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Fourier Transform

Fourier series for f : S1 → R

f̂ (n) =
1

2π

∫ 2π

0
f (x) e−inx dx

f (x) =
∑
n∈Z

f̂ (n) einx

Fourier transform for f : R→ R

f̂ (p) =
1

2π

∫ ∞
−∞

f (x) e−ipx dx

f (x) =

∫ ∞
−∞

f̂ (p) eipx dp
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Fourier Transform - cont’d

More generally, for G a locally compact, abelian group, we have
a Fourier transform F : Fun(G)→ Fun(Ĝ)

f̂ (p) =

∫
G

f (x) e−ipx dx = F(f )(p)

f (x) =

∫
Ĝ

f̂ (p) eipx dp

where
Ĝ = Hom(G,U(1)) = char(G)

is the Pontryagin dual of G. I.e. a character is a U(1) valued
function on G, satisfying χ(x + y) = χ(x)χ(y).
The characters form a locally compact, abelian group Ĝ under
pointwise multiplication.
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Fourier Transform - cont’d

G = S1 , Ĝ = Z , einx

G = R , Ĝ = R , eipx

We can think of χ(x ,p) = eipx ∈ Fun(G× Ĝ) as the ‘universal’
character.
Fourier transform expresses the fact that the characters of G
span Fun(G).
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Fourier Transform - cont’d

I.e. we have the following “correspondence”

G× Ĝ
π

}}

π̂

!!
G Ĝ

F f = π̂∗(π
∗(f )× χ(x ,p))
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Fourier Transform - Geometric generalisations

T-duality is a geometric version of harmonic analysis, i.e. by
replacing functions by geometric objects (such as bundles,
sheaves, D-modules, ...) or, as an intermediate step, by
topological characteristics associated to these objects
(cohomology, K-theory, derived categories, ...).
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Fourier-Mukai transform

Consider a manifold P = M × S1. By the Künneth theorem we
have

H•(P) ∼= H•(M)⊗ H•(S1)

I.e.
Hn(P) ∼= Hn(M)⊕ Hn−1(M)

We have a similar decomposition at the level of forms

Ωn(P)inv ∼= Ωn(M)⊕ Ωn−1(M) .

I.e. invariant degree n forms on P are of the form ω or ω ∧ dθ,
where ω is an n, respectively n − 1, form on M.

Consider P̂ = M × Ŝ1. We have an isomorphism

F : H i(P)
∼=−−−−→ H i+1(P̂)
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Fourier-Mukai transform - cont’d

where

H0(P) =
⊕
i≥0

H2i(P) , H1(P) =
⊕
i≥0

H2i+1(P) ,

Explicitly
ω 7→ d θ̂ ∧ ω , dθ ∧ ω 7→ ω

or

FΩ =

∫
S1

(1 + dθ ∧ d θ̂) Ω =

∫
S1

edθ∧d θ̂ Ω =

∫
S1

eF Ω
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Fourier-Mukai transform - cont’d

I.e. F is given by a correspondence

FΩ = p∗ (p̂∗Ω ∧ eF )

M × S1 × Ŝ1

p̂

xx

p

&&

M × S1

π
''

M × Ŝ1

π̂
ww

M
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Fourier-Mukai transform - cont’d

Once we recognize that F = dθ ∧ d θ̂ is the curvature of a
canonical linebundle P (the Poincaré linebundle) over S1 × Ŝ1,
in fact eF = ch(P), this immediately suggests a
‘geometrization’ in terms of vector bundles over P and P̂. (∗)

FE = p∗ (p̂∗ E ⊗ P)

This gives rise to the so-called Fourier-Mukai transform

F : K i(P)
∼=−−−−→ K i+1(P̂)

which has many of the properties of the Fourier transform
discussed earlier.

