Let Q = (p1, p2 · · · pn)4 + 1.

Show that Q must have an odd prime factor different than p1, p2 · · · pn, and

then by Exercise 7, necessarily of the form 8k + 1.
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TUTORIAL PROBLEMS SET 5

1. Find all the quadratic residues of each of the following integers.

(a) 3 (c) 13

(b) 5 (d) 19

2. Evaluate the Legendre symbol
(

7
11

)
.

3. Show that if p is an odd prime, then
(
−2
p

)
= 1 if p ≡ 1 or 3 (mod 8),(

−2
p

)
= −1 if p ≡ −1 or −3 (mod 8).

4. Find all solutions of the congruence x2 ≡ 1 (mod 15).

5. Evaluate each of the following Legendre symbols.

(a)
(

3
53

)
, (b)

(
7
79

)
, (c)

(
15
101

)
6. Show that there are infinitely many primes of the form 5k + 4. (Hint: Let

n be a positive integer and form Q = 5(n!)2 − 1. Show that Q has a prime

divisor of the form 5k+ 4 greater than n. To do this, use the law of quadratic

reciprocity to show that if a prime p divides Q, then
(
p
5

)
= 1).

7. Evaluate each of the following Jacobi symbols.

(a)
(

5
21

)
, (b)

(
27
101

)
8. For which positive integers n that are relatively prime to 30 does the Jacobi

symbol
(

30
n

)
equal 1?
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TUTORIAL PROBLEMS SET 6

1. Find all

(a) Primitive Pythagorean triples x, y, z with z ≤ 40.

(b) Pythagorean triples x, y, z with z ≤ 40.

2. Show that if x, y, z is a Pythagorean triple and n is an integer n > 2, then

xn + yn 6= zn.

3. Suppose that m and n are both sums of two squares. Show that mn is also

the sum of two squares.

4. Solve the Diophantine equation x2 + xy + y2 = x2y2.
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NUMBER THEORY SOLUTIONS
TUTORIAL PROBLEMS SET 1.

1. Numbers a with a > 0 have no (additive) inverse in N.

2. a < b is equivalent to b − a = x > 0, a > b is equivalent to a − b = −x > 0,

i.e. x < 0. But x can only be positive (in N and not 0), or negative (in −N
and not 0), or 0.

3. Let S be a nonempty set of negative integers. Consider the set T = {−s : s ∈
S}. Then T is a nonempty set of positive integers and by the well-ordering

principle has a least element −s0 for some s0 ∈ S. Then −s0 ≤ −s for every

s ∈ S. Hence s0 ≥ s for every s ∈ S. This means that s0 is the greatest

element of S.

4. Let a and b be positive integers and let

S = {n : n is a positive integer and n = a− bk for some k ∈ Z}

Now S is nonempty since a + b = a − b(−1) is in S. By the well-ordering

principle, S has a least element.

5. a | b means a 6= 0 and ac = b for some integer c. If a, b are both non-negative

then

|a|c = ac = b = |b|.

If a < 0 and b > 0 then

|a|(−c) = −a(−c) = b = |b|.

If a > 0 and b < 0 then

|a|(−c) = a(−c) = −b = |b|.

and if a < 0 and b < 0 then

|a|c = −ac = −b = |b|.

6. If a | b then ac = b with c ≥ 1. Hence a + (c − 1)a = b where c − 1 ≥ 0. By

definition then a ≤ b.

7. For a 6= 0 we have a | −a and −a | a but a 6= −a. However it is true that a | b
and b | a implies a = b if both numbers are positive, since according to the

previous problem then a ≤ b and b ≤ a.

8. Suppose a | b and c | d with a 6= 0, c 6= 0. Then b = as, d = ct for integers s, t.

Hence bd = acst and therefore ac | bd.
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9. We first write down all the integers from 2 to 200.

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 49 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130

131 132 133 134 135 136 137 138 139 140

141 142 143 144 145 146 147 148 149 150

151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170

171 172 173 174 175 176 177 178 179 180

181 182 183 184 185 186 187 188 189 190

191 192 193 194 195 196 197 198 199 200

We first cross out all multiples of 2 (but not 2 itself). This means that we

cross out all even numbers from 4 onwards, and we could have saved some

effort by just writing down the even numbers in the first place. Then we cross

out all multiples of 3 (but not 3 itself). The numbers removed in this step

are 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117,

123, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195. Then starting

with 25 = 52 we remove multiples of 5. These numbers are 25, 35, 55, 65,

85, 95, 115, 125, 145, 155, 175, 185. Then starting with 49 = 72 we remove

multiples of 7. These numbers are 49, 77, 91, 119, 133, 161. Then starting

with 121 = 112 we remove multiples of 11. These numbers are 121, 143, 187.

Finally, starting with 169 = 132 we remove multiples of 13. The only such

number is 169.

Since 17 >
√

200 we do not need to use any more primes. The integers

remaining are the primes below 200. These are

2, 3, 5, 7, 11, 13, 17, 19

23, 29, 31, 37

41, 43, 47, 53, 59,

61, 67, 71, 73, 79,

83, 89, 97

101, 103, 107, 109, 113

127 131, 137, 139

149, 151, 157

163, 167, 173, 179

181, 191, 193, 197, 199

10. Suppose p is a prime and

p = n4 −m4

= (n2 −m2)(n2 +m2)

= (n−m)(n+m)(n2 +m2)
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for integers m,n, where n > m.

