T-duality - A pedagogical introduction

Peter Bouwknegt

Mathematical Sciences Institute
Australian National University
Canberra, Australia
ANZ Geometry, Strings and Fields seminar
Friday 13 Nov 2020

Contents

- Introduction to (topological) T-duality
- Spherical T-duality
- Non-isometric T-duality (not covered)

Based on collaborations with Mathai and many others (Evslin, Hannabuss, Sati, Wu, Klimčík, Bugden, Wright, ...)

Fourier Transform

Fourier series for $f: S^{1} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \widehat{f}(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x \\
& f(x)=\sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{i n x}
\end{aligned}
$$

Fourier transform for $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
\widehat{f}(p) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i p x} d x \\
f(x) & =\int_{-\infty}^{\infty} \widehat{f}(p) e^{i p x} d p
\end{aligned}
$$

More generally, for G a locally compact, abelian group, we have a Fourier transform $\mathcal{F}: \operatorname{Fun}(\mathrm{G}) \rightarrow \operatorname{Fun}(\widehat{\mathrm{G}})$

$$
\begin{aligned}
& \widehat{f}(p)=\int_{\mathrm{G}} f(x) e^{-i p x} d x=\mathcal{F}(f)(p) \\
& f(x)=\int_{\widehat{G}} \widehat{f}(p) e^{i p x} d p
\end{aligned}
$$

where

$$
\widehat{\mathrm{G}}=\operatorname{Hom}(\mathrm{G}, \mathrm{U}(1))=\operatorname{char}(\mathrm{G})
$$

is the Pontryagin dual of G . I.e. a character is a $\mathrm{U}(1)$ valued function on G , satisfying $\chi(x+y)=\chi(x) \chi(y)$.
The characters form a locally compact, abelian group \widehat{G} under pointwise multiplication.

$$
\begin{array}{lcc}
\mathrm{G}=S^{1}, & \widehat{\mathrm{G}}=\mathbb{Z}, & e^{i n x} \\
\mathrm{G}=\mathbb{R}, & \widehat{\mathrm{G}}=\mathbb{R}, & e^{i j x}
\end{array}
$$

We can think of $\chi(x, p)=e^{i p x} \in \operatorname{Fun}(G \times \widehat{G})$ as the 'universal' character.
Fourier transform expresses the fact that the characters of G span Fun(G).

Fourier Transform - cont'd

l.e. we have the following "correspondence"

$$
\mathcal{F} f=\widehat{\pi}_{*}\left(\pi^{*}(f) \times \chi(x, p)\right)
$$

Fourier Transform - Geometric generalisations

T-duality is a geometric version of harmonic analysis, i.e. by replacing functions by geometric objects (such as bundles, sheaves, D-modules, ...) or, as an intermediate step, by topological characteristics associated to these objects (cohomology, K-theory, derived categories, ...).

Consider a manifold $P=M \times S^{1}$. By the Künneth theorem we have

$$
H^{\bullet}(P) \cong H^{\bullet}(M) \otimes H^{\bullet}\left(S^{1}\right)
$$

l.e.

$$
H^{n}(P) \cong H^{n}(M) \oplus H^{n-1}(M)
$$

We have a similar decomposition at the level of forms

$$
\Omega^{n}(P)^{\mathrm{inv}} \cong \Omega^{n}(M) \oplus \Omega^{n-1}(M)
$$

I.e. invariant degree n forms on P are of the form ω or $\omega \wedge d \theta$, where ω is an n, respectively $n-1$, form on M.
Consider $\widehat{P}=M \times \widehat{S}^{1}$. We have an isomorphism

$$
\mathcal{F}: H^{\bar{i}}(P) \xrightarrow{\cong} H^{\overline{i+1}}(\widehat{P})
$$

where

$$
H^{\overline{0}}(P)=\bigoplus_{i \geq 0} H^{2 i}(P), \quad H^{-1}(P)=\bigoplus_{i \geq 0} H^{2 i+1}(P)
$$

Explicitly

$$
\omega \mapsto d \widehat{\theta} \wedge \omega, \quad d \theta \wedge \omega \mapsto \omega
$$

or

$$
\mathcal{F} \Omega=\int_{S^{1}}(1+d \theta \wedge d \widehat{\theta}) \Omega=\int_{S^{1}} e^{d \theta \wedge d \widehat{\theta}} \Omega=\int_{S^{1}} e^{F} \Omega
$$

