ON CONDENSATE OF SOLUTIONS FOR THE
CHERN-SIMONS-HIGGS EQUATION

CHANG-SHOU LIN AND SHUSEN YAN

Abstract. This is the first part of our comprehensive study on the structure of doubly periodic solutions for the Chern-Simons-Higgs equation with a small coupling constant. We first classify the bubbling type of the blow-up point according to the limit equations. Assuming that all the blow-up points are away from the vortex points, we prove the non-coexistence of different bubbling types in a sequence of bubbling solutions. Secondly, for the CS type bubbling solutions, we obtain an existence result without the condition on the blow-up set as in [4]. This seems to be the first general existence result of the multi-bubbling CS type solutions which is obtained under nearly necessary conditions. Necessary and sufficient conditions are also discussed for the existence of bubbling solutions blowing up at vortex points.

1. Introduction

In the last decade, various Chern-Simons theories have been studied for their applications in different physics models, such as the relativistic Chern-Simons theory of superconductivity [12], Lozano-Marqueés-Moreno-Schaposnik model of bosonic sector of $N = 2$ super-symmetric Chern-Simons-Higgs theory [30], and Gudnason model of $N = 2$ super-symmetric Yang-Mills-Chern-Simons-Higgs theory [13], just to name a few. Those Chern-Simons systems, after a suitable ansate, can be reduced to systems of elliptic partial differential equations with exponential nonlinearities. Although these nonlinear differential equations pose many analytically challenging problems and attracts lots of attentions, there are still many problems unsolved. For the recently mathematical developments, we refer the readers to [1, 2, 6, 7, 8, 9, 14, 15, 16, 17, 19, 23, 24, 28, 29, 31, 34, 33, 38] and the references therein.

Among those non-trivial equations, the simplest one is the Abelian Chern-Simons-Higgs model proposed by Jackiw-Weinberg [20] and Hong-Kim-Pac [18]. The Chern-Simons-Higgs Lagrangian density is given by

$$
\mathcal{L} = \frac{\kappa}{4} \epsilon_{\mu\nu}\phi F_{\mu\nu} A_\rho + D_\mu \phi \overline{D^\mu} \phi - \frac{1}{\kappa^2} |\phi|^2 (1 - |\phi|^2)^2,
$$

where $A_\mu, \mu = 0, 1, 2,$ is the gauge field in \mathbb{R}^3, $F_{\mu\nu} = \frac{\partial}{\partial x^\nu} A_\mu - \frac{\partial}{\partial x^\mu} A_\nu$ is the curvature tensor, ϕ is the Higgs field in \mathbb{R}^3, $D_\mu = \frac{\partial}{\partial x^\mu} - i A_\mu$, $i = \sqrt{-1}$, is the gauge covariant derivative associated with A_μ, $\epsilon_{\mu\nu\rho}$ is the skew symmetric tensor with $\epsilon_{012} = 0$ and the constant κ is the coupling constant. When the energy for the pair (ϕ, A) is saturated, in [20] and [18], the authors independently derived the following Bogomol’nyi type equations...
\[(D_1 + iD_2)\phi = 0, \quad (1.1)\]

and

\[F_{12} + \frac{2}{\kappa^2} |\phi|^2 (1 - |\phi|^2)^2 = 0. \quad (1.2)\]

Following Jaffe and Taubes [21], we can reduce (1.1) and (1.2) to a single elliptic equations as follows. Let \(p_1, \ldots, p_N\) be a set of points in \(\mathbb{R}^2\). Introduce a real value function \(u\) and \(\theta\) by

\[
\phi = e^{\frac{1}{2} u + i\theta}, \quad \theta = 2 \sum_{j=1}^{N} \text{arg}(z - p_j), \quad z = x + ix_2 \in \mathbb{C}.
\]

Then \(u\) satisfies

\[
\Delta u + \frac{4}{\kappa^2} e^u (1 - e^u) = 4\pi \sum_{j=1}^{N} \delta_{p_j}, \quad \text{in } \mathbb{R}^2, \quad (1.3)
\]

where \(\delta_p(x)\) is the Dirac measure at \(p\). The readers can find the details of the derivation of the above equations in [37, 39] and some recent developments of the related subjects in [3, 10, 25, 32, 36, 37].

Starting with this paper, we will initiate a comprehensive study of the structure of doubly periodic solutions for (1.3). So we study the following equation

\[
\left\{
\begin{aligned}
\Delta u + \frac{1}{\varepsilon^2} e^u (1 - e^u) &= 4\pi \sum_{j=1}^{N} \delta_{p_j}, \\
u &\text{ is doubly periodic on } \partial \Omega,
\end{aligned}
\right. \quad (1.4)
\]

where \(\varepsilon = \frac{\kappa}{2} > 0\) is a small parameter, and \(\Omega\) is a flat torus in \(\mathbb{R}^2\).

Problem (1.4) involves Dirac measures. To eliminate them from the equation, we introduce the Green function \(G(x, p)\) of \(-\Delta\) in \(\Omega\) with singularity at \(p\), subject to the doubly periodic boundary condition. That is, \(G(x, p)\) satisfies

\[
\left\{
\begin{aligned}
-\Delta G(x, p) &= \delta_p - \frac{1}{|\Omega|}, \\
\int_{\Omega} G(x, p) \, dx &= 0, \\
G(x, p) &\text{ is doubly periodic on } \partial \Omega,
\end{aligned}
\right.
\]

where \(|\Omega|\) is the measure of \(\Omega\). Let

\[
u_0(x) = -4\pi \sum_{j=1}^{N} G(x, p_j). \quad (1.5)
\]

Using this function \(\nu_0\), (1.4) is reduced to solving the following problem.

\[
\left\{
\begin{aligned}
\Delta u + \frac{1}{\varepsilon^2} e^{\nu + \nu_0} (1 - e^{\nu + \nu_0}) &= \frac{4N\pi}{|\Omega|}, \\
u &\text{ is doubly periodic on } \partial \Omega.
\end{aligned}
\right. \quad (1.6)
\]

Using the maximum principle, we can find that any solution \(u_\varepsilon\) of (1.6) satisfies \(u_\varepsilon + \nu_0 < 0\). On the other hand, integrating (1.6) leads to \(\int_{\Omega} e^{\nu + \nu_0} (1 - e^{\nu + \nu_0}) = \frac{4N\pi\varepsilon^2}{|\Omega|}\), which implies either \(u_\varepsilon \to 0\), or \(u_\varepsilon \to -\infty\) almost everywhere in \(\Omega\) as \(\varepsilon \to 0\). In [11], Choe and Kim
proved that (1.6) may have a sequence of solution \(u_\varepsilon \), satisfying the following conditions: there is a finite set \(\{ x_{\varepsilon,1}, \cdots, x_{\varepsilon,k} \} \), \(x_{\varepsilon,j} \in \Omega, \ j = 1, \cdots, k \), such that as \(\varepsilon \to 0 \),

\[
 u_\varepsilon(x_{\varepsilon,j}) + \ln \frac{1}{\varepsilon^2} \to +\infty, \quad \forall \ j = 1, \cdots, k,
\]

and

\[
 u_\varepsilon(x) + \ln \frac{1}{\varepsilon^2} \to -\infty, \quad \text{uniformly on any compact subset of } \Omega \setminus \{ q_1, \cdots, q_k \},
\]

where \(q_j = \lim_{n \to +\infty} x_{\varepsilon,j} \). Moreover,

\[
 \frac{1}{\varepsilon^2} e^{u_\varepsilon+u_0} (1 - e^{u_\varepsilon+u_0}) \to \sum_{j=1}^{k} M_j \delta_{q_j}, \quad M_j \geq 8\pi,
\]

in the sense of measure.

Solution satisfying (1.7) and (1.8) is called a blow up solution, or a bubbling solution, while \(q_j \) is called a blow-up point of this bubbling solution. Let us define the local strength of a bubbling solution \(u_\varepsilon \) at \(q_i \) as follows:

\[
 M_{\varepsilon,i} = \frac{1}{\varepsilon^2} \int_{B_\delta(x_{\varepsilon,i})} e^{u_\varepsilon+u_0} (1 - e^{u_\varepsilon+u_0}), \quad i = 1, \cdots, k,
\]

where \(x_{\varepsilon,i} \in B_\delta(q_i) \) is a point such that \(u_\varepsilon(x_{\varepsilon,i}) = \max_{y \in B_\delta(q_i)} u_\varepsilon(y) \). At each blow-up point \(q_j \), after a suitable scaling, the solutions converge to an entire solution \(u \) to either

\[
 \Delta u + |x|^{2m} e^u = 0, \quad \int_{\mathbb{R}^2} |x|^{2m} e^u = M_j =: \lim_{\varepsilon \to 0} M_{\varepsilon,j},
\]

or

\[
 \Delta u + |x|^{2m} e^u (1 - |x|^{2m} e^u) = 0, \quad \int_{\mathbb{R}^2} |x|^{2m} e^u (1 - |x|^{2m} e^u) = M_j =: \lim_{\varepsilon \to 0} M_{\varepsilon,j},
\]

where \(m = 0 \) if \(q_i \) is not a vortex point, while \(m = \# \{ p_j : p_j = q_i \} \) if \(q_i \) is a vortex point. So we find that the type of the blow-up point \(q_i \) is determined by the local strength \(M_{\varepsilon,i} \).

A blow-up point \(q_j \) is called the mean field type, or MF type, if the limit equation is (1.10), while it is called Chern-Simons type, or CS type, if the limit equation is (1.11). All the entire solutions of (1.10) have been classified in [35]. But for \(m \neq 0 \), (1.10) has non-radial solutions and this phenomenon makes the bubbling behaviors of solutions for (1.6) as \(\varepsilon \to 0 \) more complicated. For (1.11), however, the classification has been done only for \(m = 0 \), and for radial solution if \(m > 0 \). Indeed, for any solution \(u \) of (1.11) with \(e^u \in L^1(\mathbb{R}^2) \), the question of radial symmetry has remained an open problem for many years.

In this paper, we will consider the following issues:
Do the MF type blow-up point and the CS type blow-up point co-exist in a sequence of bubbling solutions?

What are the necessary and sufficient conditions for the set \(\{q_1, \ldots, q_k\} \) to be a blow-up set of a sequence of bubbling solutions?

In a forthcoming of paper, we will consider another two important issues.

Local uniqueness: Suppose \(u_{n,1}, i = 1, 2 \), are two sequence of blow-up solutions and they blow up at the same set \(\{q_1, \ldots, q_k\} \). Is \(u_{n,1} = u_{n,2} \) for large \(n \)?

The exact number of solutions for (1.6).

For problem (i), we have the following result.

Theorem 1.1. Suppose that \(u_\varepsilon \) is a sequence of bubbling solutions for (1.6), whose blow-up set is \(\{q_1, \ldots, q_k\} \) as \(\varepsilon \to 0 \). If \(q_i \notin \{p_1, \ldots, p_N\}, i = 1, \ldots, k \), then \(M_{\varepsilon,i} = \frac{4\pi N}{k} + o(1) \), \(i = 1, \ldots, k \). Moreover, all the \(q_i \) are of mean field type if \(N = 2k \), while all the \(q_j \) are of Chern-Simon type if \(N > 2k \).

The key step in the proof of Theorem 1.1 is to prove that each blow-up point \(q_j \) of \(u_\varepsilon \), \(j = 1, \ldots, k \), must be simple. Since the type of the bubble at \(q_j \) is determined by the local strength \(M_{\varepsilon,j} \), a consequence of the simple blow-up is that the local strength at each \(q_j \) must be compatible, which implies the non-coexistence of different type of bubbles.

Now we discuss the existence of CS type multi-bubbling solutions for (1.6). Set \(q = (q_1, \ldots, q_k), q_j \in \Omega \). We assume that \(q_j \notin \{p_1, \ldots, p_N\}, j = 1, \ldots, k \). Following [6, 7], we can prove by using a Pohozaev identity that if \(\{q_1, \ldots, q_k\} \) is a blow-up set of a sequence of bubbling solutions, then \(q \) must satisfy

\[
\frac{\partial u_0(x)}{\partial x_h} \bigg|_{x=q_j} = - \sum_{i \neq j, 1 \leq i \leq k} M_i \frac{\partial G(q_i, x)}{\partial x_h} \bigg|_{x=q_j}, \quad j = 1, \ldots, k,
\]

where \(M_i = \lim_{\varepsilon \to 0} M_{\varepsilon,i} \). See Lemma 2.2. By Theorem 1.1, \(q \) must satisfy

\[
D_h u_0(q_j) + \frac{4\pi N}{k} \sum_{i \neq j, 1 \leq i \leq k} D_{q_i,h} G(q_i, q_j) = 0 \quad (1.12)
\]

for \(h = 1, 2; \ j = 1, \ldots, k \). It is easy to check that any \(q \) satisfying (1.12) must be a critical point of the function \(G_k(x) \) defined as follows.

\[
G_k(x) = \frac{2\pi N}{k} \sum_{i \neq j, 1 \leq i, j \leq k} G(x_i, x_j) + \sum_{j=1}^{k} u_0(x_j), \quad x = (x_1, \ldots, x_k), \quad x_j \in \Omega. \quad (1.13)
\]

We remark that (1.12) holds no matter whether the blow-up point is MF type, or CS type.

Our second result in this paper is the sufficient counterpart of the above result for the CS type bubbling solutions.
Theorem 1.2. Suppose that $N > 2k$. If q satisfies (1.12), $\text{deg}(DG_k(q), 0) \neq 0$ and $q_j \notin \{p_1, \cdots, p_N\}$, then for $\varepsilon > 0$ small, (1.6) has a CS type bubbling solution u_ε, blowing up at $\{q_1, \cdots, q_k\}$ as $\varepsilon \to 0$.