Since p is prime, its only factorization using positive integers is p = 1.p. Hence

p is not prime since it is divisible by the distinct integers n−m,n+m,n2 +m2.

11. Suppose p is prime and p = n3 +1 = (n+1)(n2−n+1). Then either n+1 = 1

and n = 0 or n2− n+ 1 = 1 and n = 0 or 1. The only case when p is prime is

when n = 1 and p = 2.

12. Suppose (a, b) = 1 and c | (a + b). Then sa + tb = 1 for some integers s, t.

Also a+ b = ck. Hence sa+ t(ck − a) = 1 i.e. (s− t)a+ tkc = 1 which shows

that (a, c) = 1. Also s(ck − b) + tb = 1 i.e. (t − s)b + skc = 1 which shows

that (b, c) = 1.

13. (a)

75 = 45 + 30

45 = 30 + 15

30 = 2 · 15

Hence (75, 45) = 15.

(b)

222 = 2 · 102 + 18

102 = 5 · 18 + 12

18 = 12 + 6

12 = 2 · 6

Hence (222, 102) = 6.

14. Referring to the working in the previous question, and working backwards, we

get

(a)

15 = 45− 30

= 45− (75− 45)

= 2 · 45− 75

(b)

6 = 18− 12

= 18− (102− 5 · 18)

= 6 · 18− 102

= 6(222− 2 · 102)− 102

= 6 · 222− 13 · 102
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Hence (−1)75 + 2 · 45 = 1 and 222(6) + (−13)102 = 6.

15. (a) 36 = 22 · 32

(b) 39 = 3 · 13

(c) 100 = 22 · 52

(d) 289 = 172

(e) 222 = 2 · 111 = 2 · 3 · 37

(f) 9999 = 9 · 1111 = 32 · 11 · 101

16. Suppose a3 | b2. Then b2 = ka3 for some integer k. Let p1, p2, · · · pn be the

primes which occur in the factorizations of a, b and k. We can write

k = ps11 p
s2
2 · · · psn

n

a = pt11 p
t2
2 · · · ptnn

b = pu1
1 p

u2
2 · · · pun

n

(Some of the si, ti, ui may be 0). Since b2 = ka3 we have

2ui = si + 3ti for i = 1, · · · , n.

Hence ti = 2
3
ui − si

3
≤ ui. Thus pti | pui for i = 1, · · · , n and it follows that

a | b.

17. Let p | a2. Suppose p - a. Then (a, p) = 1 so there exist integers s and t such

that as+ pt = 1. Then multiplying through by a we get a2s+ apt = a. Since

p | a2, p divides the LHS hence p | a. This is a contradiction. We conclude

that p | a.

18. Suppose
√

5 = a
b
. After cancelling any common factor, we can assume that a

and b are relatively prime integers with b 6= 0. Then 5 = a2

b2
or a2 = 5b2. Since

5 is prime and 5 | a2, it follows that 5 | a. Hence a = 5c for some integer c.

But (5c)2 = 5b2 so 5c2 = b2. Hence 5 | b2 and from this it follows that 5 | b.

Since (a, b) = 1 we know that 5 cannot divide both a and b.

This is a contradiction. We conclude that
√

5 is irrational.

19.

33776925 = 3(11258975) = 3 · 5(2251795)

= 3 · 52(450359) = 3 · 52 · 7(64337)

= 3 · 52 · 72(9191) = 3 · 52 · 73(1313)

= 3 · 52 · 73 · 13 · 101
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20. (i) n = 8051, and 89 <
√
n < 90.

We start with t = 90.

902 − n = 8100− 8051 = 49 = 72

Hence

n = 902 − 72 = (90 + 7)(90− 7)

8051 = 83 · 97

[If t = 90 did not work we would have tried t = 91, t = 92, · · · until a

perfect square arose.]

(ii)
√

11021 = 104.98 so take t = 105.

1052 − 11021 = 4 = 22 so

11021 = 1052 − 22

= 103 · 107

21. (a) 2x+ 5y = 11.

Since (a, b) = (2, 5) = 1 there are infinitely many solutions. We first find

a solution of 2x + 5y = 1. Observe that x = −2, y = 1 is one solution.

Hence on multiplying these terms by 11, we see that one solution of

2x+ 4y = 11 is x0 = −22, y0 = 11. Using the general theory we see that

all solutions are given by x = −22 + 5n, y = 11− 2n.

[Remark: you may have used a different (x0, y0) for your solution].

(b) 21x+ 14y = 147

Here (a, b) = (21, 14) = 7 and 7 | 147 so there are infinitely many so-

lutions. We first solve 21x + 14y = 7. One solution is (1,−1) so one

solution of 21x+ 14y = 147 is x0 = 21 y0 = −21. The general solution is

then x = 21 + 14
7
n = 21 + 2n, y = −21− 21

7
n = −21− 3n.

22. Let x be the number of French francs and y the number of Swiss francs ex-

changed. We have to solve

19x+ 59y = 1706

Since (19, 59) = 1 there are infinitely many solutions, but we only want solu-

tions with x ≥ 0, y ≥ 0. By the Euclidean algorithm, we find that one solution

of 19x+59y = 1 is x = 28, y = −9 so on multiplying by 1706 we see that one so-

lution 19x+59y = 1706 is x0 = 28·17−6 = 47768 and y0 = −9·1706 = −15354.