Fourier-Mukai transform - cont'd

I.e. \mathcal{F} is given by a correspondence

$$
\mathcal{F} \Omega=p_{*}\left(\widehat{p}^{*} \Omega \wedge e^{F}\right)
$$

Fourier-Mukai transform - cont'd

Once we recognize that $F=d \theta \wedge d \widehat{\theta}$ is the curvature of a canonical linebundle \mathcal{P} (the Poincaré linebundle) over $S^{1} \times \widehat{S}^{1}$, in fact $e^{F}=\operatorname{ch}(\mathcal{P})$, this immediately suggests a 'geometrization' in terms of vector bundles over P and \widehat{P}. ${ }^{(*)}$

$$
\mathcal{F} E=p_{*}\left(\widehat{p}^{*} E \otimes \mathcal{P}\right)
$$

This gives rise to the so-called Fourier-Mukai transform

$$
\mathcal{F}: K^{i}(P) \xrightarrow{\cong} K^{i+1}(\widehat{P})
$$

which has many of the properties of the Fourier transform discussed earlier.
The discussion can be generalized to complexes of vector bundles (complexes of sheaves) and thus gives rise to a Fourier-Mukai correspondence between derived categories $D(P)$ and $D(\widehat{P})$.

T-duality - Closed string on $M \times S^{1}$

Closed strings on $M \times S^{1}$ are described by

$$
X: \Sigma \rightarrow M \times S^{1}
$$

where $\Sigma=\{(\sigma, \tau)\}$ is the closed string worldsheet.
Upon quantization, we find

- Momentum modes: $p=\frac{n}{R}$
- Winding modes: $X(0, \tau) \sim X(1, \tau)+m R$

$$
E=\left(\frac{n}{R}\right)^{2}+(m R)^{2}+\text { osc. modes }
$$

We have a duality $R \rightarrow 1 / R$, such that ST on $M \times S^{1}$ is equivalent to ST on $M \times \widehat{S}^{1}$ (or a duality between IIA and IIB ST, for susy ST)

T-duality - Principal S^{1}-bundles

Suppose we have a pair (P, H), consisting of a principal circle bundle

and a so-called H -flux H on P, a Čech 3-cocycle.
Topologically, P is classified by an element in $F \in H^{2}(M, \mathbb{Z})$ while H gives a class in $H^{3}(P, \mathbb{Z})$

T-duality - Principal S^{1}-bundles

The (topological) T-dual of (P, H) is given by the pair $(\widehat{P}, \widehat{H})$, where the principal S^{1}-bundle

and the dual H-flux $\widehat{H} \in H^{3}(\widehat{P}, \mathbb{Z})$, satisfy

$$
\widehat{F}=\pi_{*} H, \quad F=\widehat{\pi}_{*} \widehat{H}
$$

where $\pi_{*}: H^{3}(P, \mathbb{Z}) \rightarrow H^{2}(M, \mathbb{Z})$, is the pushforward map ('integration over the S^{1}-fibre').

T-duality - Principal S^{1}-bundles

The ambiguity in the choice of \hat{H} is (almost) removed by requiring that

$$
\hat{p}^{*} H-p^{*} \widehat{H} \equiv 0 \quad \in H^{3}\left(P \times_{M} \widehat{P}, \mathbb{Z}\right)
$$

where $P \times_{M} \widehat{P}$ is the correspondence space

$$
P \times_{M} \widehat{P}=\{(x, \widehat{x}) \in P \times \widehat{P} \mid \pi(x)=\widehat{\pi}(\widehat{x})\}
$$

T-duality - Principal S^{1}-bundles

Gysin sequences
$\cdots \longrightarrow H^{3}(M) \xrightarrow{\pi^{*}} H^{3}(P) \xrightarrow{\pi_{*}} H^{2}(M) \xrightarrow{\cup F} H^{4}(M) \longrightarrow \cdots$
$\cdots \longrightarrow H^{3}(M) \xrightarrow{\hat{\pi}^{*}} H^{3}(\widehat{P}) \xrightarrow{\hat{\pi}_{*}} H^{2}(M) \xrightarrow{\langle\hat{F}} H^{4}(M) \longrightarrow \cdots$

T-duality - Principal S^{1}-bundles

T-duality - Examples

Consider principal S^{1}-bundles P over $M=S^{2}$, then

$$
H^{2}(M, \mathbb{Z}) \cong \mathbb{Z}, \quad H^{3}(P, \mathbb{Z}) \cong \mathbb{Z}
$$

and we have, for example,

$$
\begin{gathered}
\left(S^{2} \times S^{1}, 0\right) \longrightarrow\left(S^{2} \times S^{1}, 0\right) \\
\left(S^{2} \times S^{1}, 1\right) \longrightarrow\left(S^{3}, 0\right)
\end{gathered}
$$

or more generally

$$
\left(L_{p}, k\right) \longrightarrow\left(L_{k}, p\right)
$$

where $L_{p}=S^{3} / \mathbb{Z}_{p}$ is the lens space.

