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Topological matter: what, why, how?

This talk: Topological matter (Nobel '16), based on string-math
toolkit: Dualities, K-theory, index theory, gerbes, ...

Key experimental feature of TM: unusual spectral properties
which enjoy topological protection ~~ Index theory!

Desirable to understand why certain topological invariants
compute certain “topological spectral quantities”, before passing
to “effectively topological theories”.

Abstract bulk topological invariants may be undetectable. . . until
they are “transferred” to the boundary as “anomalies”. This is the
bulk-boundary correspondence.
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Some experiments!

edge-following states
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Landau quantisation revisited

On Euclidean plane, Laplacian —V? has spectrum [0, 00).

Landau gauge A = x dy for uniform | magnetic field B = dx A dy.

'28-'30: Discretised spectrum for Landau Hamiltonian,
HLan — _vi = —V2 + 2ix 8y + X2,
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Quantum Hall effect in 1980: Robust and universal!
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Landau quantisation revisited

Topology enters (TKNN’82): Lattice symmetry Z? — Fourier

transform to quasi-momentum space ( “magnetic Brillouin torus”).

— Eigenstates below Fermi energy form a vector bundle over T?,
whose Chern class equals Hall conductance. Each Landau level
indeed has Chern = 1 (Kunz '87).

This relies on idealised Euclidean geometry, lattice symmetry,
rational flux,. .. not truly universal!

Modern POVs: Gapless edge states
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Index and T-duality [L+T:2000.07688, U. Bunke]

With a choice of lattice, we may reduce Hr,, to the compact torus
T2 = R?/72, but compensate with moduli T? of quasiperiodic
boundary conditions.

T-duality

Hian ~ family of (twisted) Diracs on T2, parametrised by T2.
Landau levels <+ Dirac kernel <» Atiyah—Singer families index!

Actually, can dispense with (fictitious) lattice, by taking the
so-called coarse index, introduced by Roe in '90s.
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Landau levels revisited: supersymmetry

B 0 0, + (9, ix)  (Him-1 0
lpA_ <iax—(8in) 0 )7 mi— ( L )

0 HLan+]-

>0

SUSY: Hpan—1 and Hpan+1 have same non-zero spectrum (gaps).

Hian—1>0< Hpan+1>2 = (0,2) is a gap of Hpant1.
= (1,3) is gap of Hpan, thus (2,4) is gap of Hpan+1
= (3,5) is gap of Hpan. - -

B, Dy » B
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Lowest Landau Level is the kernel of [J;.
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Dirac index

Normally, a Dirac operator on compact X has purely discrete
spectrum. lts index is a number

dim ker()" — dim coker( ) € Z.
Atiyah—Singer calculates this in terms of top. invariants of X.

For non-compact manifolds, Dirac has continuous spectrum, but
mathematicians Roe—Higson show in '90s, how to define a coarse
index, living in Ky (Cfioe(X))-

Roe(X) ~ ‘“regularised noncommutative momentum space”.
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Coarse Dirac index

Quite abstract: can't isolate Dirac kernel and count it...?

Even dim: Ind([4) counts “zero-mode bundle over P", after
coupling to gauge field A to open gaps around 0.

Odd-dim: Ind([p) measures obstruction to opening spectral gaps.
~ chiral Dirac operators on R?"*! are massless!

_— mass gap
Weyl light-cone 1 forbidden

dispersion I

9/27



SUSY /Lichnerowicz

Spin and Riemannian geometry are related,
Dirac®=Laplacian + curvature terms.

In 2D, spin(2) = u(1). Riemann scalar and EM curvature interplay.

Hyperbolic plane : 1253_% = (HGO_ ’ H _20 1) =0
0—1 -

=42
=32
=22
=12
0=0.2

Hyperbolic Landau levels and ladder operators lﬁ;{;.
2
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Half-plane Landau spectrum?

Euclidean half-plane: Dirichlet spectrum of Hp., equals? [1,00).

» Other boundary geometries/conditions?

» Gap-filling in hyperbolic geometry?
0 = 32 [ ] [ ] [ ]
Exact spectral calculation is neither possible nor required.

Real question: “Is the boundary necessarily gapless/anomalous?”

(Coarse) index theory efficiently answers YES to the above!

2De Bigvre, Pulé '02

11 /27



Half-space Landau Hamiltonians are gapless [L+T:2009.07688]

One shows that Landau spectral projections cannot remain
projections when operating on a generic half-space

Obstruction is due to Dirac kernel's coarse index localising onto
the boundary = Edge spectra interpolate Landau levels!