All solutions are given by x = 47768 + 59n, y = −15354− 19n.

Now x ≥ 0, y ≥ 0 so

−15354− 19n ≥ 0 i.e. n ≤ −15354

19
= −808.1

and 47768 + 59n ≥ 0 i.e. n ≥ −47768

59
= −809.6
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Hence n = −809, and

x = 47768− 59 · 809 = 37

y = −15354 + 19 · 809 = 17

So he had 37 French francs and 17 Swiss francs.
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NUMBER THEORY SOLUTIONS
TUTORIAL PROBLEMS SET 2.

1. (a) 1 ≡ 15 (mod 7) since 7 | (15− 1) = 14

(b) 0 ≡ 42 (mod 7) since 7 | (42− 0) = 42

(c) 2 6≡ 99 (mod 7) since 7 - (99− 2) = 97

(d) −1 6≡ 8 (mod 7) since 7 - (8− (−1) = 9

(e) −9 ≡ 5 (mod 7) since 7 | (5− (−9)) = 14

(f) −1 ≡ 699 (mod 7) since 7 | (699− (−1)) = 700

2. (a) 27 ≡ 5 (mod m) iff m | (27− 5) i.e. m | 22. Hence m = 1, 2, 11 or 22.

(b) 1000 ≡ 1 (mod m) iff m | 999. Now 999 = 33.37 so m can be any of 1, 3,

9, 27, 37, 111, 333, 999.

(c) 1331 ≡ 0 (mod m) iff m | 1331. Now 1331 = 113 so m can be any of 1,

11, 121, 1331.

3. If a is even, then a = 2b for some integer b. Hence a2 = 4b2 and so a2 ≡ 0

(mod 4 ).

If a is an odd integer, then a = 2b+1 for some integer b. Hence a2 = 4b2+4b+1

and so a2 ≡ 1 (mod 4).

4. Addition modulo 6

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

5. Multiplication modulo 6

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

6. Let P (n) be the statement 4n ≡ 1 + 3n (mod 9).
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(a) P (1) is true since it is the statement 4 ≡ 1 + 3 (mod 9).

(b) Suppose P (k) is true i.e. 4k ≡ 1 + 3k (mod 9). Then

4k+1 = 4 · 4k ≡ 4(1 + 3k) (mod 9)

≡ 4 + 12k = 1 + 3(k + 1) + 9k

≡ 1 + 3(k + 1) (mod 9)

Hence P (k + 1) is true.

By induction, P (n) is true for all positive integers n.

7. (a) 3x ≡ 2 (mod 7)

Since (3, 7) = 1 there is a unique solution (mod 7).

Method 1 Since there are only 7 possibilities, we can inspect each one.

Now (modulo 7) 3 · 0 ≡ 0, 3 · 1 ≡ 3, 3 · 2 ≡ 6, 3 · 3 ≡ 2. Hence x = 3 is

one solution. All solutions are given by x ≡ 3 (mod 7).

Method 2 (Euclidean algorithm). We solve 3x + 7y = 2 for integers x

and y (because then 3x ≡ 2 (mod 7) if 3x+ 7y = 2). To do this we first

solve 3x+ 7y = 1. Now 7 = 2 · 3 + 1 or

3(−2) + 1 · 7 = 1.

Multiplying by 2, 3(−4) + 2 · 7 = 2.

Hence x = −4, y = 2 is a solution. The solutions of 3x ≡ 2 (mod 7) are

then x ≡ −4 (mod 7), that is, x ≡ 3 (mod 7).

Method 3 We note by inspection that 5 is an inverse of 3 modulo 7. On

multiplying the congruence by 5 we get

5 · 3x ≡ 5 · 2, (mod 7), that is x ≡ 3 (mod 7).

(b) 6x ≡ 3 (mod 9).

Since (6, 9) = 3 and 3 | 3 there are 3 distinct solutions mod 9. By

inspection, one solution is xo = 2. Adding multiples of 3 to 2 we get the

other solutions 5 and 8. All solutions are given by x ≡ 2, 5, 8 (mod 9).

(c) 17x ≡ 14 (mod 21)

Since (17, 21) = 1 there is a unique solution modulo 21. Solving 17x +

21y = 1 by the Euclidean algorithm we get a solution x = 5, y = −4.

Hence one solution of 17x + 21y = 14 is x = 5 · 14, y = −4 · 14. All

solutions are given by x ≡ 70 (mod 21), that is, x ≡ 7 (mod 21).

8. 12x ≡ c (mod 30)

Since (12, 30) = 6 there are solutions if and only if 6 | c. For 0 ≤ c < 30

the possibilities are c = 0, 6, 12, 18, 24. In each case there are 6 incongruent

solutions modulo 30.



17

9. (a) 4x ≡ 1 (mod 17).

We solve 4x+ 17y = 1 using the Euclidean algorithm.

17 = 4 · 4 + 1 so (−4)4 + 17 = 1

Solution: x ≡ −4 (mod 17)

i.e. x ≡ 13 (mod 17).

(b) 5x ≡ 1 (mod 17). Solution x ≡ 7 (mod 17).