T-duality - Twisted cohomology

Using $\Omega^{k}(P)^{\mathrm{inv}} \cong \Omega^{k}(M) \oplus \Omega^{k-1}(M)$

$$
F=d A, \quad H=H_{(3)}+A \wedge H_{(2)}
$$

we find

$$
\widehat{F}=H_{(2)}=d \widehat{A}, \quad \widehat{H}=H_{(3)}+\widehat{A} \wedge F
$$

such that

$$
\widehat{H}-H=\widehat{A} \wedge F-A \wedge \widehat{F}=d(A \wedge \widehat{A})
$$

Theorem

We have an isomorphism of $\left(\mathbb{Z}_{2}\right.$-graded) differential complexes

$$
T_{*}:\left(\Omega(P)^{i n v}, d_{H}\right) \longrightarrow\left(\Omega(\widehat{P})^{i n v}, d_{\hat{H}}\right)
$$

where $d_{H}=d+H \wedge$.

T-duality - Twisted cohomology

Proof.
Define

$$
T_{*} \omega=\int_{S^{1}} e^{A \wedge \widehat{A}} \omega
$$

then

$$
d_{H} T_{*}=T_{*} d_{\widehat{H}} .
$$

and consequently, we have isomorphisms

$$
T_{*}: H^{\bar{i}}(P, H) \xrightarrow{\cong} H^{\overline{i+1}}(\widehat{P}, \widehat{H})
$$

T-duality - Twisted cohomology

as well as

$$
T_{*}: K^{i}(P, H) \xrightarrow{\cong} K^{i+1}(\widehat{P}, \widehat{H})
$$

For example,

$$
K^{i}\left(L_{p}, k\right) \cong \begin{cases}\mathbb{Z}_{k} & i=0 \\ \mathbb{Z}_{p} & i=1\end{cases}
$$

The physics

	String Theory	
	$M_{4} \times Y_{6}$	
$\mathcal{N}=1$	Complex manifold	
$\mathcal{N}=2$	Kähler	
$\mathcal{N}=3$	Calabi-Yau	
	Hyper-Kähler	
	S^{1}	
	$H \in \mathrm{H}^{3}(Y, \mathbb{Z})$	
	Mirror Symmetry / T-duality	
	generalized geometry	
	$S^{1} \longrightarrow S^{3}$	
		S^{2}

The physics

	String Theory $M_{4} \times Y_{6}$	$\begin{gathered} \hline \text { M-Theory / 11D SUGR } \\ M_{4} \times Y_{7} \end{gathered}$
$\begin{aligned} & \mathcal{N}=1 \\ & \mathcal{N}=2 \\ & \mathcal{N}=3 \end{aligned}$	Complex manifold Kähler Calabi-Yau Hyper-Kähler	Contact manifold Sasakian Sasaki-Einstein 3-Sasakian
	S^{1} Strings $H \in \mathrm{H}^{3}(Y, \mathbb{Z})$ Mirror Symmetry / T-duality generalized geometry	2- and 5-branes $H \in H^{7}(Y, \mathbb{Z})$ Spherical T-duality? M-geometry?

Spherical T-duality - Principal SU(2)-bundles

Much of the above can be generalized to principal SU(2)-bundles:
Gysin sequence for principal $\operatorname{SU}(2)$-bundles $\pi: P \rightarrow M$
$\cdots \longrightarrow H^{7}(M) \xrightarrow{\pi^{*}} H^{7}(P) \xrightarrow{\pi_{*}} H^{4}(M) \xrightarrow{\cup c_{2}(P)} H^{8}(M) \longrightarrow \cdots$
where

$$
c_{2}(P)=\frac{1}{8 \pi^{2}} \operatorname{Tr}(F \wedge F) \in H^{4}(M)
$$

is (a de Rham representative of) the $2 n d$ Chern class of P. However, in this case,

$$
[M, B S U(2)] \longrightarrow H^{4}(M, \mathbb{Z})
$$

is, in general, neither surjective nor injective.