In view of Theorem 1.1 and (1.12), all the conditions in Theorem 1.2, except the non-degeneracy condition $\text{deg}(DG_k(q), 0) \neq 0$, are necessary. If $k = 1$, Theorem 1.2 was proved in [27]. By Theorem 1.1, the strength of the bubble at q_j is close to $4\pi N k$. In the construction of the bubbling solutions in Theorem 1.2, if we take the strength of the bubble at q_j exactly $4\pi N k$ as in [4], then the following condition needs to be imposed:

$$u_0(q_j) + \frac{4\pi}{k} \left(\gamma(q_j, q_j) + \sum_{i \neq j, 1 \leq i \leq k} G(q_i, q_j)\right)$$

is independent of j, \hspace{1cm} (1.14)

where $\gamma(y, x)$ is the regular part of the Green function $G(y, x)$. See [4] for a similar construction of bubbling solutions in \mathbb{R}^2. Let us point out that (1.14) comes from the uniqueness of entire solutions of the limit problem in \mathbb{R}^2. It seems that (1.12) and (1.14) can not hold true simultaneously for most of the configuration $\{p_1, \cdots, p_N\}$. The question whether (1.14) is really needed for the existence of doubly periodic bubbling solutions has puzzled us for long time. We realize now that fortunately (1.11) has a solution for all $M_j > 8\pi$ if $m = 0$. Therefore we can choose the strength $M_{\varepsilon,i}$ at each point q_i suitably close to $\frac{4\pi N k}{k}$ so that the balance condition away from the blow-up set in the construction of an approximate solution for (1.6) can be matched and thus obtain the existence result without condition (1.14). Let us point out that by doing so, the condition “$\sum_{k \neq j} \ln |p_j - p_k|$ is independent of j” used in [4] is not needed to obtain the existence result there. In fact, the following result can be proved by using the same method as in Section 3.

Theorem 1.3. For any $p_i \in \{p_1, \cdots, p_N\}$, $j = 1, \cdots, k$, such that the weight of each p_{ij} is one, (1.3) has a non-topological solution u_κ in \mathbb{R}^2 for $\kappa > 0$ small, satisfying

$$\frac{4}{\kappa^2} e^{u_\kappa}(1 - e^{u_\kappa}) \to \frac{\beta}{k} \sum_{j=1}^k \delta_{p_{ij}}$$

as $\kappa \to 0$ provided $\beta > 16\pi k$.

The readers can compare Theorem 1.3 with Theorem 3.2 obtained in section 3.

In this paper, we also discuss the necessary and sufficient conditions for the existence of bubbling solutions whose blow-up set contains vortex points. Let

$$q_i \in \{p_1, \cdots, p_N\}, \hspace{0.5cm} i = 1, \cdots, t, \hspace{0.5cm} q_j \notin \{p_1, \cdots, p_N\}, \hspace{0.5cm} j = t + 1, \cdots, k,$$

where $0 < t \leq k$ is an integer. Define

$$q_i \in \{p_1, \cdots, p_N\}, \hspace{0.5cm} i = 1, \cdots, t, \hspace{0.5cm} q_j \notin \{p_1, \cdots, p_N\}, \hspace{0.5cm} j = t + 1, \cdots, k,$$
Then, we have

Theorem 1.4. Suppose the weight \(m_{i} \) of the vortex \(q_{i} \) is one for \(i = 1, \ldots, t \), and \(\lim_{\varepsilon \to 0} M_{\varepsilon,i} > 16\pi, \ i = 1, \ldots, t \). Let \(u_{\varepsilon} \) be a solution of (1.6) whose blow-up set is given in (1.15). Then \(M_{\varepsilon,i} = \frac{4\pi N + 4\pi(k-t)}{k} + o(1), \ i = 1, \ldots, t \), each \(q_{j} \) is CS type. Moreover, \(DG_{k}^{*}(q) = 0 \) at \((q_{t+1}, \ldots, q_{k}) \). Conversely, if \(q = (q_{t+1}, \ldots, q_{k}) \) satisfies \(DG_{k}^{*}(q) = 0 \), \(\deg(DG_{k}^{*}(q), 0) \neq 0 \) and \(k < \frac{1}{3}(N-t) \), then for \(\varepsilon > 0 \) small, (1.6) has a solution \(u_{\varepsilon} \) whose blow-up set is given by (1.15) as \(\varepsilon \to 0 \).

When a blow-up point \(q_{j} \) is a vortex point, the asymptotic behavior of \(u_{\varepsilon} \) as \(\varepsilon \to 0 \) near \(q_{j} \) becomes more complicated. For example, the simple blow-up property of the solution near a blow-up point may not hold true in general. This complication will cause the problem of non-coexistence of bubbles more difficult to study. Theorem 1.4 only gives a result for the non-coexistence of bubbles if the weight of the vortex point is one. On the other hand, in the construction of bubbling solutions whose blow-up set contains some vortex points, what we really need is the non-degeneracy of the radial solution of the corresponding limit problem at vortex point. This non-degeneracy condition is proved in [4] if the weight of the vortex point is one. But it is still an open problem if the weight of the vortex point is bigger than one.

This paper is organized as follows. In section 2, we will discuss the simple blow-up problem for the bubbling solutions and thus prove Theorem 1.1 and the necessary part of Theorem 1.4. Theorem 1.2 and the sufficient part of Theorem 1.4 are proved in section 3.

2. NON-COESENCE OF DIFFERENT BUBBLES

In the section, we will study the non-coexistence of different bubbles for the bubbling solutions \(u_{\varepsilon} \) of (1.6), and prove Theorem 1.1 and the necessary part in Theorems 1.4.

Lemma 2.1. Let \(u_{\varepsilon} \) be a bubbling solution of (1.6) satisfying (1.7) and (1.8). Then for any small \(\theta > 0 \),

\[
\frac{1}{|\Omega|} \int_{\Omega} u_{\varepsilon} \to \sum_{i=1}^{k} M_{i} G(q_{i}, x), \quad \text{in } C^{1}(\Omega \setminus \bigcup_{i=1}^{k} B_{\theta}(q_{i})),
\]

as \(\varepsilon \to 0 \), where \(M_{i} = \lim_{\varepsilon \to 0} M_{\varepsilon,i} \).

Proof. From (1.8), we find that for any \(\theta \in (0, \delta) \),

\[
\frac{1}{\varepsilon^{2}} e^{u_{\varepsilon} + u_{0}} (1 - e^{u_{\varepsilon} + u_{0}}) = o(1), \quad \text{in } \Omega \setminus \bigcup_{i=1}^{k} B_{\theta}(q_{i}).
\]
So,
\[
\frac{1}{\varepsilon^2} \int_{B_{\theta}(q_i)} e^{u_{\varepsilon} + u_0} (1 - e^{u_{\varepsilon} + u_0}) = M_{\varepsilon, i} + o(1) = M_i + o(1), \quad i = 1, \ldots, k. \tag{2.3}
\]

As a result,
\[
u_{\varepsilon}(x) - \frac{1}{|\Omega|} \int_{\Omega} u_{\varepsilon} = \frac{1}{\varepsilon^2} \int_{\Omega} G(y, x) e^{u_{\varepsilon} + u_0} (1 - e^{u_{\varepsilon} + u_0}) \, dy
= \sum_{i=1}^{k} M_i G(q_i, x) + \frac{1}{\varepsilon^2} \sum_{i=1}^{k} \int_{B_{\theta}(q_i)} (G(y, x) - G(q_i, x)) e^{u_{\varepsilon} + u_0} (1 - e^{u_{\varepsilon} + u_0}) \, dy + o(1) \tag{2.4}
= \sum_{i=1}^{k} M_i G(q_i, x) + o(1),
\]
uniformly in \(\Omega \setminus \bigcup_{i=1}^{k} B_{\theta}(q_i)\) as \(\varepsilon \to 0\).

Similarly, we can prove that
\[
Du_{\varepsilon}(x) \to \sum_{i=1}^{k} M_i DG(q_i, x), \tag{2.5}
\]
uniformly in \(\Omega \setminus \bigcup_{i=1}^{k} B_{\theta}(q_i)\) as \(\varepsilon \to 0\).

\(\square\)

Lemma 2.2. Let \(u_{\varepsilon}\) be a bubbling solution of \((1.6)\) whose blow-up set is \(\{q_1, \ldots, q_k\}\), \(q_j \notin \{p_1, \ldots, p_N\}, j = 1, \ldots, k\). Then
\[
\frac{\partial u_0(x)}{\partial x_h} \bigg|_{x=q_j} = - \sum_{l \neq j, 1 \leq i \leq k} M_i \frac{\partial G(q_i, x)}{\partial x_h} \bigg|_{x=q_j}, \quad j = 1, \ldots, k. \tag{2.6}
\]

Proof. For \(j = 1, \ldots, k\), let
\[
\tilde{u}_{\varepsilon}(x) = u_{\varepsilon} - \frac{\pi N |x - q_j|^2}{|\Omega|}.
\]
Then
\[
\Delta \tilde{u}_{\varepsilon} + \frac{1}{\varepsilon^2} h(x) e^{\tilde{u}_{\varepsilon} + u_0} (1 - h(x) e^{\tilde{u}_{\varepsilon} + u_0}) = 0, \tag{2.7}
\]
where \(h(x) = e^{\frac{\pi N |x - q_j|^2}{|\Omega|}}\). For \(h = 1, 2\), we have the following Pohozaev identity for \(\tilde{u}_{\varepsilon}\):
\[
\int_{\partial B_r(q_j)} \langle \nu, D\tilde{u}_\varepsilon \rangle D_h\tilde{u}_\varepsilon - \frac{1}{2} \int_{\partial B_r(q_j)} |D\tilde{u}_\varepsilon|^2 \nu_h
= -\frac{1}{\varepsilon^2} \int_{\partial B_r(q_j)} (e^{u_x + u_0} - \frac{1}{2} e^{2(u_x + u_0)}) \nu_h
+ \frac{1}{\varepsilon^2} \int_{B_r(q_j)} e^{u_x + u_0} (1 - e^{u_x + u_0})(D_hu_0 + D_hh(x)),
\]
where \(\nu\) is the outward unit normal of \(\partial B_r(q_j)\).

By (1.8), noting that \(D_h(q_j) = 0\), we can prove that
\[\text{RHS of (2.8)} \rightarrow M_j D_h u_0(q_j).\] (2.9)

Using (2.1), we find
\[
\bar{u}_\varepsilon = \frac{1}{|\Omega|} \int_{\Omega} u_\varepsilon + \sum_{l=1}^k M_l G(q_l, x) - \frac{N\pi|x - q_j|^2}{|\Omega|} + o_\varepsilon(1)
:= F(x, q) + o_\varepsilon(1), \quad x \in \partial B_r(q_j),
\] (2.10)
and
\[\Delta F(x, q) = 0.\] (2.11)

So, for any small \(\theta > 0\),
\[
\text{LHS of (2.8)} = \int_{\partial B_r(q_j)} \langle \nu, D\tilde{u}_\varepsilon \rangle D_hF(x, q) - \frac{1}{2} \int_{\partial B_r(q_j)} |DF(x, q)|^2 \nu_h + o_\varepsilon(1)
= \int_{\partial B_\theta(q_j)} \langle \nu, D\tilde{u}_\varepsilon \rangle D_hF(x, q) - \frac{1}{2} \int_{\partial B_\theta(q_j)} |DF(x, q)|^2 \nu_h + o_\varepsilon(1)
= \int_{\partial B_\theta(q_j)} \langle \nu, D\sum_{l=1}^k M_l G(q_l, x) \rangle D_h \sum_{l=1}^k M_l G(q_l, x)
- \frac{1}{2} \int_{\partial B_\theta(q_j)} |D\sum_{l=1}^k M_l G(q_l, x)|^2 \nu_h + o_\theta(1) + o_\varepsilon(1)
= - M_j \sum_{l \neq j, 1 \leq l \leq k} M_l D_h G(q_l, q_j) + o_\theta(1) + o_\varepsilon(1),
\] (2.12)
which, together with (2.9), gives (2.6).}

Our next result shows that if the weight \(m = \# \{p_j : p_j = p\}\) of a vortex point \(p\) is large, then \(p\) can not be a blow-up point. This is due to the energy constraint. In fact we have
Proposition 2.3. Suppose that the weight m_j of the vortex point p_j satisfies $2(m_j+1) > N$. Then, p_j can not be a blow-up point of a bubbling solution u_ε of (1.6).

Proof. We argue by contradiction. Suppose that a vortex point p whose weight is m is a blow-up point of a sequence of bubbling solution u_ε of (1.6). Let

$$\bar{u}_\varepsilon(x) = u_\varepsilon - \frac{\pi N |x-p|^2}{|\Omega|}. $$

Then

$$\Delta \bar{u}_\varepsilon + \frac{1}{\varepsilon^2} h(x) e^{\bar{u}_\varepsilon + u_0} (1 - h(x) e^{\bar{u}_\varepsilon + u_0}) = 0, \quad (2.13)$$

where $h(x) = e^{\frac{\pi N|x-q|^2}{|\Omega|}}$.

We have the following Pohozeav identity in a small disk $B_r(p)$ for (2.13):

$$\frac{1}{2} \int_{\partial B_r(p)} \langle x-p, \nu \rangle |D \bar{u}_\varepsilon|^2 - \int_{\partial B_r(p)} \langle x-p, D \bar{u}_\varepsilon \rangle \langle \nu, D \bar{u}_\varepsilon \rangle = - \frac{1}{\varepsilon^2} \sum_{i=1}^2 \int_{B_r(p)} \left(\frac{\partial ((x_i - p_i)h(x) e^{u_0})}{\partial x_i} e^{\bar{u}_\varepsilon} - \frac{1}{2} \frac{\partial ((x_i - p_i)h^2(x) e^{2u_0})}{\partial x_i} e^{2\bar{u}_\varepsilon} \right) + \frac{1}{\varepsilon^2} \int_{\partial B_r(p)} \langle x-p, \nu \rangle \left(e^{u_0 + u_\varepsilon} - \frac{1}{2} e^{2(u_0 + u_\varepsilon)} \right), \quad (2.14)$$

where ν is the outward unit normal of $\partial B_r(p)$.