The discussion can be generalized to complexes of vector
bundles (complexes of sheaves) and thus gives rise to a
Fourier-Mukai correspondence between derived categories
D(P) and D(P̂).
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T-duality - Closed string on M × S1

Closed strings on M × S1 are described by

X : Σ → M × S1

where Σ = {(σ, τ)} is the closed string worldsheet.
Upon quantization, we find

Momentum modes: p = n
R

Winding modes: X (0, τ) ∼ X (1, τ) + mR

E =
( n

R

)2
+ (mR)2 + osc. modes

We have a duality R → 1/R, such that ST on M × S1 is
equivalent to ST on M × Ŝ1 (or a duality between IIA and IIB
ST, for susy ST)
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T-duality - Principal S1-bundles

Suppose we have a pair (P,H), consisting of a principal circle
bundle

S1 // P

π
��

M

and a so-called H-flux H on P, a Čech 3-cocycle.

Topologically, P is classified by an element in F ∈ H2(M,Z)
while H gives a class in H3(P,Z)
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T-duality - Principal S1-bundles

The (topological) T-dual of (P,H) is given by the pair (P̂, Ĥ),
where the principal S1-bundle

Ŝ1 // P̂

π̂
��

M

and the dual H-flux Ĥ ∈ H3(P̂,Z), satisfy

F̂ = π∗H , F = π̂∗Ĥ

where π∗ : H3(P,Z)→ H2(M,Z), is the pushforward map
(‘integration over the S1-fibre’).
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T-duality - Principal S1-bundles

The ambiguity in the choice of Ĥ is (almost) removed by
requiring that

p̂∗H − p∗Ĥ ≡ 0 ∈ H3(P ×M P̂,Z)

where P ×M P̂ is the correspondence space

P ×M P̂ = {(x , x̂) ∈ P × P̂ | π(x) = π̂(x̂)}

P ×M P̂
p̂=1⊗π̂

||

p=π⊗1

""
P

π
##

P̂

π̂{{
M
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T-duality - Principal S1-bundles

Gysin sequences

· · · // H3(M)
π∗
// H3(P)

π∗ // H2(M)
∪F // H4(M) // · · ·

· · · // H3(M)
π̂∗
// H3(P̂)

π̂∗ // H2(M)
∪F̂ // H4(M) // · · ·
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T-duality - Principal S1-bundles

0
∪F̂ //

∪F

��

H1(M)
π̂∗ //

∪F

��

H1(P̂)
π̂∗ //

∪π̂∗F

��

H0(M)
∪F̂ //

∪F

��

H2(M) //

∪F

��

· · ·

H1(M)
∪F̂ //

π∗

��

H3(M)
π̂∗ //

π∗

��

H3(P̂)
π̂∗ //

p∗

��

H2(M)
∪F̂ //

π∗

��

H4(M) //

π∗

��

· · ·

H1(P)
∪π∗ F̂ //

π∗

��

H3(P)
p̂∗ //

π∗

��

H3(P ×M P̂)
p̂∗ //

p∗

��

H2(P)
∪π∗ F̂ //

π∗

��

H4(P) //

π∗

��

· · ·

H0(M)
∪F̂ //

��

H2(M)
π̂∗ //

��

H2(P̂)
π̂∗ //

��

H1(M)
∪F̂ //

��

H3(M) //

��

· · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Peter Bouwknegt T-duality - A pedagogical introduction



T-duality - Examples

Consider principal S1-bundles P over M = S2, then

H2(M,Z) ∼= Z , H3(P,Z) ∼= Z

and we have, for example,

(S2 × S1,0) −→ (S2 × S1,0)

(S2 × S1,1) −→ (S3,0)

or more generally
(Lp, k) −→ (Lk ,p)

where Lp = S3/Zp is the lens space.
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T-duality - Twisted cohomology

Using Ωk (P)inv ∼= Ωk (M)⊕ Ωk−1(M)

F = dA , H = H(3) + A ∧ H(2)

we find
F̂ = H(2) = dÂ , Ĥ = H(3) + Â ∧ F

such that

Ĥ − H = Â ∧ F − A ∧ F̂ = d(A ∧ Â) .