Physical derivation of T-duality

A 2D non-linear sigma model describes maps X from a 2-dimensional surface ('worldsheet') Σ to an N-dimensional manifold M ('target'), equipped with additional structure

For example

$$
S[X]=\frac{1}{2} \int_{\Sigma} G_{i j}(X) d X^{i} \wedge * d X^{j}+B_{i j}(X) d X^{i} \wedge d X^{j}
$$

Symmetries of sigma model

Given a set of vector fields $v_{a}(X)=v_{a}^{i}(X) \partial_{i}$ forming a Lie algebra \mathfrak{g}

$$
\left[v_{a}, v_{b}\right]=C^{c}{ }_{a b} v_{c}
$$

Consider the infinitesimal transformations

$$
\delta_{\epsilon} X^{i}=v_{a}^{i}(X) \epsilon^{a}
$$

we have

$$
\delta_{\epsilon} S=\int_{\Sigma} \epsilon^{a}\left(\left(\mathcal{L}_{V_{a}} G\right)_{i j} d X^{i} \wedge \star d X^{j}+\left(\mathcal{L}_{V_{a}} B\right)_{i j} d X^{i} \wedge d X^{j}\right)
$$

The sigma model action is invariant under these transformations if

$$
\mathcal{L}_{V_{a}} G=0, \quad \mathcal{L}_{V_{a}} B=0
$$

If this is the case, we can gauge the model by promoting the global symmetry to a local one (i.e. take $\epsilon \in C^{\infty}(\Sigma, \mathfrak{g})$)

The gauged action

Introducing gauge fields $A \in \Omega^{1}(\Sigma, \mathfrak{g})$ the gauged action is given by

$$
S[X, A]=\frac{1}{2} \int_{\Sigma} G_{i j}(X) D X^{i} \wedge \star D X^{j}+B_{i j}(X) D X^{i} \wedge D X^{j}
$$

where

$$
D X^{i}=d X^{i}-v_{a}^{i} A^{a}
$$

are the covariant derivatives.

Gauge invariance

The gauged action $S[X, A]$ is invariant with respect to the following (local) gauge transformations:

$$
\begin{aligned}
\delta_{\epsilon} X^{i} & =v_{a}^{i} \epsilon^{a} \\
\delta_{\epsilon} A & =d \epsilon+[A, \epsilon]=\left(d \epsilon^{a}+C^{a}{ }_{b c} A^{b} \epsilon^{c}\right) T_{a}
\end{aligned}
$$

where T_{a} is a basis of \mathfrak{g}.
Now suppose we want the gauged sigma model to be equivalent to the the ungauged model. Then we need to 'fix the gauge'

Gauge fixing

Introduce the curvature $F \in \Omega^{2}(\Sigma, \mathfrak{g})$

$$
F=d A+A \wedge A=\left(d A^{a}+\frac{1}{2} C_{b c}^{a} A^{b} \wedge A^{c}\right) T_{a}=F^{a} T_{a}
$$

and an 'auxiliary field' $\widehat{X} \in C^{\infty}\left(\Sigma, \mathfrak{g}^{*}\right)$, with infinitesimal transformation rules

$$
\begin{aligned}
& \delta_{\epsilon} F^{a}=C^{a}{ }_{b c} F^{b} \epsilon^{c} \\
& \delta_{\epsilon} \widehat{X}_{a}=-C^{c}{ }_{a b} \widehat{X}_{c} \epsilon^{b}
\end{aligned}
$$

Gauge fixing

Consider the action

$$
\begin{aligned}
S[X, A, \widehat{X}]= & \frac{1}{2} \int_{\Sigma}\left(G_{i j}(X) D X^{i} \wedge \star D X^{j}+B_{i j}(X) D X^{i} \wedge D X^{j}\right) \\
& +\int_{\Sigma} \hat{X}_{a} F^{a}
\end{aligned}
$$

The equation of motion for \hat{X}_{a} gives $F^{a}=0$.
To solve this equation we need to lift the action of \mathfrak{g} to an action of the group $G(\mathfrak{g}=\operatorname{Lie} G)$

Example: Group manifold

Let $g: \Sigma \rightarrow G$

$$
S[g]=\frac{1}{2} \int_{\Sigma}\left(g^{-1} d g \wedge * g^{-1} d g\right)_{G}
$$

Invariant under left action of $h \in \mathrm{G}$

$$
S[h g]=S[g]
$$

while

$$
S[g h]=\frac{1}{2} \int_{\Sigma}\left(\operatorname{Ad}\left(h^{-1}\right) g^{-1} d g \wedge \operatorname{Ad}\left(h^{-1}\right) * g^{-1} d g\right)_{G}
$$