(c) 7x ≡ 1 (mod 17). Solution x ≡ 5 (mod 17).

(Note that 7 and 5 are inverses of each other modulo 17).

(d) 16x ≡ 1 (mod 17). Solution x ≡ 16 (mod 17).

(Note that if p is a prime, then 1 and p− 1 are their own inverses (mod

p)).

10. Suppose aā ≡ 1 (mod m) and bb̄ ≡ 1 (mod m). Then 1 ≡ (aā)(bb̄) = (ab)(āb̄)

(mod m) so āb̄ is an inverse of ab (mod m).

11. We want the integers x which satisfy the system

x ≡ 1 (mod 2)

x ≡ 1 (mod 3)

By the Chinese Remainder Theorem, there is a unique solution modulo 2 · 3,

since (2, 3) = 1. Clearly x = 1 is one solution. The general solution is x ≡ 1

(mod 6).

12.

x ≡ 0 (mod 2)

x ≡ 0 (mod 3)

x ≡ 1 (mod 5)

x ≡ 6 (mod 7)

By the Chinese Remainder Theorem, there is a unique solution (mod 210) since

the moduli 2, 3, 5, 7 are pairwise relatively prime. We construct a solution

using the method in the proof of the Chinese Remainder Theorem.

Let M = 2 · 3 · 5 · 7 = 210 and

M1 =
210

2
= 105 M3 =

210

5
= 42

M2 =
210

3
= 70 M4 =

210

7
= 30
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We have a1 = a2 = 0 a3 = 1 a4 = 6 m1 = 2, m2 = 3, m3 = 5, m4 = 7.

From theory, one solution is

x = a1M1y1 + a2M2y2 + a3M3y3 + a4M4y4

= a3M3y3 + a4M4y4

where 42y3 ≡ 2y3 ≡ 1 (mod 5), 30y4 ≡ 2y4 ≡ 1 (mod 7).

Solving these two congruences, we find y3 = 3 and y4 = 4.

Hence x = 1 · 42 · 3 + 6 · 30 · 4 = 846.

The general solution is x ≡ 846 (mod 210) or x ≡ 6 (mod 210) since 846− 4 ·
210 = 6.

13. Since (a, b) = 1 there is no prime which divides both a and b. Given c consider

its prime factorization. The factors can be classified into three types:

(1) factors which divide a but not b.

(2) factors which divide b but not a.

(3) factors which divide neither a nor b.

Let c = pα1
1 · · · p

αk
k qβ1

1 · · · q
βl

l r
γ1
1 · · · rγm

m where pi | a, qi | b and ri - a, ri - b.

Let n = r1 · · · rm (if there are no factors of the type ri we put n = 1).

We now show (a+ nb, c) = 1.

Since pi | a, we cannot have pi | (a+ nb) (otherwise we would have pi | nb and

since (n, pi) = 1 this would mean pi | b contradicting (a, b) = 1).

Similarly we cannot have qi | (a+ nb) (for then we would have both qi | a and

qi | b, contradicting (a, b) = 1).

Since ri | n we cannot have ri | (a+ nb), (since ri - a).

Hence no prime can divide both a+ nb and c, so

(a+ nb, c) = 1.
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NUMBER THEORY SOLUTIONS
TUTORIAL PROBLEMS SET 3.

1. Note that 7 + n ≡ n (mod 7) so

8 · 9 · 10 · 11 · 12 · 13 ≡ 1 · 2 · 3 · 4 · 5 · 6 (mod 7)

≡ −1 (mod 7) by Wilson’s theorem

≡ 6 (mod 7)

i.e. 6 is the least positive residue mod 7.

2. With p = 17, a = 2 we have p - a. by Fermat’s Little Theorem,

216 ≡ 1 (mod 17).

Also 1000000 = 62500 · 16. Hence 21000000 = (216)62500 ≡ 1 (mod 17).

3. Let p be a prime where p 6= 2. Then by Wilson’s theorem

(p− 1)! ≡ −1 (mod p).

Now

(p− 1)! = (p− 1)(p− 2)(p− 3)!

≡ (−1)(−2)(p− 3)! (mod p)

≡ 2(p− 3)! (mod p)

Hence 2(p− 3)! ≡ −1 (mod p).

4. (a) 1, 5

(b) 1, 2, 4, 5, 7, 8

(c) 1, 3, 7, 9

5. (3, 35) = 1 and φ(35) = φ(5)φ(7) = 4 · 6 = 24.

Hence 324 ≡ 1 (mod 35) by Euler’s Theorem. Now

100000 = 4166 · 24 + 16

so 3100000 = (324)4166316 ≡ 316 (mod 35)

Now

32 ≡ 9 (mod 35)

34 ≡ 81 ≡ 11 mod 35)

38 ≡ 112 = 121 ≡ 16 (mod 35)

316 ≡ 162 ≡ 11 (mod 35)

So 3100000 ≡ 11 (mod 35)
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6. Suppose (a, b) = 1. Then

aφ(b) ≡ 1 (mod b) and bφ(a) ≡ 1 (mod a).

Hence aφ(b) = 1 + k1b, b
φ(a) = 1 + k2a for k1, k2 ∈ Z.