Theorem
We have an isomorphism of (Z2-graded) differential complexes

T∗ : (Ω(P)inv,dH) −→ (Ω(P̂)inv,dĤ)

where dH = d + H∧.
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T-duality - Twisted cohomology

Proof.
Define

T∗ω =

∫
S1

eA∧Â ω

then
dH T∗ = T∗ dĤ .

and consequently, we have isomorphisms

T∗ : H i(P,H)
∼=−−−−→ H i+1(P̂, Ĥ)
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T-duality - Twisted cohomology

as well as

T∗ : K i(P,H)
∼=−−−−→ K i+1(P̂, Ĥ)

For example,

K i(Lp, k) ∼=

{
Zk i = 0
Zp i = 1
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The physics

String Theory
M4 × Y6

Complex manifold
N = 1 Kähler
N = 2 Calabi-Yau
N = 3 Hyper-Kähler

S1

Strings
H ∈ H3(Y ,Z)

Mirror Symmetry / T-duality
generalized geometry

S1 // S3

��
S2
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The physics

String Theory M-Theory / 11D SUGR
M4 × Y6 M4 × Y7

Complex manifold Contact manifold
N = 1 Kähler Sasakian
N = 2 Calabi-Yau Sasaki-Einstein
N = 3 Hyper-Kähler 3-Sasakian

S1 S3

Strings 2- and 5-branes
H ∈ H3(Y ,Z) H ∈ H7(Y ,Z)

Mirror Symmetry / T-duality Spherical T-duality?
generalized geometry M-geometry?

S1 // S3

��
S2

S3 // S7

��
S4
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Spherical T-duality - Principal SU(2)-bundles

Much of the above can be generalized to principal
SU(2)-bundles:
Gysin sequence for principal SU(2)-bundles π : P → M

· · · // H7(M)
π∗
// H7(P)

π∗ // H4(M)
∪c2(P)// H8(M) // · · ·

where
c2(P) =

1
8π2 Tr(F ∧ F ) ∈ H4(M)

is (a de Rham representative of) the 2nd Chern class of P.
However, in this case,

[M,BSU(2)] −→ H4(M,Z)

is, in general, neither surjective nor injective.
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Physical derivation of T-duality

A 2D non-linear sigma model describes maps X from a
2-dimensional surface (‘worldsheet’) Σ to an N-dimensional
manifold M (‘target’), equipped with additional structure

For example

S[X ] = 1
2

∫
Σ Gij(X ) dX i ∧ ?dX j + Bij(X ) dX i ∧ dX j
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Symmetries of sigma model

Given a set of vector fields va(X ) = v i
a(X )∂i forming a Lie

algebra g
[va, vb] = Cc

abvc

Consider the infinitesimal transformations

δεX i = v i
a(X ) εa

we have

δεS =

∫
Σ
εa
(

(LvaG)ij dX i ∧ ?dX j + (LvaB)ij dX i ∧ dX j
)

The sigma model action is invariant under these
transformations if

LvaG = 0 , LvaB = 0

If this is the case, we can gauge the model by promoting the
global symmetry to a local one (i.e. take ε ∈ C∞(Σ, g))
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The gauged action

Introducing gauge fields A ∈ Ω1(Σ, g) the gauged action is
given by

S[X ,A] = 1
2

∫
Σ Gij(X ) DX i ∧ ?DX j + Bij(X ) DX i ∧ DX j

where
DX i = dX i − v i

a Aa

are the covariant derivatives.
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Gauge invariance

The gauged action S[X ,A] is invariant with respect to the
following (local) gauge transformations:

δεX i = v i
a ε

a

δεA = dε+ [A, ε] = (dεa + Ca
bc Ab εc)Ta

where Ta is a basis of g.