From (1.8), we see

$$\frac{1}{\varepsilon^2} \int_{\partial B_r(p)} \langle x-p, \nu \rangle \left(e^{u_0 + u_\varepsilon} - \frac{1}{2} e^{2(u_0 + u_\varepsilon)} \right) = o_\varepsilon(1). \quad (2.15)$$

Using (2.10) and (2.11), we find
\[\frac{1}{2} \int_{\partial B_r(p)} \langle x - p, \nu \rangle |Du_\varepsilon|^2 - \int_{\partial B_r(p)} \langle x - p, Du_\varepsilon \rangle \langle \nu, Du_\varepsilon \rangle \]
\[= \frac{(M_j)^2}{2} \int_{\partial B_r(p)} \langle x - p, \nu \rangle |DF(x, p)|^2 \]
\[- (M_j)^2 \int_{\partial B_r(p)} \langle x - p, DF(x, p) \rangle \langle \nu, DF(x, p) \rangle + o_\varepsilon(1) \]
\[= \frac{(M_j)^2}{2} \int_{\partial B_r(p)} \langle x - p, \nu \rangle |DF(x, p)|^2 \]
\[- (M_j)^2 \int_{\partial B_r(p)} \langle x - p, DF(x, p) \rangle \langle \nu, DF(x, p) \rangle + o_\varepsilon(1) \]
\[= \frac{M_j^2}{4\pi} + o_\theta(1) + o_\varepsilon(1). \quad (2.16) \]

Write \(e^{u_0} = |x - p|^{2m} g(x) \). Then \(g(x) \) is a smooth function satisfying \(0 < g_1 \leq g(x) \leq g_2 < +\infty \) in \(B_r(p) \) if \(r > 0 \) is small. So, we have

\[\sum_{i=1}^{2} \frac{\partial [(x_i - p_i)h(x)e^{u_0}]}{\partial x_i} = (2m + 2)h(x)e^{u_0} + \sum_{i=1}^{2} (x_i - p_i)|x - p|^{2m} \frac{\partial [g(x)h(x)]}{\partial x_i} \]

and

\[\sum_{i=1}^{2} \frac{\partial [(x_i - p_i)h^2(x)e^{2u_0}]}{\partial x_i} = (4m + 2)h^2(x)e^{2u_0} + \sum_{i=1}^{2} (x_i - p_i)|x - p|^{4m} \frac{\partial [g^2(x)h^2(x)]}{\partial x_i}. \]

By Proposition 4.1 in [11], there exists a constant \(c > 0 \), such that \(u_\varepsilon + u_0 \leq -c \). So, we find

\[\frac{1}{\varepsilon^2} \int_{\Omega} e^{2(u_\varepsilon + u_0)} \leq \frac{1}{\varepsilon^2} \int_{\Omega} e^{u_\varepsilon + u_0} \leq C \frac{C}{\varepsilon^2} \int_{\Omega} e^{u_\varepsilon + u_0} (1 - e^{u_\varepsilon + u_0}) \leq C', \quad (2.17) \]

which implies

\[- \frac{1}{\varepsilon^2} \sum_{i=1}^{2} \int_{B_r(p)} \frac{\partial [(x_i - p_i)h(x)e^{u_0}]}{\partial x_i} e^{u_\varepsilon} \]
\[= - \frac{2m + 2}{\varepsilon^2} \int_{B_r(p)} e^{u_0 + u_\varepsilon} + O\left(\frac{1}{\varepsilon^2} \int_{B_r(p)} |x - p|e^{u_0 + u_\varepsilon} \right) \]
\[= - \frac{2m + 2}{\varepsilon^2} \int_{B_r(p)} e^{u_0 + u_\varepsilon} + o_r(1), \quad (2.18) \]

and
\[
\frac{1}{2\varepsilon^2} \sum_{i=1}^{2} \int_{B_r(p)} \frac{\partial((x_i - p_i)h^2(x)e^{2u_0})}{\partial x_i} e^{2u_0} = \frac{2m + 1}{\varepsilon^2} \int_{B_r(p)} e^{2(u_0 + u_0)} + o_r(1). \quad (2.19)
\]

So we obtain from (2.14)–(2.19) that
\[
\frac{M_j^2}{4\pi} = \frac{2m + 2}{\varepsilon^2} \int_{B_r(p)} e^{u_0 + u_0} - \frac{2m + 1}{\varepsilon^2} \int_{B_r(p)} e^{2(u_0 + u_0)} + o_r(1) + o_\varepsilon(1) \\
\geq \frac{2m + 2}{\varepsilon^2} \int_{B_r(p)} e^{u_0 + u_0} (1 - e^{u_0 + u_0}) + o_r(1) + o_\varepsilon(1) \\
= 2(m + 1)M_j + o_r(1) + o_\varepsilon(1),
\]
which implies \(M_j \geq 8\pi(m + 1) \). This is a contradiction to \(M_j \leq 4N\pi \) and the assumption \(2(m + 1) \geq N \).

Now we discuss the local behavior of a bubbling solution near a blow-up point \(q_j \notin \{p_1, \cdots, p_N\} \). We will prove that \(q_j \) must be simple. That is, the bubbling solution \(u_\varepsilon \) is controlled by a single bubble near \(q_j \). Define
\[
\beta_{\varepsilon,j} = \max_{B_\delta(q_j)} u_\varepsilon.
\]

Let \(x_{\varepsilon,j} \in B_\delta(q_j) \) be a point satisfying
\[
u_\varepsilon(x_{\varepsilon,j}) = \max_{B_\delta(q_j)} u_\varepsilon.
\]

Then, \(x_{\varepsilon,j} \to q_j \) as \(\varepsilon \to 0 \).

Lemma 2.4. We have
\[
\beta_{\varepsilon,j} \leq C < +\infty.
\]

Proof. Suppose that there exists \(\varepsilon_n \to 0 \), such that \(\beta_n = \beta_{\varepsilon_n,j} \to +\infty \). Let
\[
\bar{u}_n(x) = u_n(\frac{\beta_n}{\varepsilon_n}x + x_n) - \max_{B_\delta(q_j)} u_n,
\]
where \(x_n = x_{\varepsilon_n,j} \). Then, \(\bar{u}_n \leq 0 \) in \(B_{\frac{\beta_n}{\varepsilon_n}}(0) \). It is easy to see that \(\bar{u}_n \) satisfies
\[
-\Delta \bar{u}_n = \frac{1}{e^{\beta_n}} e^{\bar{u}_n + u_0(x_n + \varepsilon_n e^{-\beta_n}x)} - e^{2(\bar{u}_n + u_0(x_n + \varepsilon_n e^{-\beta_n}x))} - \frac{4\pi N \pi \varepsilon_n^2}{e^{2\beta_n} |\Omega|}.
\]

Since \(\bar{u}_n \leq 0 \) in \(B_{\frac{\beta_n}{\varepsilon_n}}(0) \), we may assume that \(\bar{u}_n \to u \) in \(C^1_{loc}(\mathbb{R}^2) \), and \(u \) satisfies
\[
-\Delta u + e^{2u_0(q_j)}e^{2u} = 0, \quad \text{in } \mathbb{R}^2,
\]
and \(u \leq 0 \). But (2.25) has no non-positive solution. This is a contradiction.
Proof. It follows from Lemma 2.4 that there are two different cases: (i) $\beta_{\varepsilon,j} \to -\infty$; (ii) $\beta_{\varepsilon,j} \geq C > -\infty$. In case (i), by (1.7), $\frac{1}{\varepsilon^2} e^{\beta_{\varepsilon,j}} \to +\infty$. Let

$$u_{\varepsilon,j}(x) = u_{x}(\frac{\varepsilon}{e^{\frac{1}{2}\beta_{\varepsilon,j}}} x + x_{\varepsilon,j}) - \max_{B_{\delta}(q_{j})} u_{x}.$$ \hspace{1cm} (2.26)

Then,

$$-\Delta u_{\varepsilon,j} = e^{u_{x,j} + u_{0}(x_{,j} + \varepsilon x - \frac{1}{2}\beta_{\varepsilon,j} x)} - e^{\beta_{\varepsilon,j} e^{2(\bar{u}_{x,j} + u_{0}(x_{,j} + \varepsilon x - \beta_{\varepsilon,j} x))}} - \frac{4\pi N \varepsilon^{2}}{e^{\beta_{\varepsilon}}|\Omega|}. \hspace{1cm} (2.27)$$

Lemma 2.5. Suppose that $\beta_{\varepsilon,j} \to -\infty$ as $\varepsilon \to 0$. Then $\bar{u}_{x,j}(x) \to u_{j}$ in $C^{1}_{\text{loc}}(\mathbb{R}^{2})$ and u satisfies

$$\begin{cases} -\Delta u_{j} = e^{u_{0}(q_{j})} e^{u_{j}}, & \text{in } \mathbb{R}^{2}, \\ \int_{\mathbb{R}^{2}} e^{u_{j}} < +\infty, & u_{j}(0) = 0. \end{cases} \hspace{1cm} (2.28)$$

Moreover,

$$\frac{1}{\varepsilon^{2}} \int_{B_{\varepsilon}^{-\frac{1}{2}\beta_{\varepsilon}(0)}} e^{u_{x} + u_{0}}(1 - e^{u_{x} + u_{0}}) = 8\pi + o_{R}(1) + o_{\varepsilon}(1), \hspace{1cm} (2.29)$$

where $o_{\varepsilon}(1) \to 0$ as $\varepsilon \to 0$ and $o_{R}(1) \to 0$ as $R \to +\infty$.

Proof. Since $\bar{u}_{x,j}(x) \leq 0$, $\bar{u}_{x,j}(0) = 0$, and $\bar{u}_{x,j}$ satisfies (2.27), we can assume that $\bar{u}_{x,j}(x) \to u_{j}$ in $C^{1}_{\text{loc}}(\mathbb{R}^{2})$. From (2.27), we find that u_{j} satisfies (2.28). From $\int_{\mathbb{R}^{2}} e^{u_{0}(q_{j})} e^{u_{j}} = 8\pi$, we obtain (2.29).

Lemma 2.6. Suppose that $\beta_{\varepsilon,j} \geq C > -\infty$ as $\varepsilon \to 0$. Then $\bar{u}_{x,j}(x) \to u_{j}$ in $C^{1}_{\text{loc}}(\mathbb{R}^{2})$ and u satisfies

$$\begin{cases} -\Delta u_{j} = e^{u_{0}(q_{j})} e^{u_{j}} - e^{\beta_{j} + 2u_{0}(q_{j})} e^{2u_{j}}, & \text{in } \mathbb{R}^{2}, \\ \int_{\mathbb{R}^{2}} (e^{u_{j}} - e^{\beta_{j} + u_{0}(q_{j})} e^{2u_{j}}) < +\infty, & u_{j}(0) = 0, \end{cases} \hspace{1cm} (2.30)$$

where $\beta_{j} = \lim_{\varepsilon \to 0} \beta_{\varepsilon,j}$. Moreover, if $\varepsilon > 0$ is small and $R > 0$ is large,

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{2}} \int_{B_{\varepsilon}^{-\frac{1}{2}\beta_{\varepsilon}(0)}} e^{u_{x} + u_{0}}(1 - e^{u_{x} + u_{0}}) > 8\pi. \hspace{1cm} (2.31)$$

Proof. The proof is similar to that of Lemma 2.5.

Lemma 2.7. For $R > 0$ large and $\delta \geq |x - x_{\varepsilon,j}| > R\varepsilon e^{-\frac{1}{2}\beta_{\varepsilon,j}}$, it holds

$$\frac{1}{\varepsilon^{2}} \int_{B_{\frac{1}{3}|x - x_{\varepsilon,j}|}(x)} e^{u_{x} + u_{0}}(1 - e^{u_{x} + u_{0}}) = o_{R}(1), \hspace{1cm} (2.32)$$

where $o_{R}(1) \to 0$ as $R \to +\infty$.\hfill \square
\begin{proof}
It is obvious that (2.32) holds if \(|x - x_{\varepsilon_n,j}| \geq \epsilon > 0\). We argue by contradiction. Suppose that there are \(\varepsilon_n \to 0\), \(R_n \to +\infty\) and \(x_n\) with \(|x_n - x_{\varepsilon_n,j}| > R_n \varepsilon_n e^{-\frac{1}{2} \beta_{\varepsilon_n,j}}\), \(|x_n - x_{\varepsilon_n,j}| \to 0\), satisfying

\begin{equation}
\frac{1}{\varepsilon_n^2} \int_{B_{\frac{1}{2} (x_n - x_{\varepsilon_n,j})}(x_n)} e^{u_{\varepsilon_n}^{n+j} u_0}(1 - e^{u_{\varepsilon_n}^{n+j} u_0}) \geq c_0 > 0. \tag{2.33}
\end{equation}

Let \(u_n^*(x) = u_{\varepsilon_n}(\delta_n x + x_{\varepsilon_n,j})\), \(\delta_n = |x_n - x_{\varepsilon_n,j}|\). Then, \(u_n^*\) satisfies

\begin{equation}
\Delta u_n^* + \frac{\delta_n^2}{\varepsilon_n^2} e^{u_n^* + u_0}(1 - e^{u_n^* + u_0}) = \frac{4 N \pi \delta_n^2}{|\Omega|}, \tag{2.34}
\end{equation}

where \(u_0^*(x) = u_0(\delta_n x + x_{\varepsilon_n,j})\). Then, we can do the blow-up analysis for the sequence \(u_n^*\) as in [11] and prove that there is a finite set \(S^* = \{z_1, \ldots, z_l\}\), such that

\begin{equation}
\frac{\delta_n^2}{\varepsilon_n^2} e^{u_n^* + u_0}(1 - e^{u_n^* + u_0}) \to \sum_{j=1}^{l} m_j^* \delta_{z_j}, \quad m_j^* \geq 8\pi, \tag{2.35}
\end{equation}

in the sense of measure. By (2.33), \(S^* \neq \emptyset\). Moreover, using the Pohozaev identity as in Lemma 2.2, we can prove that \(z_j\) satisfies

\begin{equation}
\sum_{i \neq j} m_j^*(z_j - z_i) |z_j - z_i|^2 = 0, \quad j = 1, \ldots, l. \tag{2.36}
\end{equation}

It is easy to see that (2.36) can not hold true for \(z_j\) with \(|z_j| = \max_i |z_i|\). So the lemma is proved.
\end{proof}

Next, we will prove the following result, which shows that the blow up must be simple.

