

ANZGSF April 1, 2022

N=2 supergravity in D=4 < Arithmetic of families of < Calabi-Yau 3-folds

 $\rightarrow \text{ on } \mathbb{R}^{3,1} \times X$ > families of

Review of Calabi-Yau namifolds:
X compact, Kähler manifold of dimension n
s.t. Ric(g) = 0 for a Kähler metric g.
Properties:
- Hodge de composition :
$$H^{n}(X, \mathbb{C}) = \bigoplus_{k=0}^{n} H^{k,n-k}$$

- dim_C $H^{n,0} = 1$, genevator $\mathfrak{L} \in \mathfrak{L}^{n,0}_{ol}(X)$
- netric y can be deformed (keeping the
Calabi-Yau condition) by changing the
Calabi-Yau condition) by changing the
Calabi-Yau condition) by changing the
Complex str. and the Kähler str
in dependently
 $\mathcal{M} = parametor space of cplx. str. def.$
 \mathcal{M} is a Kähler menifold s.t. the
Riemann tensor satisfies
 $R_{ijk} = C_{ik} C_{jk}^{-n} - G_{ij} S_k^{-n} - G_{kj} S_i^{-n}$
where $G_{ij} > \mathfrak{I}_i \mathfrak{I}_j K$ is the Kähler metric
 $K = -\log g i \int_X \mathfrak{L} \Lambda \mathfrak{L}$
 C_{ijk} is holow, symmetric 3-tensor on \mathcal{M}
 \mathcal{M} is called special Kähler menifold

(Candelas, de lo Osse; Strominger '90) Fred '98 Attractor CY manifolds: Consider N=2 supersymmetric black hole solutions in IB supergravity obtained compactifying IIB string theory on a Calabi- icu 3 fold Xz, ZEM, and charge $\gamma \in H_3(X_2, \mathbb{Z})$. N=2 supersymmetry algebra has a central drange $\left\{Q_{\chi}^{\perp}, Q_{\beta}^{\gamma}\right\} = \varepsilon_{\alpha\beta}\varepsilon^{\perp}Z$ I,J=1,2 Bogomulayi bound: m > 121 BPS state: m = [2], preserves half of of the super charges. We have $Z_{\chi}(z) = e^{K/2} \int_{\chi} \Omega_{z}$

Ansatz for the black hole metric:

$$ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}dt^{2}$$
r radial coord., vanishing at horizon.
(Ferrara, Kallosh, Strominger '95:)

$$\frac{du(p)}{dp} = -e^{u(p)} |Z_{\gamma}(z)| \qquad p = r$$

$$\frac{dz(p)}{dp} = -2e^{u(p)} G^{2z} \partial_{z} |Z_{\gamma}(z)|$$
with $U(p=0) = 0$ (asymptotically flat)
horizon at $p = \infty$
 $z(p)$ has a fixed point z_{x} which only
depends on γ :

The endpoint
$$z_{\chi}$$
 of the attractor flow
is a minimum of $|Z_{\chi}(z)|$, independent
of the starting point z_{∞} .
(Near the horizon: metric is $AdS_2 \times S^2$)
area $A = 4\pi |Z_{\chi}(z_{\chi})|^2$
M is special Kähler \Rightarrow
arithmetrically important condition:
let $\Gamma \in H^3(\chi_{\chi}Z)$ he dual to $\chi \in H_3(\chi_{z_1}Z)$
 $H^3(\chi_{z_1}C) = H^{3,0} \oplus H^{2,1} \oplus H^{1/2} \oplus H^{0/3}$
For $z = z_{\chi}$, $\Gamma \in H^{3,0} \oplus H^{0,3}$
 $V = (H^{3,0} \oplus H^{0,3}) \cap H^3(\chi_{z_{\chi}}R)$ is a
real 2-plane spanned by ReS2, ImS2
 $N \cap H^3(\chi_{\chi}Z) = \begin{cases} 20 & no attractor pt. \\ Z^2 & J & of rk lor 2, \\ Moore '98 \end{cases}$

Found using arithmetric: Take X defined over Q, i.e. X = {f=0} f is a polynomial with coefficients in R and counts solutions to f=0 in finite fields IFp for all primes p.

Bonisch, Klemm, S, Zeigier 22:
values of
$$|Z_{g}(z)| = |e^{K/2} \int_{z} \int_{z} |$$

(for the 14 hypergeometric cases)

Wha	t are	periods?
	72	integers
	n.	
R >	R	rational numbers
	\cap	
	$\widetilde{\mathbb{Q}}$	algebraic numbers = roots of
		a nonzero polynomial in 1
		variatele with rational coeff.
		$(\alpha, \gamma, \gamma, \gamma) = 3$
	P	periods = values of integrals of
		algebraic coefficiente over domains
		in R given by polynomial
		coefficients (Kontservide-Zegler 101)
	\cap	
	\Box	Complex numbers

$$E_{\tau} = \frac{C}{L_{\tau}}, \quad L_{\tau} = \mathbb{Z} \oplus \mathbb{Z}\tau$$

$$a\tau^{2} + b\tau + c = 0 \quad a,b,c \in \mathbb{Z},$$

$$\tau = -\frac{b + \sqrt{D}}{2a} \qquad D = b^{2} - 4ac$$

$$\omega L_{\tau} \subset L_{q}, \quad \omega = \frac{b + \sqrt{D}}{2} = \frac{D + \sqrt{D}}{2} \mod \mathbb{Z}$$