Now suppose we want the gauged sigma model to be
equivalent to the the ungauged model. Then we need to ‘fix the
gauge’
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Gauge fixing

Introduce the curvature F ∈ Ω2(Σ, g)

F = dA + A ∧ A = (dAa + 1
2Ca

bc Ab ∧ Ac)Ta = F aTa

and an ‘auxiliary field’ X̂ ∈ C∞(Σ, g∗), with infinitesimal
transformation rules

δεF a = Ca
bcF bεc

δεX̂a = −Cc
ab X̂cε

b
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Gauge fixing

Consider the action

S[X ,A, X̂ ] =1
2

∫
Σ

(
Gij(X ) DX i ∧ ?DX j + Bij(X ) DX i ∧ DX j)

+

∫
Σ

X̂a F a

The equation of motion for X̂a gives F a = 0.

To solve this equation we need to lift the action of g to an action
of the group G (g = Lie G)
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Example: Group manifold

Let g : Σ→ G

S[g] = 1
2

∫
Σ(g−1dg ∧, ∗g−1dg)G

Invariant under left action of h ∈ G

S[hg] = S[g]

while

S[gh] = 1
2

∫
Σ(Ad(h−1)g−1dg ∧, Ad(h−1) ∗ g−1dg)G

So, invariant under right action of G if G is Ad-invariant (Killing
form)
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Example: Gauged

In that case we can gauge in the standard way, and obtain the
gauged model (with F -term)

S[g,A, X̂ ] = 1
2

∫
Σ(g−1Dg ∧, ∗g−1Dg)G +

∫
Σ〈X̂ ,F 〉

where

g−1Dg = g−1dg − A
F = dA + A ∧ A

and gauge symmetry, for h ∈ G

g → gh

A→ h−1Ah + h−1dh

X̂ → Ad∗(h−1)X̂
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Example: Gauged model

Solving F = 0 gives A = −dkk−1 for k ∈ C∞(Σ,G), and
substituting

g−1Dg → g−1dg + dkk−1 = k
(
(gk)−1d(gk)

)
k−1

I.e.
S[g,A = −dkk−1] = S[gk ]

so after ‘fixing the gauge’ we recover the ungauged model.
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(Non-abelian) T-duality

On the other hand, first solving the equation of motion for A,
and then fixing the gauge, gives dual model

Ŝ[X̂ ] = 1
2

∫
Σ Ĝab(X̂ ) dX̂a ∧ ?dX̂b

with dual ‘metric’

Ĝ−1
ab = Gab − Cc

abX̂c
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Abelian T-duality

Suppose we have a U(1)N isometry X m → X m + εm, then the
T-duality rules are given by the Buscher rules

Q̂ij =

(
Q̂µν Q̂µn

Q̂mν Q̂mn

)

=

(
Qµν −Qµm(Q−1)mnQnν −Qµm(Q−1)m

n
(Q−1)m

nQnν (Q−1)mn

)
where Qij = Gij + Bij .
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Abelian T-duality

More explicitly, for a U(1) isometry,

Ĝ•• =
1

G••

Ĝ•µ =
B•µ
G••

Ĝµν = Gµν −
1

G••
(G•µG•ν − B•µB•ν)

B̂•µ =
G•µ
G••

B̂µν = Bµν −
1

G••
(G•µB•ν −G•νB•µ)
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Abelian T-duality

Letting

G = GµνdXµ ⊗ dX ν + (dθ + AµdXµ)⊗ (dθ + AνdX ν)

B = 1
2BµνdXµ ∧ dX ν + Bµ•dXµ ∧ (dθ + AνdX ν)

gives back the T-duality rules for H = dB and F = dA as
discussed before.
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T-duality

S[X ]

S[X ,A, X̂ ]

ga
ug

e
iso

m
et

rie
s

in
te

gr
at

e
X̂

an
d

fix
ga

ug
e

Ŝ[X̂ ]

integrate
A

and
fix

gauge
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THANKS
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