Proposition 2.8. Suppose that \(q_j \notin \{p_1, \ldots, p_N\}\). Let \(\delta > 0\) be a small constant. Then there exist a constant \(C > 0\), such that

\begin{equation}
|u_\varepsilon(x) - u_\varepsilon(x_{\varepsilon,j}) - u_{\varepsilon,j}(\frac{1}{\varepsilon} \beta_{\varepsilon,j}(x - x_{\varepsilon,j}))| \leq C, \quad \forall x \in B_\delta(x_{\varepsilon,j}), \tag{2.37}
\end{equation}

where \(u_{\varepsilon,j}\) is the solution of

\begin{equation}
\begin{cases}
\Delta u + e^{u_0(x_{\varepsilon,j})} e^u (1 - e^{\beta_{\varepsilon,j} + u_0(x_{\varepsilon,j})} e^u) = 0, & \text{in } \mathbb{R}^2; \\
\int_{\mathbb{R}^2} e^{u_0(x_{\varepsilon,j})} e^u (1 - e^{\beta_{\varepsilon,j} + u_0(x_{\varepsilon,j})} e^u) = M_{\varepsilon,j}, & \lim_{\varepsilon \to 0} M_{\varepsilon,j} > 8\pi,
\end{cases} \tag{2.38}
\end{equation}

if \(\beta_{\varepsilon,j} \geq -c_0 > -\infty\); while \(u_{\varepsilon,j}\) is the solution of

\begin{equation}
\begin{cases}
\Delta u + e^{u_0(x_{\varepsilon,j})} e^u = 0, & \text{in } \mathbb{R}^2; \\
\int_{\mathbb{R}^2} e^{u_0(x_{\varepsilon,j})} e^u = 8\pi, & u(0) = 0,
\end{cases} \tag{2.39}
\end{equation}

if \(\beta_{\varepsilon,j} \to -\infty\).
Estimate (2.37) is proved in [22] for equation $\Delta u + V(v)e^u = 0$ by using a moving plane method. But it seems that the moving plane method used in [22] does not work for (2.24). Here, we will give a more direct proof of Proposition 2.8. We first prove some lemmas. Recall that

$$\tilde{u}_{\varepsilon,j}(x) = u_{\varepsilon}(\varepsilon e^{-\frac{1}{2}\beta_{\varepsilon,j}x} + x_{\varepsilon,j}) - \max_{B_\delta(q_j)} u_{\varepsilon}.$$

Lemma 2.9. For any small $\theta > 0$, there exists a constant $C > 0$, such that

$$\tilde{u}_{\varepsilon,j}(x) \leq -(4 - \theta) \ln |x| + C, \quad \forall x \in B_{\frac{1}{2}e^{\beta_{\varepsilon,j_\varepsilon}}}(0) \setminus B_1(0).$$

Proof. It follows from (2.27) that

$$\tilde{u}_{\varepsilon,j}(x) - \frac{1}{|\Omega_\varepsilon|} \int_{\Omega_\varepsilon} \tilde{u}_{\varepsilon,j} = \int_{\Omega_\varepsilon} G_\varepsilon(y, x)(e^{\tilde{u}_{\varepsilon,j} + \tilde{u}_0} - e^{\beta_{\varepsilon,j} e^{2(\tilde{u}_{\varepsilon,j} + \tilde{u}_0)}}) dy,$$

where $G_\varepsilon(y, x)$ is the Green function in $\Omega_\varepsilon = \{y : \varepsilon e^{-\frac{1}{2}\beta_{\varepsilon,j}y + x_{\varepsilon,j}} \in \Omega\}$ subject to the doubly periodic boundary condition, and $\tilde{u}_0(x) = u_0(\varepsilon e^{-\frac{1}{2}\beta_{\varepsilon,j}x} + x_{\varepsilon,j}).$

From $\tilde{u}_{\varepsilon,j}(0) = 0$, we obtain from (2.40)

$$-\frac{1}{|\Omega_\varepsilon|} \int_{\Omega_\varepsilon} \tilde{u}_{\varepsilon,j}(x) = \int_{\Omega_\varepsilon} G_\varepsilon(y, 0)(e^{\tilde{u}_{\varepsilon,j} + \tilde{u}_0} - e^{\beta_{\varepsilon,j} e^{2(\tilde{u}_{\varepsilon,j} + \tilde{u}_0)}}) dy.$$

In view of (2.17), we obtain from (2.40) and (2.41) that

$$\tilde{u}_{\varepsilon,j}(x) = \frac{1}{2\pi} \int_{\Omega_\varepsilon} \ln \left|\frac{|y|}{|y-x|}\right| (e^{\tilde{u}_{\varepsilon,j} + \tilde{u}_0} - e^{\beta_{\varepsilon,j} e^{2(\tilde{u}_{\varepsilon,j} + \tilde{u}_0)}}) dy + O(1).$$

From (2.29) and (3.31), for any $\theta' > 0$, we can find a large $R > 0$, such that

$$\frac{1}{2\pi} \int_{B_R(0)} (e^{\tilde{u}_{\varepsilon,j} + \tilde{u}_0} - e^{\beta_{\varepsilon,j} e^{2(\tilde{u}_{\varepsilon,j} + \tilde{u}_0)}}) \geq 4 - \theta'.$$

Suppose now $|x| \geq 2R$. Note that we have

$$e^{\tilde{u}_{\varepsilon,j} + \tilde{u}_0} - e^{\beta_{\varepsilon,j} e^{2(\tilde{u}_{\varepsilon,j} + \tilde{u}_0)}} = \frac{1}{\varepsilon^2} e^{u_{\varepsilon} + u_0} (1 - e^{u_{\varepsilon} + u_0}) > 0.$$

So for any set S, in which $\ln \left|\frac{|y|}{|y-x|}\right| \leq C$, we find

$$\int_S \ln \left|\frac{|y|}{|y-x|}\right| (e^{\tilde{u}_{\varepsilon,j} + \tilde{u}_0} - e^{\beta_{\varepsilon,j} e^{2(\tilde{u}_{\varepsilon,j} + \tilde{u}_0)}}) dy \leq C'.$$

It is easy to see for $R \leq |y| \leq \frac{1}{2}|x|$, $\frac{|y|}{|y-x|} \leq 1$. If $y \in \Omega_\varepsilon \setminus (B_{\frac{3}{2}}(0) \cup B_{\frac{1}{2}}(x))$, we can check $\frac{|y|}{|y-x|} \leq C$. So, we obtain from (2.42)
\[\tilde{u}_\varepsilon(x) \leq \frac{1}{2\pi} \int_{B_R(0)} \ln \frac{|y|}{|y-x|} \left(e^{\tilde{u}_{\varepsilon,j} + \tilde{u}_0} - e^{\beta_{\varepsilon,j} e^{2(\tilde{u}_{\varepsilon,j} + \tilde{u}_0)}} \right) dy + \frac{1}{2\pi} \int_{B_R(x)} \ln \frac{|y|}{|y-x|} \left(e^{\tilde{u}_{\varepsilon,j} + \tilde{u}_0} - e^{\beta_{\varepsilon,j} e^{2(\tilde{u}_{\varepsilon,j} + \tilde{u}_0)}} \right) dy + C. \] (2.45)

Let \(\sigma > 0 \) be a small constant. Noting \(\tilde{u}_\varepsilon \leq 0 \) in \(B_\sigma(x) \subset B_{\frac{1}{\varepsilon^2} \tilde{u}_{\varepsilon,j}}(0) \), using (2.32), we find

\[\int_{B_\sigma(x)} \ln \frac{|y|}{|y-x|} \left(e^{\tilde{u}_{\varepsilon,j} + \tilde{u}_0} - e^{\beta_{\varepsilon,j} e^{2(\tilde{u}_{\varepsilon,j} + \tilde{u}_0)}} \right) dy \leq C \int_{B_\sigma(x)} \ln \frac{|y|}{|y-x|} + \frac{C|x|}{\sigma} \int_{B_\sigma(x)} \left(e^{\tilde{u}_{\varepsilon,j} + \tilde{u}_0} - e^{\beta_{\varepsilon,j} e^{2(\tilde{u}_{\varepsilon,j} + \tilde{u}_0)}} \right) dy \]

\begin{align*}
&= (o_\sigma(1) + o_\varepsilon(1)) \ln |x|.
\end{align*}

Combining (2.45) and (2.46), we are led to

\[\tilde{u}_\varepsilon(x) \leq \frac{1}{2\pi} \int_{B_R(0)} \ln \frac{|y|}{|y-x|} \left(e^{\tilde{u}_{\varepsilon,j} + \tilde{u}_0} - e^{\beta_{\varepsilon,j} e^{2(\tilde{u}_{\varepsilon,j} + \tilde{u}_0)}} \right) dy + (o_\sigma(1) + o_\varepsilon(1)) \ln |x| + C. \] (2.47)

For any \(y \in B_R(0) \), if \(|x| >> R \),

\[\ln \frac{|y|}{|y-x|} = \ln \frac{1}{|x|} + o_1(1), \]

which, together with (2.47) and (2.43), gives

\[\tilde{u}_\varepsilon(x) \leq (4 - \theta) \ln \frac{1}{|x|} + C. \] (2.48)

Lemma 2.10. For any \(\Lambda > 0 \) large, we have

\[\frac{1}{\varepsilon^2} \int_{B_{\frac{1}{\Lambda^2} \tilde{u}_{\varepsilon,j}}(x, \varepsilon, j)} e^{u_\varepsilon + u_0} \left(1 - e^{u_\varepsilon + u_0} \right) = M_{\varepsilon,j} + O(\Lambda^{-2+\theta}), \]

where \(\theta > 0 \) is any small fixed constant.

Proof. It follows from Lemma 2.9 that
\[M_{\epsilon,j} = \frac{1}{\epsilon^2} \int_{B_\delta(x_{\epsilon,j})} e^{u_{x} + u_0} (1 - e^{u_{x} + u_0}) \]
\[= \frac{1}{\epsilon^2} \int_{B_{\Lambda\epsilon^\frac{1}{2} x_{\epsilon,j}}(x_{\epsilon,j})} e^{u_{x} + u_0} (1 - e^{u_{x} + u_0}) + O\left(\int_{B_{\delta\epsilon - 1, \frac{1}{2} x_{\epsilon,j}}(0) \setminus B_{\Lambda}(0)} \frac{1}{|y|^{4-\theta}} \right) \]
\[= \frac{1}{\epsilon^2} \int_{B_{\Lambda\epsilon^\frac{1}{2} x_{\epsilon,j}}(x_{\epsilon,j})} e^{u_{x} + u_0} (1 - e^{u_{x} + u_0}) + O(\Lambda^{-2+\theta}). \]

Lemma 2.11. We have

\[u_{x}(x) - u_{x}(x_{\epsilon,j}) = \frac{M_{\epsilon,j}}{2\pi} \ln \frac{1}{|e^{1/2 x_{\epsilon,j}}(x - x_{\epsilon,j})|} + O(1), \quad \forall \ x \in B_{\delta}(x_{\epsilon,j}) \setminus B_{R\epsilon^{-1/2}}(x_{\epsilon,j}). \]

(2.49)

Proof. For any \(x \in B_{\delta}(x_{\epsilon,j}) \), by Lemma 2.9, it holds

\[u_{x}(x) - u_{x}(x_{\epsilon,j}) = \frac{1}{2\pi \epsilon^2} \int_{B_{2\delta}(x_{\epsilon,j})} \ln \frac{|y - x_{\epsilon,j}|}{|y - x|} e^{u_{x} + u_0} (1 - e^{u_{x} + u_0}) \ dy + O(1) \]
\[= \frac{1}{2\pi} \int_{B_{2\delta\epsilon^\frac{1}{2} x_{\epsilon,j}}(0)} \ln \frac{|y|}{|y - \bar{x}_\epsilon|} e^{\bar{u}_{x} + \bar{u}_0} (1 - e^{\bar{u}_{x} + \bar{u}_0}) \ dy + O(1) \]
\[= \frac{1}{2\pi} \int_{B_{2\delta\epsilon^\frac{1}{2} x_{\epsilon,j}}(0)} \ln \frac{1}{|y - \bar{x}_\epsilon|} e^{\bar{u}_{x} + \bar{u}_0} (1 - e^{\bar{u}_{x} + \bar{u}_0}) \ dy + O(1), \quad (2.50) \]

where \(\bar{x}_\epsilon = e^{1/2 x_{\epsilon,j}}(x - x_{\epsilon,j}) \).

Let \(\sigma > 0 \) be a small fixed constant. Then

\[\left| \int_{B_{2\delta\epsilon^\frac{1}{2} x_{\epsilon,j}}(0) \setminus B_{\sigma|x_{\epsilon,j}|}(0)} \ln \frac{1}{|y - \bar{x}_\epsilon|} e^{\bar{u}_{x} + \bar{u}_0} (1 - e^{\bar{u}_{x} + \bar{u}_0}) \ dy \right| \]
\[\leq C \ \int_{B_{2\delta\epsilon^\frac{1}{2} x_{\epsilon,j}}(0) \setminus B_{\sigma|x_{\epsilon,j}|}(0)} \ |\ln |y - \bar{x}_\epsilon|| \left(\frac{1}{|y|^{4-\theta}} + \frac{1}{|y|^{2(4-\theta)}} \right) \leq \frac{C}{|\bar{x}_\epsilon|^{2-2\theta}}. \]

(2.51)

But
\[\frac{1}{2\pi} \int_{B_{e|x_{\epsilon}|}(0)} \ln \frac{1}{|y - x_{\epsilon}|} e^{\tilde{u}_{\epsilon} + \tilde{u}_0} (1 - e^{\beta_{\epsilon,j} e^{\tilde{u}_{\epsilon} + \tilde{u}_0}}) \, dy \]

\[= \frac{1}{2\pi} \int_{B_{e|x_{\epsilon}|}(0)} e^{\tilde{u}_{\epsilon} + \tilde{u}_0} (1 - e^{\beta_{\epsilon,j} e^{\tilde{u}_{\epsilon} + \tilde{u}_0}}) \, dy \ln \frac{1}{|x_{\epsilon}|} + O(1) \]

(2.52)

since \(|\ln \frac{|x_{\epsilon}|}{|y - x_{\epsilon}|}| \leq C \) for \(y \in B_{e|x_{\epsilon}|}(0) \). So the result follows from (2.50)–(2.52) and Lemma 2.10.

Before we prove Proposition 2.8, we will use Lemma 2.11 to improve the estimates in Lemma 2.1.