Rearranging and multiplying gives

(aφ(b) − 1)(bφ(a) − 1) = k1k2ab

aφ(b)bφ(a) − bφ(a) − aφ(b) + 1 = k1k2ab

aφ(b) + bφ(a) − 1 = aφ(b)bφ(a) − k1k2ab

≡ 0 (mod ab)

(since aφ(b)bφ(a) contains a factor ab).

7. f(n) = log n is not multiplicative since log(mn) = logm + log n is not equal

to (logm)(log n) in general. A specific counter example is given by m = 2,

n = e. Then log(2e) = log 2 + log e = 1.69 to 2 decimal places. However

(log 2)(log e) = 0.69 to 2 decimal places.

8. (i)

φ(100) = φ(22 · 52) = φ(22)φ(52)

= (22 − 2)(52 − 5) = 40

(ii)

φ(2 · 3 · 5 · 7 · 11 · 13) = φ(2)φ(3)φ(5)φ(7)φ(11)φ(13)

= 1 · 2 · 4 · 6 · 10 · 12 = 5760

9. If (3, n) = 1 then

φ(3n) = φ(3)φ(n) = 2φ(n) 6= 3φ(n).

If (3, n) 6= 1 then 3 | n. Put n = 3αm where (3,m) = 1. Then

φ(3n) = φ(3α+1m) = φ(3α+1)φ(m) = (3α+1 − 3α)φ(m)

3φ(n) = 3φ(3αm) = 3φ(3α)φ(m) = 3(3α − 3α−1)φ(m) = φ(3n).

Hence φ(3n) = 3φ(n) if and only if 3 | n.

10. If n is a prime, n = p say, then φ(n) = p− 1 > p−√p so φ(n) 6≤ n−
√
n.
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If n is composite, we can write out its prime factorization as

n = pa1
1 p

a2
2 · · · p

ak
k where p1 is the smallest prime factor.

Henceφ(n) = n

(
1− 1

p1

)
· · ·

(
1− 1

pk

)
< n

(
1− 1

p1

)
< n

(
1− 1√

n

)
φ(n) <

(
n− n√

n

)
= n−

√
n.

(Note that we have used p1 ≤
√
n). Hence n composite if and only if φ(n) ≤

n−
√
n.

11. (i) 1000 = 8 · 125 = 23 · 53.

Using the formula with p1 = 2, p2 = 5 we have σ(1000) =
p

a1+1
1 −1

p1−1
· p

a2+1
2 −1

p2−1
.

=
24 − 1

2− 1
· 54 − 1

5− 1
= (16− 1)

(
625− 1

5− 1

)
= 15 · 624

4
= 2340.

(ii)

σ(2 · 3 · 5 · 7 · 11) = σ(2)σ(3)σ(5)σ(7)σ(11)

= 3 · 4 · 6 · 8 · 12 = 6912.

12. Let n = pa1
1 p

a2
2 · · · pas

s be the prime factorization of n. Then

σ(n) = σ (pa1
1 )σ (pa2

2 ) · · ·σ (pas
s )

where σ(pa) = 1 + p+ · · ·+ pa.

If p = 2, each pi is even so σ(2a) is odd. If p ≥ 3, each term in the sum

σ(pa) = 1 + p+ · · ·+ pa

is odd. Hence σ(pa) is even if a is odd and σ(pa) is odd if a is even. If any term

σ(pa) is even then σ(n) is even. Hence σ(n) is odd if and only if, whenever p

is an odd prime factor of n, the index a is even. This is the case when n can

be written in the form n = 2km2 where m is an odd integer.

13. We first find the decoding key. Using our list of primes < 200, we find that

the first prime which divides 2881 is 43, and then 2881 = 43 · 67.

Hence φ(2881) = 42 · 66 = 2772. We note that (5, 2772) = 1. Now

2772 = 5 · 554 + 2

5 = 2 · 2 + 1

So 1 = 5− 2 · 2
= 5− 2(2772− 5 · 554)

= 5 · 1109− 2772 · 2
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Since 5·1109 ≡ 1 (mod 2772) we take d = 1109. Also n = 2881 so the decoding

key is (1109, 2881).

(Note that when n is small we are easily able to ‘crack’ the code because it is

easy to factorize n. In practice the code is only secure for n very large). We

now use NUMBERS to perform the reductions modulo 2881

(0603)1109 ≡ 0603 (mod 2881) −→ GD

(2421)1109 ≡ 0024 (mod 2881) −→ AY

(1470)1109 ≡ 1200 (mod 2881) −→ MA

(2356)1109 ≡ 1904 (mod 2881) −→ TE

Hence the message is

GDAYMATE
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NUMBER THEORY SOLUTIONS
TUTORIAL PROBLEMS SET 4.

1. (a)

21 ≡ 2 (mod 5), 23 ≡ 3 (mod 5)

22 ≡ 4 (mod 5), 24 ≡ 1 (mod 5)

Hence ord52 = 4.

(b) Note that φ(10) = φ(2)φ(5) = 4 and the divisors of 4 are 1, 2, 4. The order

of 3 mod 10 has to be one of 1, 2, 4, so we can just test these numbers.

31 ≡ 3 (mod 10), 32 ≡ 9 (mod 10), 34 ≡ 1 (mod 10).

Hence ord103 = 4.

2. φ(12) = 4. Also (a,12 = 1) for a = 1, 5, 7, 11. Now

11 ≡ 1, 52 ≡ 1, 72 ≡ 1, 112 ≡ 1 (mod 12).