So, invariant under right action of G if G is Ad-invariant (Killing form)

Example: Gauged

In that case we can gauge in the standard way, and obtain the gauged model (with F-term)

$$
S[g, A, \widehat{X}]=\frac{1}{2} \int_{\Sigma}\left(g^{-1} D g \wedge * g^{-1} D g\right)_{G}+\int_{\Sigma}\langle\widehat{X}, F\rangle
$$

where

$$
\begin{aligned}
g^{-1} D g & =g^{-1} d g-A \\
F & =d A+A \wedge A
\end{aligned}
$$

and gauge symmetry, for $h \in \mathbf{G}$

$$
\begin{aligned}
& g \rightarrow g h \\
& A \rightarrow h^{-1} A h+h^{-1} d h \\
& \hat{X} \rightarrow \operatorname{Ad}^{*}\left(h^{-1}\right) \widehat{X}
\end{aligned}
$$

Example: Gauged model

Solving $F=0$ gives $A=-d k k^{-1}$ for $k \in C^{\infty}(\Sigma, G)$, and substituting

$$
g^{-1} D g \rightarrow g^{-1} d g+d k k^{-1}=k\left((g k)^{-1} d(g k)\right) k^{-1}
$$

I.e.

$$
S\left[g, A=-d k k^{-1}\right]=S[g k]
$$

so after 'fixing the gauge' we recover the ungauged model.

(Non-abelian) T-duality

On the other hand, first solving the equation of motion for A, and then fixing the gauge, gives dual model

$$
\widehat{S}[\widehat{X}]=\frac{1}{2} \int_{\Sigma} \widehat{G}^{a b}(\widehat{X}) d \widehat{X}_{a} \wedge \star d \widehat{X}_{b}
$$

with dual 'metric'

$$
\widehat{G}^{-1}{ }_{a b}=G_{a b}-C^{c}{ }_{a b} \widehat{X}_{c}
$$

Abelian T-duality

Suppose we have a $U(1)^{N}$ isometry $X^{m} \rightarrow X^{m}+\epsilon^{m}$, then the T-duality rules are given by the Buscher rules

$$
\begin{aligned}
\widehat{Q}_{i j} & =\left(\begin{array}{ll}
\widehat{Q}_{\mu \nu} & \widehat{Q}_{\mu n} \\
\hat{Q}_{m \nu} & \widehat{Q}_{m n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
Q_{\mu \nu}-Q_{\mu m}\left(Q^{-1}\right)^{m n} Q_{n \nu} & -Q_{\mu m}\left(Q^{-1}\right)^{m}{ }_{n} \\
\left(Q^{-1}\right)_{m}^{n} Q_{n \nu} & \left(Q^{-1}\right)_{m n}
\end{array}\right)
\end{aligned}
$$

where $Q_{i j}=G_{i j}+B_{i j}$.

Abelian T-duality

More explicitly, for a $U(1)$ isometry,

$$
\begin{aligned}
& \hat{G}_{\bullet \bullet}=\frac{1}{G_{\bullet \bullet}} \\
& \hat{G}_{\bullet \mu}=\frac{B_{\bullet} \mu}{G_{\bullet \bullet}} \\
& \widehat{G}_{\mu \nu}=G_{\mu \nu}-\frac{1}{G_{\bullet \bullet}}\left(G_{\bullet \mu} G_{\bullet \nu}-B_{\bullet \mu} B_{\bullet \nu}\right) \\
& \hat{B}_{\bullet \mu}=\frac{G_{\bullet} \mu}{G_{\bullet \bullet}} \\
& \widehat{B}_{\mu \nu}=B_{\mu \nu}-\frac{1}{G_{\bullet \bullet}}\left(G_{\bullet \mu} B_{\bullet \nu}-G_{\bullet \nu} B_{\bullet \mu}\right)
\end{aligned}
$$

Abelian T-duality

Letting

$$
\begin{aligned}
& G=G_{\mu \nu} d X^{\mu} \otimes d X^{\nu}+\left(d \theta+A_{\mu} d X^{\mu}\right) \otimes\left(d \theta+A_{\nu} d X^{\nu}\right) \\
& B=\frac{1}{2} B_{\mu \nu} d X^{\mu} \wedge d X^{\nu}+B_{\mu \bullet} d X^{\mu} \wedge\left(d \theta+A_{\nu} d X^{\nu}\right)
\end{aligned}
$$

gives back the T-duality rules for $H=d B$ and $F=d A$ as discussed before.

T-duality

THANKS