Lemma 2.12. For any \(\delta_0 > 0 \),

\[u_{\epsilon}(x) = \frac{1}{|\Omega|} \int_{\Omega} u_{\epsilon} + \sum_{j=1}^{k} M_{\varepsilon,j} G(x_{\varepsilon,j}, x) + O(\varepsilon e^{-\frac{1}{2} \beta_{\varepsilon,j}}), \quad \text{in } C^1(\Omega \cup \bigcup_{j=1}^{k} B_{\delta}(x_{\varepsilon,j})). \]

Proof. Fix \(\delta \in (0, \delta_0) \). It follows from Lemma 2.11 that

\[u_{\epsilon}(x) = \beta_{\varepsilon,j} + \frac{M_{\varepsilon,j}}{2\pi} \ln \frac{\varepsilon}{e^{\frac{1}{2} \beta_{\varepsilon,j}}} + O(1), \quad x \in \partial B_{\delta}(x_{\varepsilon,j}). \]

(2.53)

Using Lemma 2.1, we find

\[\frac{1}{|\Omega|} \int_{\Omega} u_{\epsilon} = u_{\epsilon}(x) + O(1), \quad x \in \partial B_{\delta}(x_{\varepsilon,j}). \]

(2.54)

which, together with (2.53), gives

\[\frac{1}{|\Omega|} \int_{\Omega} u_{\epsilon} = \beta_{\varepsilon,j} + \frac{M_{\varepsilon,j}}{2\pi} \ln \frac{\varepsilon}{e^{\frac{1}{2} \beta_{\varepsilon,j}}} + O(1). \]

(2.55)

It is easy to deduce from Lemma 2.1 and (2.55) that

\[u_{\epsilon}(x) = \beta_{\varepsilon,j} + \frac{M_{\varepsilon,j}}{2\pi} \ln \frac{\varepsilon}{e^{\frac{1}{2} \beta_{\varepsilon,j}}} + O(1), \quad x \in \Omega \cup \bigcup_{j=1}^{k} B_{\delta}(x_{\varepsilon,j}). \]

(2.56)

As a result

\[\frac{1}{\varepsilon^2} e^{u_{\epsilon} + u_0} (1 - e^{u_{\epsilon} + u_0}) = O \left(\frac{\varepsilon}{e^{\frac{1}{2} \beta_{\varepsilon,j}}} \right)^{1-2}, \quad x \in \Omega \cup \bigcup_{j=1}^{k} B_{\delta}(x_{\varepsilon,j}). \]

(2.57)

Similar to (2.4), using Lemma 2.9 and (2.57), we obtain
\[u_\varepsilon(x) - \frac{1}{|\Omega|} \int_{\Omega} u_\varepsilon \]
\[= \sum_{j=1}^{k} M_{\varepsilon,j} G(x_{\varepsilon,j}, x) + O\left(\frac{1}{\varepsilon^2} \int_{B_\delta(x_{\varepsilon,j})} |y - x_{\varepsilon,j}| e^{-\varepsilon} \left(1 + \frac{M_{\varepsilon,j}}{2\pi} \right)^2\right) \]
\[= \sum_{j=1}^{k} M_{\varepsilon,j} G(x_{\varepsilon,j}, x) + O\left(\varepsilon e^{-\frac{1}{2}\beta_{\varepsilon,j}}\right). \]

The estimate for \(Du_\varepsilon \) is similar.

Proof of Proposition 2.8. If the limit problem is given by (2.38), then Proposition follows from Lemma 2.11.

Suppose now that the limit problem is given by (2.39). We use the Pohozaev identity (2.14) with \(p \) replaced by \(x_{\varepsilon,j} \). By Lemma 2.12, we find

\[
\text{LHS of (2.14)} = -\frac{M_{\varepsilon,j}^2}{4\pi} + O\left(\varepsilon e^{-\frac{1}{2}\beta_{\varepsilon,j}}\right). \tag{2.59}
\]

Using Lemma 2.9, we can deduce

\[
\text{RHS of (2.14)} = -2M_{\varepsilon,j} + O\left(\varepsilon e^{-\frac{1}{2}\beta_{\varepsilon,j}}\right). \tag{2.60}
\]

From

\[
-\frac{M_{\varepsilon,j}^2}{4\pi} = -2M_{\varepsilon,j} + O\left(\varepsilon e^{-\frac{1}{2}\beta_{\varepsilon,j}}\right), \tag{2.61}
\]

we obtain \(M_{\varepsilon,j} = 8\pi + O\left(\varepsilon e^{-\frac{1}{2}\beta_{\varepsilon,j}}\right) \). So the result follows from Lemma 2.11.

Proof of Theorem 1.1. It follows from Proposition 2.8 and Lemma 2.1 that for each \(j \),

\[
u_\varepsilon(x_{\varepsilon,j}) + u_\varepsilon\left(\frac{\varepsilon^{\frac{1}{2}\beta_{\varepsilon,j}}}{\varepsilon} \delta\right) = \frac{1}{|\Omega|} \int_{\Omega} u_\varepsilon + O(1), \quad j = 1, \ldots, k. \tag{2.62}\]

So, we obtain

\[
u_\varepsilon(x_{\varepsilon,j}) + u_\varepsilon\left(\frac{\varepsilon^{\frac{1}{2}\beta_{\varepsilon,j}}}{\varepsilon} \delta\right) = u_\varepsilon(x_{\varepsilon,i}) + u_\varepsilon\left(\frac{\varepsilon^{\frac{1}{2}\beta_{\varepsilon,j}}}{\varepsilon} \delta\right) + O(1), \quad \text{for all } i, j. \tag{2.63}\]

Note that if \(\beta_{\varepsilon,j} \geq c_0 > -\infty \), then

\[
u_\varepsilon(x_{\varepsilon,j}) + u_\varepsilon\left(\frac{\varepsilon^{\frac{1}{2}\beta_{\varepsilon,j}}}{\varepsilon} \delta\right) = \frac{M_{\varepsilon,j}}{2\pi} \ln \varepsilon + O(1); \tag{2.64}\]

while if \(\beta_{\varepsilon,j} \to -\infty \), then \(M_{\varepsilon,j} = 8\pi + o(1) \), and
\begin{equation}
\begin{multlined}
 u_\varepsilon(x_{\varepsilon,j}) + u_\varepsilon,j\left(\frac{e^{\frac{1}{2}\beta_{\varepsilon,j}}}{\varepsilon}\delta\right) = \beta_{\varepsilon,j} + 4\ln\frac{\varepsilon}{e^{\frac{1}{2}\beta_{\varepsilon,j}}} + O(1) = 4\ln\varepsilon - \beta_{\varepsilon,j} + O(1).

\end{multlined}
\tag{2.65}
\end{equation}

Note that the relation
\begin{equation}
\frac{M_{\varepsilon,i}}{2\pi}\ln\varepsilon = 4\ln\varepsilon - \beta_{\varepsilon,j} + O(1),
\end{equation}
can not be true, if \(M_{\varepsilon,i} > 4\) and \(\beta_{\varepsilon,j} \to -\infty\). So, we have proved that either \(\beta_{\varepsilon,j} \geq c_0 > -\infty\) for all \(j\), or \(\beta_{\varepsilon,j} \to -\infty\) for all \(j\). In the first case, we obtain from (2.63) and (2.64) that \(M_i = M_j > 8\pi\). In the second case, \(M_j = 8\pi, j = 1, 2, \cdots, k\).

Before we close this section, let us briefly discuss the bubbling solutions, whose blow-up set contains some vortex points.

Proposition 2.13. Suppose that the blow-up set of a bubbling solution \(u_\varepsilon\) contains a vortex point \(p_j\), whose weight is 1, and the following relation holds
\begin{equation}
\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^2} \int_{B_\delta(p_j)} e^{u_\varepsilon + u_0}(1 - e^{u_\varepsilon + u_0}) > 16\pi,
\end{equation}
where \(\delta > 0\) is a small constant. Then
\begin{equation}
u_\varepsilon(x) = \frac{M_{\varepsilon,j}}{2\pi} \ln \frac{\varepsilon}{|x - x_{\varepsilon,j}|} - 2\ln\varepsilon + O(1), \quad \forall x \in B_\delta(x_{\varepsilon,j}) \setminus B_\varepsilon(x_{\varepsilon,j}).
\end{equation}

Proof. Without loss of generality, we assume that \(p_j = 0\).

Step 1. We claim that \(|x_{\varepsilon,j}| \leq C\varepsilon\). Suppose we have (up to a subsequence) that \(\varepsilon^{-1}|x_{\varepsilon,j}| \to +\infty\). Then, define \(u^{**}_\varepsilon(x) = u_\varepsilon(\delta, x) + 2\ln\delta\varepsilon\), where \(\delta_\varepsilon = |x_{\varepsilon,j}|\). Then \(u^{**}_\varepsilon\) satisfies
\begin{equation}
\Delta u^{**}_\varepsilon + \frac{\delta_\varepsilon^2}{\varepsilon^2} e^{u^{**}_\varepsilon + u_0}(1 - e^{u^{**}_\varepsilon + u_0}) = \frac{4N\pi\varepsilon^2}{|\Omega|},
\end{equation}
where \(u_0(x) = u_0(\delta_\varepsilon, x) - 2\ln\delta_\varepsilon\). Then, we can do the blow-up analysis for the sequence \(u^{**}_\varepsilon\) and prove that there is a non-empty finite set \(S^* = \{z_1, \cdots, z_l\}\), such that
\begin{equation}
\frac{\delta_\varepsilon^2}{\varepsilon^2} e^{u^{**}_\varepsilon + u_0}(1 - e^{u^{**}_\varepsilon + u_0}) \to \sum_{j=1}^{l} m_j^* \delta_{z_j}, \quad m_j^* \geq 8\pi,
\end{equation}
in the sense of measure.

Suppose that \(0 \in S^*\), then we assume that \(z_1 = 0\) and use the Pohozaev identity to find that \(z_j\) satisfies
\begin{equation}
\left(\frac{m_j^*}{2\pi} - 2\right) \frac{z_j}{|z_j|^2} + \sum_{i \neq j} \frac{m_i^* (z_j - z_i)}{2\pi|z_j - z_i|^2} = 0, \quad j = 2, \cdots, l.
\end{equation}
Since \(\frac{m^2}{2\pi^2} - 2 > 0 \), (2.70) cannot hold true for \(z_j \) with \(|z_j| = \max_i |z_i| \). So \(0 \notin S^* \). Using the Pohozaev identity again, we find that \(z_j \) satisfies

\[
\frac{2z_j}{|z_j|^2} = \sum_{i \neq j} \frac{m_j^*(z_j - z_i)}{2\pi |z_j - z_i|^2}, \quad j = 1, \ldots, l. \tag{2.71}
\]

Let us assume that \(|z_1| = \max_i |z_i| \). By dividing (2.71) with \(|z_1| \), we can assume that \(|z_1| = 1 \). By rotating suitably, we can make \(z_1 = (1, 0) \). Let \(z_j = (r \cos \theta, r \sin \theta) \), \(j > 1 \). Then \(|z_j - z_1|^2 = 1 + r^2 - 2\cos \theta \) and the \(x_1 \) component of \(z_1 - z_j \) is \(1 - r \cos \theta \). Define

\[
f(r, \theta) = \frac{1 - r \cos \theta}{1 + r^2 - 2\cos \theta}. \]

We claim \(\min_{B_0(1)} f(r, \theta) = \frac{1}{2} \) and \(f(r, \theta) > \frac{1}{2} \) if \(r < 1 \). Assume this at the moment, then from (2.71), we obtain

\[
2 = \frac{l}{|z_1|^2} \sum_{j=2}^l \frac{m_j^*(z_1 - z_j)}{2\pi |z_1 - z_j|^2} \geq \frac{l}{4\pi} > 2. \tag{2.72}
\]

if \(l \geq 3 \), which is a contradiction. But if \(l = 2 \) and \(|z_2| < 1 \), then the first inequality in (2.72) must be strict and we obtain a contradiction. From \(|z_2| = 1 \) and (2.71), we find \(z_1 = -z_2 \). So (2.72) cannot hold true since one of \(m_j^* > 8\pi \) due to (2.66). So we have proved \(|x_e| \leq C \varepsilon \). To prove \(\min_{B_1(0)} f(r, \theta) = \frac{1}{2} \), we first know that \(f(r, \theta) \) is smooth in \(B_1(0) \setminus \{(1, 0)\} \). But as \(r \to 1 \) and \(\theta \to 0 \),

\[
f(r, \theta) = \frac{1 - r + \frac{\theta^2}{2} + O(\theta^3 + (1 - r)\theta^2)}{(1 - r)^2 + \theta^2 + O(\theta^3 + (1 - r)^2)} \geq \frac{(1-r)^2 + \frac{\theta^2}{2} + O(\theta^3 + (1 - r)\theta^2)}{(1 - r)^2 + \theta^2 + O(\theta^3 + (1 - r)^2)} \geq \frac{1}{2}.
\]

On the other hand, \(f_e(r, \theta) = \frac{(1+r^2)\cos \theta - 2r}{(1+r^2-2r\cos \theta)} \neq 0 \) if \(r < 1 \), which implies that the minimum of \(f(r, \theta) \) cannot be attained in \(B_1(0) \). But for \(r = 1 \) and \(\theta \neq 0 \), it is easy to see that \(f(1, \theta) = \frac{1}{2} \) so we find \(\min_{B_1(0)} f(r, \theta) = \frac{1}{2} \).

Step 2. As in Lemma 2.7, we claim that for \(R > 0 \) large and \(|x - x_{e,j}| > R \varepsilon \), it holds

\[
\frac{1}{\varepsilon^2} \int_{B_2(x_{e,j})} e^{u_e + u_0}(1 - e^{u_e + u_0}) = o_R(1), \tag{2.73}
\]

where \(o_R(1) \to 0 \) as \(R \to +\infty \).

In fact, similar to Lemma 2.4, we can prove that \(u_e + 2\ln \varepsilon \leq C < +\infty \). If (2.73) was not true, by doing the blow-up analysis for \(u_e + 2\ln \varepsilon \leq C < +\infty \), we would find that \(u_e + 2\ln \varepsilon \) has a blow-up set \(\{0, z_2, \cdots, z_l\} \) with \(z_j \) satisfying (2.70). This is a contradiction.

Step 3. From Steps 1 and 2, we can prove (2.67) in the same way as in Lemma 2.11.

\[\square \]

Proof of the necessary part of Theorem 1.4. By Proposition 2.13, we find

\[M_{e,i} = M_{e,1} + o(1), \quad i = 1, \cdots, t; \quad M_{e,t} = M_{e,t+1} + o(1), \quad i = t + 1, \cdots, k, \]

and
\[M_{\varepsilon,t+1} = M_{\varepsilon,1} - 4\pi + o(1), \quad M_{\varepsilon,1} + \cdots + M_{\varepsilon,k} = 4N\pi. \]

So the first claim follows. The second claim can be proved by using the Pohozaev identity. \qed

3. Existence of bubbling solutions

In this section, we will prove Theorem 1.2 and the existence part of Theorem 1.4. More precisely, we will prove the following theorems.