In no case does (a, 12) = 1 and ord12a = 4. Hence 12 has no primitive roots.

3. Assume a > 0, n > 0,m > 0. Since (−1)m + a(an−1) = 1 we have (a,m) = 1.

Let t =ordma.

Now an ≡ 1 (mod m) so t | n.

Also at ≡ 1 (mod m) so at − 1 = km for some k ≥ 1.

Hence at − 1 = k(an − 1) ≥ an − 1.

Hence at ≥ an and t ≥ n.

Since t | n and t ≥ n we have t = n.

Finally n | φ(m), since ordma | φ(m).

4. (i) 19 has φ(18) = φ(2)φ(32) = 6 primitive roots.

(ii) 47 has φ(46) = φ(2)φ(23) = 22 primitive roots.

5. Let p be a prime and let r be a primitive root of p. Then the inverse r−1 = rp−2

is a primitive root as well. Thus we can group the primitive roots in pairs of

mutually inverse roots whenever r and r−1 are different from each other.

Let us investigate when r and r−1 can coincide.

r ≡ r−1 (mod p)

r2 ≡ 1 (mod p)
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implies r ≡ ±1 (mod p) which are not primitive roots if p > 3. So for p > 3

the primitve roots group in pairs of mutually inverse primitive roots and their

total product is congruent to 1 modulo p.

If p = 2 there is only one primitve root, namely 1. So the least positive residue

of the product of all primitive roots is again 1 modulo p.

If p = 3 the only primitive root is −1 ≡ 2. In this case the least positive

residue of the product of all primitive roots equals 2.

6. (a) There are φ(φ(p)) primitive roots. We have φ(p) = p − 1 = 2q. Hence

there are φ(2q) = (2− 1)(q − 1) = q − 1 primitive roots.

(b) Let q > 2, p = 2q + 1, 1 < a < p − 1. Note that (p − a2, p) = 1 since

p - a. Now, by Fermat’s Little Theorem (p − a2)p−1 ≡ 1 (mod p). Hence

t = ord(p− a2) divides p− 1 = 2q. Hence t must be one of 1, 2, q, 2q since q is

prime and these numbers are the only divisors of 2q. We show that the first

three possibilities cannot occur.

(i) Suppose t = 1. Then p− a2 ≡ 1 (mod p) and so

a2 ≡ −1 (mod p). Hence

a4 ≡ 1 (mod p).

We claim that ordp a = 4. The order has to divide 4 and it cannot be 2

since if a2 ≡ 1 (mod p) (as well as a2 ≡ −1 mod p) we would have on

subtracting, 2 ≡ 0 mod p which is impossible since p > 2.

Hence ordpa = 4 so 4 | φ(p) = p − 1 i.e. 4 | 2q whence 2 | q which is

impossible since q is prime.

We conclude that the case t = 1 cannot occur.

(ii) If t = 2 we have (p− a2)2 ≡ 1 (mod p) and again a4 ≡ 1 (mod p). Again

we cannot have a2 ≡ 1 (mod p) for this would mean

p | (a2 − 1) = (a− 1)(a+ 1)

which would give a ≡ 1 (mod p) or a ≡ −1 (mod p). Both of these

possibilities are ruled out by the choice of a.

The rest of the argument is the same as for (i).

(iii) If t = q we have (p − a2)q ≡ 1 (mod p). Since q is odd, this means

−a2q ≡ 1 (mod p). But a2q ≡ 1 (mod p) so we get 2 ≡ 0 (mod p) which

again is an impossibility.

We conclude that t = 2q = p− 1 and therefore p− a2 is a primitive root.

7. Suppose p is an odd prime of the form p = 8k + 1. Then 8 | (p − 1), that

is, 8 | φ(p). From theory, there is an element x of order 8 modulo p. Hence
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p | (x8 − 1), that is, p | (x4 − 1)(x4 + 1) and either p | (x4 − 1) or p | (x4 + 1).

Since x has order 8, we cannot have p | (x4 − 1). Hence p | (x4 + 1) which

means that

x4 ≡ −1 (mod p).

Conversely suppose there is a solution of x4 ≡ −1 (mod p). We note that

(x, p) = 1. Now

x8 ≡ 1 (mod p)

so 8 | φ(p) = p− 1 i.e. p = 8k + 1 for some k ∈ Z.

8. Suppose that p1, p2, · · · , pn are the only primes of the form 8k + 1. Let

Q = (p1p2 · · · pn)4 + 1.

Since (8k1 + 1)(8k2 + 1) = 64k1k2 + 8k1 + 8k2 + 1

= 8[8k1k2 + k1 + k2] + 1

we see that p1p2 · · · pn is of the form 8m+ 1 and hence (p1p2 · · · pn)4 is also of

the form 8m+ 1. Hence Q is of the form Q = 8m+ 1 + 1 = 2(4m+ 1).

Since 4m + 1 is odd, we see that Q must have an odd prime factor p. Since

pi - Q it follows that p cannot be any of p1, p2, · · · , pn. Now p | Q implies that

(p1p2 · · · pn)4 ≡ −1 (mod p).

By Problem 7, p must be of the form 8k+ 1. This contradicts the assumption

that there are only finitely many primes of the form 8k+ 1. We conclude that

there are infinitely many primes of the form 8k + 1. �
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NUMBER THEORY SOLUTIONS

TUTORIAL PROBLEMS SET 5.

1. (a)

12 ≡ 1 (mod 3)

22 ≡ 1 (mod 3)

Hence 1 is the only quadratic residue of 3.

(b)

12 ≡ 42 ≡ 1 (mod 5)

22 ≡ 32 ≡ 4 (mod 5)

Hence 1 and 4 are the only quadratic residues of 5.

(c)

12 ≡ 122 ≡ 1 (mod 13)

22 ≡ 112 ≡ 4 (mod 13)

32 ≡ 102 ≡ 9 (mod 13)

42 ≡ 92 ≡ 3 (mod 13)

52 ≡ 82 ≡ 12 (mod 13)

62 ≡ 72 ≡ 10 (mod 13)

Hence 1, 3, 4, 9, 10, 12 are the quadratic residues of 13.

(d)

12 ≡ 182 ≡ 1 (mod 19)

22 ≡ 172 ≡ 4 (mod 19)

32 ≡ 162 ≡ 9 (mod 19)

42 ≡ 152 ≡ 16 (mod 19)

52 ≡ 142 ≡ 6 (mod 19)

62 ≡ 132 ≡ 17 (mod 19)

72 ≡ 122 ≡ 11 (mod 19)

82 ≡ 112 ≡ 7 (mod 19)

92 ≡ 102 ≡ 5 (mod 19)

Hence 1, 4, 5, 6, 7, 9, 11, 16, 17 are the quadratic residues of 19.
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2. Using Eulers’ Criterion we get(
7

11

)
≡ 7

11−1
2 = 75 (mod 11)

= 7 · 49 · 49

≡ 7 · 5 · 5 = 7 · 25 (mod 11)

≡ 7 · 3 (mod 11)

≡ −1 (mod 11)

Hence

(
7

11

)
= −1.

However it is better to use quadratic reciprocity for evaluating these symbols,

as follows.

Since 7 ≡ 3 (mod 4) and 11 ≡ 3 (mod 4), we have(
7

11

)
= −

(
11

7

)
= −

(
4

7

)
= −

(
22

7

)
= −1.

3.

(
−2

p

)
=

(
−1

p

) (
2

p

)
If p ≡ 1 (mod 8) then p ≡ 1 (mod 4) and

(
−2

p

)
= (1)(1) = 1.

If p ≡ 3 (mod 8) then p ≡ 3 (mod 4) and

(
−2

p

)
= (−1)(−1) = 1.

If p ≡ −1 (mod 8) then p ≡ 3 (mod 4) and

(
−2

p

)
= (−1)(1) = −1.

If p ≡ −3 (mod 8) then p ≡ 1 (mod 4) and

(
−2

p

)
= (1)(−1) = −1.

4.

12 ≡ 142 ≡ 1 (mod 15)

22 ≡ 132 ≡ 4 (mod 15)

32 ≡ 122 ≡ 9 (mod 15)

42 ≡ 112 ≡ 1 (mod 15)

52 ≡ 102 ≡ 10 (mod 15)

62 ≡ 92 ≡ 6 (mod 15)

72 ≡ 82 ≡ 4 (mod 15)

The solutions are x ≡ 1, 4, 11, 14 (mod 15).
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5. (a) Since 3 ≡ 3 (mod 4) and 53 ≡ 1 (mod 4), using quadratic reciprocity we

get, (
3

53

)
=

(
53

3

)
=

(
2

3

)
= −1

(b) Since 7 ≡ 3 (mod 4) and 79 ≡ 3 (mod 4),(
7

79

)
= −

(
79

7

)
= −

(
2

7

)
= −1

since 7 ≡ −1 (mod 8).

(c) 15 = 3 · 5 so (
15

101

)
=

(
3

101

) (
5

101

)
.

Now

(
3

101

)
=

(
101

3

)
and

(
5

101

)
=

(
101

5

)
since 101 ≡ 1 (mod 4).

Hence (
15

101

)
=

(
101

3

) (
101

5

)
=

(
2

3

) (
1

5

)
=

(
2

3

)
= −1.

6. Let n > 5 be a positive integer and let Q = 5(n!)2 − 1. Consider the prime

factors of Q.

If p ≤ n then p | 5(n!)2 and it follows that p - Q. Hence all the prime factors

of Q are greater than n.

Suppose p | Q. Then

5(n!)2 = 1 + kp (k ∈ N),

≡ 1 (mod p).

Now (n!, p) = 1 so n! has an inverse u modulo p. Multiplying the last congru-

ence by u2 we get

5 ≡ u2 (mod p).

Hence the congruence x2 ≡ 5 (mod p) has a solution and this means that(
5

p

)
= 1. Hence

(p
5

)
= 1 by the law of quadratic reciprocity and using 5 ≡ 1

(mod 4). Hence the congruence x2 ≡ p (mod 5) has a solution and since the

quadratic residues of 5 are 1 and 4 we conclude that either p ≡ 1 (mod 5) or

p ≡ 4 (mod 5).

Next we show that all the prime factors cannot be of the form p ≡ 1 (mod 5).