Theorem 3.1. Suppose that \(k \) is a positive integer with \(k < \frac{N}{2} \). Let \(q = (q_1, \cdots, q_k) \) with \(q_j \notin \{p_1, \cdots, p_N\}, j = 1, \cdots, k \). Assume that \(q \) satisfies (1.12) and \(\deg(DG_{k}(q), 0) \neq 0 \). Then there is an \(\varepsilon_0 > 0 \), such that for any \(\varepsilon \in (0, \varepsilon_0) \), (1.6) has a solution \(u_\varepsilon \), satisfying

\[
\frac{1}{\varepsilon^2} e^{u_\varepsilon + u_0} (1 - e^{u_\varepsilon + u_0}) \to \frac{4\pi N}{k} \sum_{j=1}^{k} \delta_{q_j}
\]

as \(\varepsilon \to 0 \).

Theorem 3.2. Let \(\{q_1, \cdots, q_t, q_{t+1}, \cdots, q_k\} \) satisfy (1.15). Suppose that \(k \) and \(t \) satisfies \(k < \frac{1}{3}(N - t) \) and the weight \(m_i \) of each vortex point \(q_i \) is one. Assume that \(q = (q_{t+1}, \cdots, q_k) \) satisfies \(DG_{k}^*(q) = 0 \) and \(\deg(DG_{k}^*(q), 0) \neq 0 \). Then there is an \(\varepsilon_0 > 0 \), such that for any \(\varepsilon \in (0, \varepsilon_0) \), (1.6) has a solution \(u_\varepsilon \), satisfying

\[
\frac{1}{\varepsilon^2} e^{u_\varepsilon + u_0} (1 - e^{u_\varepsilon + u_0}) \to \frac{4\pi N + 4\pi (k - t)}{k} \sum_{i=1}^{t} \delta_{q_i} + \frac{4\pi N - 4\pi t}{k} \sum_{j=t+1}^{k} \delta_{q_j}
\]

as \(\varepsilon \to 0 \).

Let us point out that in Theorem 3.2, \(\{q_{t+1}, \cdots, q_k\} = \emptyset \) is allowed. Early results on the existence of single bubbling solutions of CS type can be found in [11, 25, 27]. To prove Theorems 3.2 and 3.1, it is essential to construct a good approximate solution for (1.6) without (1.14). This will be carried out in details in section 3.1. Once this is done, we can use a reduction argument to finish the proof. This part is quite standard, so we just sketch it. We refer to [25, 26, 27] for the details.

In the following, we only give the proof of Theorem 3.2, since the proof of Theorem 3.1 is very similar.

3.1. The approximate solutions

Without loss of generality, we assume that \(|\Omega| = 1 \). Firstly, we construct an approximate solution.

We want to construct an approximate solution for (1.6), whose blow-up set is

\[
\{q_1, \cdots, q_t, x_{\varepsilon,t+1}, \cdots, x_{\varepsilon,k}\}, \tag{3.1}
\]

where \(x_{\varepsilon,j} \) is close to \(q_j \), \(j = t + 1, \cdots, k \), and \(q_j \) is a vortex point, \(j = 1, \cdots, t \).

For bubble at \(x_{\varepsilon,j} \), we consider
\[
\begin{align*}
\Delta V + e^V (1 - e^V) &= 0, \quad V \text{ is radial, in } \mathbb{R}^2; \\
\int_{\mathbb{R}^2} e^V (1 - e^V) &= M_{\varepsilon,j},
\end{align*}
\]
where \(M_{\varepsilon,j}\) is a constant satisfying \(M_{\varepsilon,j} > 8\pi\). By Theorem 2.1 of [4], (3.2) has a solution \(V_{\varepsilon,j}(|x|)\), which has the following expansion:

\[
V_{\varepsilon,j}(|x|) = -\frac{M_{\varepsilon,j}}{2\pi} \ln |x| + I_{\varepsilon,j} + O\left(\frac{1}{|x|^2}\right), \quad \text{as } |x| \to +\infty,
\]
where \(I_{\varepsilon,j}\) is a constant, which depends on \(M_{\varepsilon,j}\) smoothly, and

\[
V'_{\varepsilon,j}(|x|) = -\frac{M_{\varepsilon,j}}{2\pi |x|} + O\left(\frac{1}{|x|^2}\right), \quad \text{as } |x| \to +\infty.
\]

The solution \(V_{\varepsilon,j}(|x|)\) forms the major part of the bubble near a regular point \(q\).

For bubble at the vortex point \(q\), we need to consider

\[
\begin{align*}
\Delta V + |x|^2 e^V (1 - |x|^2 e^V) &= 0, \quad V \text{ is radial, in } \mathbb{R}^2; \\
\int_{\mathbb{R}^2} |x|^2 e^V (1 - |x|^2 e^V) &= M_{\varepsilon,i}.
\end{align*}
\]

By Theorem 2.1 of [4], if \(M_{\varepsilon,i} > 16\pi\), (3.2) has a solution \(V_{\varepsilon,i}(|x|)\), which has the same expansions as in (3.3) and (3.4).

We will construct an approximate solution for (1.6) whose blow-up set is given by (3.1). For simplicity of the notations, we denote \(x_{\varepsilon,j} = q_j, j = 1, \ldots, t\). For \(j = t + 1, \ldots, k\), we let \(V_{\varepsilon,j}\) be the solution of (3.2). We define the approximate solution for (1.6) near \(x_{\varepsilon,j}\) as follows.

\[
\varphi_{\varepsilon,j}(x) = V_{\varepsilon,j}\left(\frac{|x - x_{\varepsilon,j}|}{\varepsilon}\right) + M_{\varepsilon,j} \left(\gamma(x, x_{\varepsilon,j}) - \gamma(x_{\varepsilon,j}, x_{\varepsilon,j})\right) + \sum_{i \neq j, 1 \leq i \leq k} M_{\varepsilon,i} (G(x, x_{\varepsilon,j}) - G(x_{\varepsilon,i}, x_{\varepsilon,j})) - u_0(x_{\varepsilon,j}), \quad j = t + 1, \ldots, k.
\]

For \(j = 1, \ldots, t\), we let \(V_{\varepsilon,j}\) be the solution of (3.5). We define the approximate solution for (1.6) near \(x_{\varepsilon,j}\) by

\[
\varphi_{\varepsilon,j}(x) = V_{\varepsilon,j}\left(\frac{|x - x_{\varepsilon,j}|}{\varepsilon}\right) + 2 \ln \frac{1}{\varepsilon} + M_{\varepsilon,j} \left(\gamma(x, x_{\varepsilon,j}) - \gamma(x_{\varepsilon,j}, x_{\varepsilon,j})\right) + \sum_{i \neq j, 1 \leq i \leq k} M_{\varepsilon,i} (G(x, x_{\varepsilon,j}) - G(x_{\varepsilon,i}, x_{\varepsilon,j})) - u_j(x_{\varepsilon,j}), \quad j = 1, \ldots, t,
\]

where \(u_j(x) = u_0(x) - 2 \ln |x - x_{\varepsilon,j}|\).

For \(x \in \Omega \setminus \{x_{\varepsilon,1}, \ldots, x_{\varepsilon,k}\}\), we define the approximate solution as

\[
\varphi_{\varepsilon,0}(x) = \sum_{i=1}^{k} M_{\varepsilon,i} G(x, x_{\varepsilon,i}) + L_{\varepsilon},
\]
where L_ε is a very negative constant, which is to be determined later.

To glue all the $\varphi_{\varepsilon,j}$ together to form an approximate solution for (1.6), we need to make $\varphi_{\varepsilon,j} = \varphi_{\varepsilon,0}$ on $\partial B_\varepsilon(x_{\varepsilon,j})$ up to a small term. By (3.3), we let $M_{\varepsilon,j}$ satisfy the following equations:

$$- M_{\varepsilon,j} \gamma(x_{\varepsilon,j}, x_{\varepsilon,j}) - \sum_{i \neq j, 1 \leq i \leq k} M_{\varepsilon,i} G(x_{\varepsilon,j}, x_{\varepsilon,i})$$
$$- \frac{M_{\varepsilon,j}}{2\pi} \ln \frac{1}{\varepsilon} + I_{\varepsilon,j} - u_0(x_{\varepsilon,j}) = L_\varepsilon, \quad j = t + 1, \ldots, k,$$

and

$$- M_{\varepsilon,j} \gamma(x_{\varepsilon,j}, x_{\varepsilon,j}) - \sum_{i \neq j, 1 \leq i \leq k} M_{\varepsilon,i} G(x_{\varepsilon,j}, x_{\varepsilon,i})$$
$$- \left(\frac{M_{\varepsilon,j}}{2\pi} - 2 \right) \ln \frac{1}{\varepsilon} + I_{\varepsilon,j} - u_j(x_{\varepsilon,j}) = L_\varepsilon, \quad j = 1, \ldots, t.$$

Therefore, for $j = t + 1, \ldots, k$,

$$M_{\varepsilon,j} - M_{\varepsilon,t+1}$$
$$+ \frac{2\pi}{\ln \varepsilon} \left(M_{\varepsilon,j} \gamma(x_{\varepsilon,j}, x_{\varepsilon,j}) - M_{\varepsilon,t+1} \gamma(x_{\varepsilon,t+1}, x_{\varepsilon,t+1}) - I_{\varepsilon,j} + I_{\varepsilon,t+1} \right)$$
$$+ \frac{2\pi}{\ln \varepsilon} \left(\sum_{i \neq j, 1 \leq i \leq k} M_{\varepsilon,i} G(x_{\varepsilon,j}, x_{\varepsilon,i}) - \sum_{i \neq t+1, 1 \leq i \leq k} M_{\varepsilon,i} G(x_{\varepsilon,t+1}, x_{\varepsilon,i}) \right)$$
$$= 2\pi \left(u_0(x_{\varepsilon,t+1}) - u_0(x_{\varepsilon,j}) \right), \quad j = t + 1, \ldots, k.$$

Similarly,

$$M_{\varepsilon,j} - M_{\varepsilon,1}$$
$$+ \frac{2\pi}{\ln \varepsilon} \left(M_{\varepsilon,j} \gamma(x_{\varepsilon,j}, x_{\varepsilon,j}) - M_{\varepsilon,1} \gamma(x_{\varepsilon,1}, x_{\varepsilon,1}) - I_{\varepsilon,j} + I_{\varepsilon,1} \right)$$
$$+ \frac{2\pi}{\ln \varepsilon} \left(\sum_{i \neq j, 1 \leq i \leq k} M_{\varepsilon,i} G(x_{\varepsilon,j}, x_{\varepsilon,i}) - \sum_{i = 2}^k M_{\varepsilon,i} G(x_{\varepsilon,1}, x_{\varepsilon,i}) \right)$$
$$= 2\pi \left(u_1(x_{\varepsilon,1}) - u_j(x_{\varepsilon,j}) \right), \quad j = 1, \ldots, t.$$

On the other hand, it is easy to find
\[M_{\epsilon,j} - M_{\epsilon,1} + 4\pi \\
+ \frac{2\pi}{\ln \epsilon} \left(M_{\epsilon,j} \gamma(x_{\epsilon,j}, x_{\epsilon,j}) - M_{\epsilon,1} \gamma(x_{\epsilon,1}, x_{\epsilon,1}) - I_{\epsilon,j} + I_{\epsilon,1} \right) \\
+ \frac{2\pi}{\ln \epsilon} \left(\sum_{i \neq j, 1 \leq i \leq k} M_{\epsilon,i} G(x_{\epsilon,j}, x_{\epsilon,i}) - \sum_{i=2}^{k} M_{\epsilon,i} G(x_{\epsilon,1}, x_{\epsilon,i}) \right) \\
= \frac{2\pi}{\ln \epsilon} \left(u_1(x_{\epsilon,1}) - u_0(x_{\epsilon,j}) \right), \quad j = t + 1, \ldots, k. \] (3.13)

Furthermore, we take
\[M_{\epsilon,1} + \cdots + M_{\epsilon,k} = 4\pi N. \] (3.14)

Noting that \(I_{\epsilon,j} \) depends on \(M_{\epsilon,j} \) smoothly, we can solve (3.11)–(3.14) to find
\[M_{\epsilon,j} = \frac{4\pi N + 4\pi(k - t)}{k} + O\left(\frac{1}{\ln \epsilon} \right), \quad j = 1, \ldots, t, \] (3.15)
and
\[M_{\epsilon,j} = \frac{4\pi N - 4\pi t}{k} + O\left(\frac{1}{\ln \epsilon} \right), \quad j = t + 1, \ldots, k. \] (3.16)

After \(M_{\epsilon,j} \) is determined as above, the constant \(L_{\epsilon} \) is determined by (3.9).