This follows easily from the fact that if pi ≡ 1 (mod 4) for i = 1, · · · , s then

p1p2 · · · ps ≡ 1 (mod 5), and Q itself would have to be of the form Q ≡ 1 (mod

5) which is false.
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This given n, there is a prime of the form p = 5k + 4 which divides Q and is

therefore greater than n. It follows that there are infinitely many primes of

the form 5k + 4.

7. (a) (
5

21

)
=

(
5

3 · 7

)
=

(
5

3

) (
5

7

)
=

(
2

3

) (
7

5

)
=

(
2

3

) (
2

5

)
= (−1)(−1) = 1.

(b) Since 101 is prime, the Jacobi symbol

(
27

101

)
coincides with the Legendre

symbol. (
27

101

)
=

(
33

101

)
=

(
3

101

)3

=

(
3

101

)
=

(
101

3

)
since 101 ≡ 1 (mod 4)

=

(
2

3

)
= −1.

8.

(
30

n

)
=

(
2

n

) (
3

n

) (
5

n

)
Hence

(
30

n

)
= 1 iff one of the three terms on the RHS is 1 and the other two

are either both positive or both negative.(
2

n

)
= (−1)

n2−1
8 =

{
1 if n ≡ ±1 (mod 8)

−1 if n ≡ ±3 (mod 8)(
5

n

)
=

(n
5

)
since 5 ≡ 1 (mod 4)

and

(
3

n

)
=

{ (
n
3

)
if n ≡ 1 (mod 4)

−
(
n
3

)
if n ≡ 3 (mod 4).

Modulo 3, the quadratic residues are 1.

Modulo 5, the quadratic residues are 1, 4.

The solutions will be determined modulo 120 = 8 · 3 · 5.

Case I n ≡ 1 (mod 8). The solutions lie among 1, 9, 17, 25, 33, 41, 49, 57,

65, 73, 81, 89, 97, 105, 113.

(
2

n

)
= 1,

(
3

n

)
=

(n
3

) (
5

n

)
=

(n
5

)
.
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These conditions are satisfied when either n ≡ 1 (mod 3) and n ≡ 1, 4 (mod

5), or n ≡ 2 (mod 3) and n = 2, 3 (mod 5).

Checking in the above list we find the solutions

Condition Solution

n ≡ 1 (mod 8), n ≡ 1 (mod 3), n ≡ 1 (mod 5) 1

n ≡ 1 (mod 8), n ≡ 1 (mod 3), n ≡ 4 (mod 5) 49

n ≡ 1 (mod 8), n ≡ 2 (mod 3), n ≡ 2 (mod 5) 17

n ≡ 1 (mod 8), n ≡ 2 (mod 3), n ≡ 3 (mod 5) 113

Note that to get each solution we have to solve a system of linear congruences

which could also be done using the Chinese Remainder Theorem.

Case II n ≡ (−1) (mod 8). In this case

(
3

n

)
= −

(n
3

)
As above we get another 4 solutions

71, 119, 7, 103

Case III n ≡ 3 (mod 8). In this case

(
3

n

)
= −

(n
3

)
and

(
2

n

)
= −1 and we

get the solutions

19, 91, 107, 83

Case IV n ≡ −3 (mod 8). Then

(
2

n

)
= −1 and

(
3

n

)
=

(n
3

)
and we get

the solutions

37, 13, 101, 29.



31

NUMBER THEORY SOLUTIONS

TUTORIAL PROBLEMS SET 6.

1. (a) Let

x = m2 − n2

y = 2mn

z = m2 + n2

where m > n, (m,n) = 1, and one of m, n is odd, the other even. For

z ≤ 40 we must have m2 < 40 so m ≤ 6. The solutions are listed below.

m n x y z

2 1 3 4 5

3 2 5 12 13

4 1 15 8 17

4 3 7 24 25

5 2 21 20 29

5 4 9 40 41

6 1 35 12 37

(b) We get all other Pythagorean triples by taking integral multiples of prim-

itive triples. For z ≤ 40 the additional triples are:

x y z

6 8 10

9 12 15

12 16 20

15 20 25

18 24 30

21 28 35

24 32 40

10 24 26

15 36 39

30 16 34

2. Suppose that n > 2 and that both

x2 + y2 = z2

and xn + yn = zn.

Note that x < z and y < z since x 6= 0, y 6= 0. Then

xn + yn = x2xn−2 + y2yn−2

< x2zn−2 + y2zn−2

= (x2 + y2)zn−2

= z2zn−2 = zn
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This is a contradiction so we cannot have both x2 + y2 = z2 and xn + yn = zn.

3. From m = a2 + b2 and n = c2 + d2 we get

mn = a2c2 + a2d2 + b2c2 + b2d2 = (ac+ bd)2 + (ad− bc)2.

4. The equation can be rewitten as (x + y)2 = x2y2 + xy. Substitute x + y = a

and xy = b (If x, y are integers then so are a, b). Then a2 = b2 + b = b(b+ 1).

Now substitute b = c+ 1
2
. Then a2 = (c+ 1

2
)(c− 1

2
). It follows

c2 − a2 = (c− a)(c+ a) =
1

4
.

Now c − a = α
2

and c + a = β
2

where α, β are integers. The equation above

is only possible if α and β are both equal to ±1. Then a = 0 and c = ±1
2
.

Hence b = 0 or b = 1. Then x = −y and x is either 0 or ±1. The solutions

are {(0, 0), (1,−1), (−1, 1)}.