We are now ready to construct an approximate solution for (1.6). Let \(\chi \in C^\infty(\Omega) \) be a function satisfying \(\chi = 1 \) in \(B_d(0) \), \(\chi = 0 \) in \(\Omega \setminus B_{2d}(0) \), and \(0 \leq \chi \leq 1 \), where \(d > 0 \) is a small constant. Define
\[\varphi_{\epsilon,x} = \sum_{j=1}^{k} \chi(x - x_{\epsilon,j}) \varphi_{\epsilon,j} + \left(1 - \sum_{j=1}^{k} \chi(x - x_{\epsilon,j}) \right) \varphi_{\epsilon,0}. \] (3.17)

Using (3.14), we see that for \(x \in B_d(x_{\epsilon,j}), \ j = t + 1, \ldots, k, \)
\[\Delta \varphi_{\epsilon,x} - 4\pi N = \frac{1}{\epsilon^2} e_{V_{\epsilon,j}} \left(\frac{|x - x_{\epsilon,j}|}{\epsilon} \right) \left(e_{V_{\epsilon,j}} \left(\frac{|x - x_{\epsilon,j}|}{\epsilon} \right) - 1 \right). \] (3.18)

On the other hand, from (3.6),
\[\varphi_{\epsilon,x}(x) + u_0(x) = V_{\epsilon,j} \left(\frac{|x - x_{\epsilon,j}|}{\epsilon} \right) + O\left(|x - x_{\epsilon,j}| \right), \] (3.19)
which implies
\[\frac{1}{\epsilon^2} e_{V_{\epsilon,j}} \left(\frac{|x - x_{\epsilon,j}|}{\epsilon} \right) \left(e_{V_{\epsilon,j}} \left(\frac{|x - x_{\epsilon,j}|}{\epsilon} \right) - 1 \right) \]
\[= \frac{1}{\epsilon^2} e^{\varphi_{\epsilon,x}(x) + u_0(x)} \left(e^{\varphi_{\epsilon,x}(x) + u_0(x)} - 1 \right) + O\left(\frac{|x - x_{\epsilon,j}|}{\epsilon^2} e_{V_{\epsilon,j}} \left(\frac{|x - x_{\epsilon,j}|}{\epsilon} \right) \right), \quad x \in B_d(x_{\epsilon,j}). \] (3.20)
Combining (3.18) and (3.20), we are led to
\[
\Delta \varphi_{\varepsilon,x} - 4\pi N = \frac{1}{\varepsilon^2} e^{\varphi_{\varepsilon,x}(x) + u_0(x)} \left(e^{\varphi_{\varepsilon,x}(x) + u_0(x)} - 1 \right) \\
+ O \left(\frac{|x - x_{\varepsilon,j}|}{\varepsilon^2} \right), \quad x \in B_d(x_{\varepsilon,j}), \ j = t + 1, \ldots, k.
\]
(3.21)

On the other hand, for \(x \in B_{2d}(x_{\varepsilon,j}) \setminus B_d(x_{\varepsilon,j}) \), from (3.3) and (3.9), we obtain
\[
\varphi_{\varepsilon,j} - \varphi_{\varepsilon,0} = V_{\varepsilon,j} \left(\frac{|x - x_{\varepsilon,j}|}{\varepsilon} \right) - \frac{M_{\varepsilon,j}}{2\pi} \ln \frac{1}{|x - x_{\varepsilon,j}|} - M_{\varepsilon,j} \gamma(x_{\varepsilon,j}, x_{\varepsilon,j}) \\
- \sum_{i \neq j, 1 \leq i \leq k} M_{\varepsilon,i} G(x_{\varepsilon,i}, x_{\varepsilon,i}) - u_0(x_{\varepsilon,j}) - L_\varepsilon = O(\varepsilon^2),
\]
(3.22)
and from (3.4), we also obtain
\[
D \varphi_{\varepsilon,j} - D \varphi_{\varepsilon,0} = O(\varepsilon^2).
\]
(3.23)

Therefore,
\[
\Delta \varphi_{\varepsilon,x} - 4\pi N = \Delta \varphi_{\varepsilon,j} - 4\pi N + O(\varepsilon^2) \\
= \frac{1}{\varepsilon^2} e^{\varphi_{\varepsilon,x}(x) + u_0(x)} \left(e^{\varphi_{\varepsilon,x}(x) + u_0(x)} - 1 \right) \\
+ O \left(\frac{|x - x_{\varepsilon,j}|}{\varepsilon^2} \right), \quad x \in B_{2d}(x_{\varepsilon,j}) \setminus B_d(x_{\varepsilon,j}), \ j = t + 1, \ldots, k.
\]
(3.24)

Similarly, we have
\[
\Delta \varphi_{\varepsilon,x} - 4\pi N = \frac{1}{\varepsilon^2} \left| x - x_{\varepsilon,j} \right|^2 e^{V_{\varepsilon,j} \left(\frac{|x - x_{\varepsilon,j}|}{\varepsilon} \right)} \left(\frac{|x - x_{\varepsilon,j}|^2}{\varepsilon^2} e^{V_{\varepsilon,j} \left(\frac{|x - x_{\varepsilon,j}|}{\varepsilon} \right)} - 1 \right) \\
= \frac{1}{\varepsilon^2} e^{\varphi_{\varepsilon,x}(x) + u_0(x)} \left(e^{\varphi_{\varepsilon,x}(x) + u_0(x)} - 1 \right) \\
+ \frac{|x - x_{\varepsilon,j}|}{\varepsilon^2} O \left(\frac{|x - x_{\varepsilon,j}|^2}{\varepsilon^2} e^{V_{\varepsilon,j} \left(\frac{|x - x_{\varepsilon,j}|}{\varepsilon} \right)} \right), \quad x \in B_{2d}(x_{\varepsilon,j}) \setminus B_d(x_{\varepsilon,j}), \ j = 1, \ldots, t,
\]
(3.25)
and
\[
\Delta \varphi_{\varepsilon,x} - 4\pi N \\
= \frac{1}{\varepsilon^2} e^{\varphi_{\varepsilon,x}(x) + u_0(x)} \left(e^{\varphi_{\varepsilon,x}(x) + u_0(x)} - 1 \right) \\
+ \frac{|x - x_{\varepsilon,j}|}{\varepsilon^2} O \left(\frac{|x - x_{\varepsilon,j}|^2}{\varepsilon^2} e^{V_{\varepsilon,j} \left(\frac{|x - x_{\varepsilon,j}|}{\varepsilon} \right)} \right), \quad x \in B_d(x_{\varepsilon,j}), \ j = 1, \ldots, t.
\]
(3.26)
Moreover, using (3.14), we obtain
\[
\Delta \varphi_{\varepsilon,x} - 4\pi N = 0
\]
\[
= \frac{1}{\varepsilon^2} e^{\varphi_{\varepsilon,x}(x)+u_0(x)} \left(e^{\varphi_{\varepsilon,x}(x)+u_0(x) - 1} \right) + O(\varepsilon^2), \quad x \in \Omega \setminus \bigcup_{m=1}^k B_{2\varepsilon}(x_{\varepsilon,m}).
\] (3.27)

3.2. The reduction. Our objective is to find a solution for (1.6) near \(\varphi_{\varepsilon,x} \). Let \(u_\varepsilon = \varphi_{\varepsilon,x} + \omega_\varepsilon \) be a solution of (1.6). Then \(\omega_\varepsilon \) satisfies

\[
L_\varepsilon \omega_\varepsilon := \Delta \omega_\varepsilon - f_\varepsilon(x)\omega_\varepsilon = g_\varepsilon(x,\omega_\varepsilon),
\] (3.28)

where

\[
f_\varepsilon(x) = \frac{1}{\varepsilon^2} \sum_{i=1}^t \chi(x - x_{\varepsilon,i}) \left(2 \left| \frac{x - x_{\varepsilon,i}}{\varepsilon} \right|^4 e^{2\varepsilon \chi \left(\frac{|x - x_{\varepsilon,i}|}{\varepsilon} \right)} - \left| \frac{x - x_{\varepsilon,i}}{\varepsilon} \right|^2 e^{2\varepsilon \chi \left(\frac{|x - x_{\varepsilon,i}|}{\varepsilon} \right)} \right) + \frac{1}{\varepsilon^2} \sum_{i=t+1}^k \chi(x - x_{\varepsilon,i}) \left(2 e^{2\varepsilon \chi \left(\frac{|x - x_{\varepsilon,i}|}{\varepsilon} \right)} - e^{\varepsilon \chi \left(\frac{|x - x_{\varepsilon,i}|}{\varepsilon} \right)} \right),
\] (3.29)

and

\[
g_\varepsilon(x,t) = -f_\varepsilon(x)t + \frac{1}{\varepsilon^2} \left(e^{2(\varphi_{\varepsilon,x}+u_0+t)} - e^{\varphi_{\varepsilon,x}+u_0+t} \right) - 2(\varphi_{\varepsilon,x} + 4\pi N).
\] (3.30)

Let us introduce two function spaces \(X_{\alpha,\varepsilon} \) and \(Y_{\alpha,\varepsilon} \). Define

\[\rho(x) = (1 + |x|)^{1+\frac{\alpha}{2}}, \quad \hat{\rho}(x) = \frac{1}{(1 + |x|) \ln(2 + |x|)^{1+\frac{\alpha}{2}}}, \]

where \(\alpha > 0 \) is a fixed small constant.

Let \(\Omega' = \bigcup_{i=1}^k B_{\varepsilon}(x_{\varepsilon,i}) \). We say a function \(\xi \) is in \(X_{\alpha,\varepsilon} \) if

\[
\|\xi\|_{X_{\alpha,\varepsilon}}^2 = \sum_{i=1}^k \left(\|\Delta \tilde{\xi}_i \rho\|_{L^2(B_{2\varepsilon}(x_{\varepsilon,i}))} + \|\tilde{\xi}_i \rho\|_{L^2(B_{2\varepsilon}(x_{\varepsilon,i}))} \right) + \|\Delta \xi\|_{L^2(\Omega')}^2 + \|\xi\|_{L^2(\Omega')}^2 < +\infty,
\] (3.31)

where \(\tilde{\xi}_i(y) = \xi(\varepsilon y + x_{\varepsilon,i}), B_t = B_t(0) \). On the other hand, we say \(\xi \in Y_{\alpha,\varepsilon} \) if

\[
\|\xi\|_{Y_{\alpha,\varepsilon}}^2 = \varepsilon^4 \sum_{i=1}^k \|\tilde{\xi}_i \rho\|_{L^2(B_{2\varepsilon}(x_{\varepsilon,i}))}^2 + \|\xi\|_{L^2(\Omega')}^2 < +\infty.
\] (3.32)

Define

\[
Z_{\varepsilon,i,h} = -\Delta \left(\chi(x - x_{\varepsilon,i}) \frac{\partial V_{\varepsilon,i} \left(\frac{x - x_{\varepsilon,i}}{\varepsilon} \right)}{\partial x_{ih}} \right) + \frac{1}{\varepsilon^2} e^{\chi \left(\frac{|x - x_{\varepsilon,i}|}{\varepsilon} \right)} \chi(x - x_{\varepsilon,i}) \frac{\partial V_{\varepsilon,i} \left(\frac{x - x_{\varepsilon,i}}{\varepsilon} \right)}{\partial x_{ih}},
\] (3.33)

for \(h = 1, 2, i = t + 1, \cdots, k \).
\[E_\varepsilon = \{ \omega : \omega \in X_{\alpha,\varepsilon}, \int_\Omega Z_{\varepsilon,i,h} \omega = 0, \ h = 1, 2, \ i = t + 1, \cdots, k \} \]
and
\[F_\varepsilon = \{ \omega : \omega \in Y_{\alpha,\varepsilon}, \int_\Omega \chi(x - x_{\varepsilon,i}) \frac{\partial V_{\varepsilon,i}(\frac{x - x_{\varepsilon,i}}{\varepsilon})}{\partial x_{i,h}} \omega = 0, \ h = 1, 2, \ i = t + 1, \cdots, k \}. \]

We define the following projection operator from \(Y_{\alpha,\varepsilon} \) to \(F_\varepsilon \):

\[Q_\varepsilon u = u - \sum_{i=t+1}^k \sum_{h=1}^2 c_{ih} Z_{\varepsilon,i,h}, \]
where the constants \(c_{ih} \) are chosen in such a way that \(Q_\varepsilon u \in F_\varepsilon \). Then it is easy to check that

\[\|Q_\varepsilon u\|_{Y_{\alpha,\varepsilon}} \leq C \|u\|_{Y_{\alpha,\varepsilon}}. \]

We have

Proposition 3.3. There is an \(\varepsilon_0 > 0 \), such that for each \(\varepsilon \in (0, \varepsilon_0] \) and \((x_{\varepsilon,t+1}, \cdots, x_{\varepsilon,k}) \) near \(q \), there exists \(\omega_\varepsilon \in E_\varepsilon \), satisfying

\[Q_\varepsilon(L_\varepsilon \omega_\varepsilon - g_\varepsilon(x, \omega_\varepsilon)) = 0. \]
Moreover, \(\omega_\varepsilon \) is a \(C^1 \) map of \((x_{\varepsilon,t+1}, \cdots, x_{\varepsilon,k}) \) in \(X_{\alpha,\varepsilon} \), and

\[\|\omega_\varepsilon\|_{L^\infty(\Omega)} + \|\omega_\varepsilon\|_{X_{\alpha,\varepsilon}} \leq C \varepsilon \ln \frac{1}{\varepsilon}. \]

Proof. By Theorem A.1, (3.38) can be rewritten as

\[\omega = B_\varepsilon \omega =: (Q_\varepsilon L_\varepsilon)^{-1} Q_\varepsilon g_\varepsilon(x, \omega). \]
and

\[\|B_\varepsilon \omega\|_{L^\infty(\Omega)} + \|B_\varepsilon \omega\|_{X_{\alpha,\varepsilon}} \leq C \ln \frac{1}{\varepsilon} \|g_\varepsilon(x, \omega)\|_{Y_{\alpha,\varepsilon}}. \]

Fix a small constant \(\theta > 0 \). Let

\[S_\varepsilon = \{ \omega : \omega \in E_\varepsilon, \|\omega\|_{L^\infty(\Omega)} + \|\omega\|_{X_{\alpha,\varepsilon}} \leq \varepsilon^{1-\theta} \}. \]
We will prove that \(B_\varepsilon \) is a contraction map from \(S_\varepsilon \) to \(S_\varepsilon \).

To prove that \(B_\varepsilon \) maps \(S_\varepsilon \) to \(S_\varepsilon \), we use the definition of \(g_\varepsilon(x, \omega) \) in (3.30) to obtain

\[\|g_\varepsilon(x, \omega)\|_{Y_{\alpha,\varepsilon}} \leq C \varepsilon, \]
which gives
\[\|B_\varepsilon \omega\|_{L^\infty(\Omega)} + \|B_\varepsilon \omega\|_{X_{\alpha,\varepsilon}} \leq C \ln \frac{1}{\varepsilon} \|g_\varepsilon(x, \omega)\|_{Y_{\alpha,\varepsilon}} \leq C \varepsilon \ln \frac{1}{\varepsilon} \leq \varepsilon^{1-\theta}. \] (3.41)

So, \(B_\varepsilon\) maps \(S_\varepsilon\) to \(S_\varepsilon\).

To show that \(B_\varepsilon\) is a contraction map, for any \(\omega, \eta \in S_\varepsilon\), we note
\[
\|B_\varepsilon(\omega) - B_\varepsilon(\eta)\|_{L^\infty(\Omega)} + \|B_\varepsilon(\omega) - B_\varepsilon(\eta)\|_{X_{\alpha,\varepsilon}} \leq C \ln \frac{1}{\varepsilon} \|g_\varepsilon(x, \omega) - g_\varepsilon(x, \eta)\|_{Y_{\alpha,\varepsilon}}.
\] (3.42)

On the other hand, it is easy to check that
\[
\|g_\varepsilon(x, \omega) - g_\varepsilon(x, \eta)\|_{Y_{\alpha,\varepsilon}} \leq C \varepsilon^{1-\theta} \|\omega - \eta\|_{X_{\alpha,\varepsilon}},
\]
which, together with (3.42), gives
\[
\|B_\varepsilon(\omega) - B_\varepsilon(\eta)\|_{L^\infty(\Omega)} + \|B_\varepsilon(\omega) - B_\varepsilon(\eta)\|_{X_{\alpha,\varepsilon}} \leq \frac{1}{2} \|\omega - \eta\|_{X_{\alpha,\varepsilon}}.
\] (3.43)

So, we have proved that \(B_\varepsilon\) is a contraction map.

By the contraction mapping theorem, there is a unique \(\omega_\varepsilon \in S_\varepsilon\), such that \(\omega_\varepsilon = B_\varepsilon \omega_\varepsilon\). Moreover, it follows from (3.41) that
\[
\|\omega_\varepsilon\|_{L^\infty(\Omega)} + \|\omega_\varepsilon\|_{X_{\alpha,\varepsilon}} = \|B_\varepsilon \omega_\varepsilon\|_{L^\infty(\Omega)} + \|B_\varepsilon \omega_\varepsilon\|_{X_{\alpha,\varepsilon}} \leq C \varepsilon \ln \frac{1}{\varepsilon}.
\]

From the uniqueness, it is standard to prove \(\omega_\varepsilon\) is a \(C^1\) map of \((x_{\varepsilon,t+1}, \cdots, x_{\varepsilon,k})\) in \(X_{\alpha,\varepsilon}\).

3.3. Existence of bubbling solutions. By Proposition 3.3, there is \(\omega_\varepsilon \in S_\varepsilon\), satisfying
\[
L_\varepsilon \omega_\varepsilon - g_\varepsilon(x, \omega_\varepsilon) = \sum_{i=t+1}^{k} \sum_{h=1}^{2} c_{\varepsilon,i,h} Z_{\varepsilon,i,h},
\] (3.44)
for some constants \(c_{\varepsilon,i,h}\). If \(t = k\), Proposition 3.3 gives the existence of a solution for (1.6), whose blow-up set consists of vortex points only. In the case \(t < k\), we need to choose \((x_{\varepsilon,t+1}, \cdots, x_{\varepsilon,k})\) in \(X_{\alpha,\varepsilon}\) suitably, such that the corresponding \(c_{\varepsilon,i,h}\) are zero. So, \(\varphi_{\varepsilon,x} + \omega_\varepsilon\) is a true solution of (1.6). It is well known now that we just need to make \((x_{\varepsilon,t+1}, \cdots, x_{\varepsilon,k})\) satisfy the following equations.

\[
\int_{\Omega} \left(L_\varepsilon \omega_\varepsilon - g_\varepsilon(x, \omega_\varepsilon) \right) \chi(x - x_{\varepsilon,j}) \frac{\partial V_{\varepsilon,j} \left(\frac{x-x_{\varepsilon,j}}{\varepsilon} \right)}{\partial x_{jl}} = 0, \quad l = 1, 2, \ j = t + 1, \cdots, k.
\] (3.45)

Proof of Theorem 3.2. We just need to solve (3.45). Similar to the calculations in [25], it is not difficult to show that there is a constant \(a_j \neq 0\), such that
\[
\int_{\Omega} \left(L_\varepsilon \omega_\varepsilon - g_\varepsilon (x, \omega_\varepsilon) \right) \chi (x - x_{\varepsilon,j}) \frac{\partial V_{\varepsilon,j} (x - x_{\varepsilon,j})}{\partial x_{jl}}
\]
\[= a_j \left(D_l u_0 (x_{\varepsilon,j}) + \sum_{i \neq j} M_{\varepsilon,i} D_l G(x_{\varepsilon,i}, x_{\varepsilon,j}) \right) + O(\varepsilon), \quad j = t + 1, \ldots, k. \tag{3.46}
\]

So, by (3.15) and (3.16), we find that (3.45) is equivalent to
\[
D_l u_0 (x_{\varepsilon,j}) + \frac{4 \pi N + 4 \pi (k - t)}{k} \sum_{i=1}^{t} D_l G(x_{\varepsilon,i}, x_{\varepsilon,j})
\]
\[+ \frac{4 \pi N - 4 \pi t}{k} \sum_{i \neq j} D_l G(x_{\varepsilon,i}, x_{\varepsilon,j}) = o(1), \quad l = 1, 2, \quad j = t + 1, \ldots, k. \tag{3.47}
\]

By the assumption \(\text{deg}(DG^*_k(q, 0)) \neq 0 \), (3.47) has a solution \((x_{\varepsilon,t+1}, \ldots, x_{\varepsilon,k})\) near \(q\) if \(\varepsilon > 0\) is small. Thus the theorem follows.

\[\square\]

Appendix A. A Linear Equation

Consider the following linear operator \(L_\varepsilon\) defined in (3.28). In this section, we will prove the following result.

Theorem A.1. Suppose that \(w_\varepsilon \in E_\varepsilon\) and \(h_\varepsilon \in F_\varepsilon\) satisfy
\[
L_\varepsilon w_\varepsilon = h_\varepsilon + \sum_{i=t+1}^{k} \sum_{h=1}^{2} c_{ih} Z_{\varepsilon,i,h}, \tag{A.1}
\]
for some constants \(c_{ih}\). Then there is a constant \(C > 0\), independent of \(\varepsilon\), such that
\[
\|w_\varepsilon\|_{L^\infty(\Omega)} + \|w_\varepsilon\|_{X_{\alpha,\varepsilon}} \leq C \left(\ln \frac{1}{\varepsilon} \right) \|h_\varepsilon\|_{Y_{\alpha,\varepsilon}}. \tag{A.2}
\]
Moreover, \(Q_\varepsilon L_\varepsilon\) is an isomorphism from \(E_\varepsilon\) to \(F_\varepsilon\).

Proof. To prove (A.2), we argue by contradiction. Suppose that there are \(\varepsilon_n \to 0\), \(w_n \in E_{\varepsilon_n}\), \(h_n \in F_{\varepsilon_n}\), satisfying
\[
L_{\varepsilon_n} w_n = h_n + \sum_{i=t+1}^{k} \sum_{h=1}^{2} c_{ih} Z_{\varepsilon_n,i,h}, \tag{A.3}
\]
\[
\|w_n\|_{L^\infty(\Omega)} + \|w_n\|_{X_{\alpha,\varepsilon_n}} = 1, \tag{A.4}
\]
and
\[
\|h_n\|_{Y_{\alpha,\varepsilon_n}} = o \left(\frac{1}{\ln \varepsilon_n} \right). \tag{A.5}
\]
Step 1. We claim
\[|c_{ih}| \leq C \varepsilon_n^2 | \ln \varepsilon_n |. \]
(A.6)

This can be proved by solving a linear system of \(c_{ih} \), which is obtained by multiplying \((A.3) \) by \(\chi(x - x_{\varepsilon,i}) \frac{\partial \psi_{e,j}}{\partial x_{\varepsilon,j}} \) and integrating this relation on \(\Omega \).

Step 2. For any \(R > 0 \), we have
\[\max_{x \in B_{R}(x_{\varepsilon,i})} |w_n(x)| \to 0, \quad i = t + 1, \cdots, k. \]
(A.7)

Define \(\tilde{w}_n(y) = w_n(\varepsilon_n y + x_{\varepsilon,i}) \). Then \(|\tilde{w}_n| \leq 1 \). Moreover, \(\tilde{w}_n \) satisfies
\[\Delta \tilde{w}_n - \varepsilon^2 f_\varepsilon(\varepsilon_n y + x_{\varepsilon,i}) \tilde{w}_n = \varepsilon^2 h_n(\varepsilon_n y + x_{\varepsilon,i}) + \varepsilon^2 \sum_{l=t+1}^{k} \sum_{h=1}^{2} c_{lh} Z_{\varepsilon,n,l,h}(\varepsilon_n y + x_{\varepsilon,i}). \]

Using Step 1 and \(w_n \in E_{\varepsilon_n} \), we can prove that \(\tilde{w}_n \to 0 \) uniformly in any compact subset of \(\mathbb{R}^2 \).

Step 3. We claim that there is a constant \(b_0 \), such that for any small \(c' > 0 \),
\[w_n(x) = b_0 + o(1), \quad \forall \ x \in \Omega \setminus \cup_{i=1}^{k} B_{c'}(q_i). \]
(A.8)

Since \(|w_n| \leq 1 \), we find that \(w_n \to w_0 \) on any compact subset of \(\Omega \setminus \{q_1, \cdots, q_k\} \) and \(\Delta w_0 = 0 \). As a result, \(w_0 = b_0 \) for some constant \(b_0 \).

Step 4. Let \(w_{n,i}^*(r) = \int_{0}^{2\pi} w_n(r, \theta) d\theta, \ r = |x - x_{\varepsilon,i}| \). We claim
\[w_{n,i}^*(r) = o(1), \quad r \leq d, \quad i = 1, \cdots, k. \]
(A.9)

For \(i = m + 1, \cdots, k \), let \(\psi_{n,i}(r) \), \(r = |x - x_{\varepsilon,n,i}| \), be the solution of
\[-\Delta \psi = \varepsilon_n \left(2e^{2 \varepsilon_n \left(\frac{|x - x_{\varepsilon,n,i}|}{\varepsilon_n} \right)} - e^{2 \varepsilon_n \left(\frac{|x - x_{\varepsilon,n,i}|}{\varepsilon_n} \right)} \right) \psi \]

satisfying \(\psi_{n,i}(r) = M \ln \frac{|x - x_{\varepsilon,n,i}|}{\varepsilon_n} + O(1), \ M > 0, \) for \(|x - x_{\varepsilon,n,i}| \geq c_0 > 0 \). We have the following relation
\[\int_{\partial B_r(x_{\varepsilon,n,i})} \left(\psi_{n,i} \frac{\partial w_n}{\partial \nu} - w_n \frac{\partial \psi_{n,i}}{\partial \nu} \right) = \int_{B_r(x_{\varepsilon,n,i})} \left(\psi_{n,i} \Delta w_n - w_n \Delta \psi_{n,i} \right) \]
\[= \int_{B_r(x_{\varepsilon,n,i})} \left(h_n + \sum_{l=t+1}^{k} \sum_{h=1}^{2} c_{lh} Z_{\varepsilon,n,l,h} \right) \psi_{n,i} \]
\[= O \left(\|h_n\|_{Y_{\varepsilon_n}} + \varepsilon_n^2 | \ln \varepsilon_n | \right). \]

So we have
\[\psi_{n,i}(w_{n,i}^*) - w_{n,i}^* \psi_{n,i} = \frac{1}{r} O \left(\|h_n\|_{Y_{\varepsilon_n}} + \varepsilon_n^2 | \ln \varepsilon_n | \right), \]
(A.11)
which gives
\[\left(\frac{w_{n,i}^*}{\psi_{n,i}^*} \right)' = \frac{1}{r \psi_{n,i}^2(r)} O\left(\|h_n\| y_{n,\varepsilon_n} + \varepsilon_n^2 |\ln \varepsilon_n|\right). \] (A.12)

Integrate (A.12) to obtain
\[w_{n,i}^*(r) = \frac{w_{n,i}^*(\varepsilon_n R)}{\psi_{n,i}^*(\varepsilon_n R)} \psi_{n,i}^*(r) + |\ln \varepsilon_n| O\left(\|h_n\| y_{n,\varepsilon_n} + \varepsilon_n^2 |\ln \varepsilon_n|\right) \]
\[= \frac{w_{n,i}^*(\varepsilon_n R)}{\psi_{n,i}^*(\varepsilon_n R)} \psi_{n,i}^*(r) + o(1). \] (A.13)

Since \(|w_{n,i}^*| \leq 1\) and \(\psi_{n,i}^*(r) \sim \ln \varepsilon_n\) for \(r \geq c' > 0\), we obtain from (A.13) that \(w_{n,i}^*(\varepsilon_n R) = 0\). Thus, (A.9) follows if \(i = t + 1, \ldots, k\).

For \(i = 1, \ldots, t\), to prove (A.9), we just need to replace \(\psi_{n,i}\) by the solution of the following problem:
\[-\Delta v = \frac{1}{\varepsilon_n^2} \left(2\frac{|x - x_{\varepsilon_n,i}|^4}{\varepsilon_n^4} e^{2V_{n,i}} \left(\frac{|x - x_{\varepsilon_n,i}|}{\varepsilon_n}\right) - \frac{|x - x_{\varepsilon_n,i}|^2}{\varepsilon_n^2} e^{V_{n,i}} \left(\frac{|x - x_{\varepsilon_n,i}|}{\varepsilon_n}\right)\right) v \]
satisfying \(\psi_{n,i}(r) = M \ln \frac{|x - x_{n,i}|}{\varepsilon_n} + O(1), M > 0, \text{ for } |x - x_{n,i}| \geq c_0 > 0\).

Step 5. It follows from Step 4, the constant \(b_0\) in (A.8) must be zero.

Step 6. Let \(x_n^*\) be a maximum point of \(w_n\). Then from Steps 2 and 5, we have
\[x_n^* \to q_j, \quad \varepsilon^{-1}|x_n^* - x_{\varepsilon_n,j}| \to +\infty, \] (A.14)
for some \(j = 1, \ldots, k\).

Let \(s_n = |x_n^* - x_{\varepsilon_n,j}|\) and \(\bar{w}_n = w_n(s_n x + x_{\varepsilon_n,j})\). Then \(\bar{w}_n\left(s_n^{-1}(x_n^* - x_{\varepsilon_n,j})\right) = 1\) and \(\bar{w}_n \to \bar{w}_0\) in any compact subset of \(\mathbb{R}^2 \setminus \{0\}\). In view of (A.14), \(\bar{w}_0\) satisfies \(\Delta \bar{w}_0 = 0\). Thus, \(\bar{w}_0 = 1\). In particular,
\[w_n(x) \geq \frac{1}{2}, \quad s_n \leq |x - x_{\varepsilon_n,j}| \leq 2s_n. \]
This is a contradiction to (A.9). So we complete the proof of Theorem A.1.

\[\square \]

Acknowledgement. The work of the second author is partially supported by ARC.

References

[16] Han, X.; C.-S.Lin; Tarantello, G.; Yang, Y.: Chern-Simons vortices in the Gudnason model, preprint.

TAIDA INSTITUTE OF MATHEMATICAL SCIENCES, CENTER FOR ADVANCED STUDY, NATIONAL TAIWAN UNIVERSITY, TAIPEI 106, TAIWAN.
E-mail address: cslin@math.ntu.edu.tw

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF NEW ENGLAND, ARMIDALE, NSW 2351, AUSTRALIA
E-mail address: syan@turing.une.edu.au