Note: A randomly concocted “topological invariant” has no reason
to localise to generally boundary, nor to have any spectral meaning!

Remark: TKNN Chern number does localise. . . to perfectly
straight boundary (original K-theory proof of BBC).
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Spectral interpolation / spectral flow

“Boundary of Dirac is Dirac”, or “dimensional reduction” is a
useful heuristic, the gap-filling needs extra ingredients.
» Need to couple to A to open “non-trivial gaps” in spectrum
(break T-symmetry!)
» Need Laplace-type Hamiltonian, bounded from below, to
deduce the spectral gaps above topologically non-trivial
spectra get filled.

. g
Existence of boundary states bulk

is nothing special. /
) ) > “PYY
But unbroken interpolation of /

bulk states is special!

Obulk
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Trivial spectral flow in finite dimensions

Let H(t),t € [0,1] be a loop of self-adjoint operators on
finite-dimensional Hilbert space. Plot the eigenvalues:

S(H(0)) o(H(1))
¥ \

“What goes up must come down” — trivial spectral flow.
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oo — 0o € Z: spectral flow

Let D = —i% act on circle S = [0,1]/o~1.
Then (D) = 277 with eigenfunctions v,(0) = €™/’

o(D(0)) . o(D(2m))

For e’ € U(1), twist D(k) := D + k ~ o(D(k)) = 2nZ + k.

Spectral flow possible due to “infinite Dirac sea”. Partial
Fourier-decomposition of unbroken spectrum of —idix.
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Spectral flow

Convert unbounded D(k) to bounded D’(k) := \/ﬁr(ka—Z(k)'

o(D"(0)) o(D"(2m)

+1 ¢

g
’ Obulk

-
/

} Tbulk

The flattened family {Db(k)}eikeU(l) is a continuous loop of
bounded self-adjoint Fredholm operators.

In solid-state physics, the infinite Dirac sea comes from
“continuous spectral bands”, not discrete spectrum — —oc!
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Topology of self-adjoint Fredholm operators

Bounded Fredholm operator F < 0O-spectrum at most
finite-multiplicity.

Fredholm index dim ker(F) — dim ker(F*) labels connected
components of Fredholms.

Self-adjoint Fredholms are in the zero-index component, but they
contain non-contractible loops!

Atiyah—-Singer '69, showed that FJ* has

n(F) 2 Z, n odd.

m1(F*) = 7 is topologically-protected spectral flow, and can be
computed by index theory.
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“Higher" spectral flow

Q: What does m3(F5?*) = Z mean (spectrally)?

An answer can be found by thinking about Weyl semimetals (chiral
anomaly). Mathematically, one works directly with unbounded
self-adjoint Fredholm operators CF°?, equipped with gap-topology.

In 2000s, BLP established spectral flow for loops in CF*?, and
Joachim showed 7,qq4(CF*?) = Z.

In fact, w1 (CF*), m3(CF™*) = 7Z are generated by “physically
fundamental” examples!

Examples from topological phases typically have noncompact
manifolds-with-boundary®, having essential spectra.

3At least in “thermodynamic limit”.
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Dirac operators on half-line

Dirac/momentum operator i< on [0, 00) cannot be self-adjoint.
Reason: it is “unidirectional”: no “reflection-at-boundary”.

But ) = —iL & i< can be made self-adjoint, by reflecting
left-movers to right-movers.

_jd iy ~
With mass term: D(m;v) = <melf,€y n;ed > , (my) e R
dz

For m > 0, essential (i.e. bulk) spectrum is

Tess(P(m; ) = (—00, —m] U [m,00) ~ Fredholm!
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Loop of half-line Diracs generating w1 (CF™) = Z

Additionally, [)(m;~) has an eigenfunction z — (1) elmsiny)z
with eigenvalue mcos~y. Normalisable only when v € (7, 2m).

a(B(m; )4

Oess

m+ /
0 % =7
_ma

Oess

Conclusion: Massive half-line Dirac Hamiltonians are
(continuously) parametrised by (m, ) € R?\ 0. Each loop around
origin has spectral flow +1: one zero mode contributor.
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Physics: Weyl semimetals and Fermi arcs

In 3D, L/R-handed Weyl Hamiltonian is HWeyl — FiV-o.
Fourier: energy-momentum dispersion o(HVe!)(p) = +|p|.

- Band crossing p =0 is a “U(1)"
monopole for the bundle of negative

eigenstates. There is a Dirac string to

the anti-monopole at infinite momenum.

On a half-space z > 0, only py, p, are
conserved.

HWeyl decomposes into family of

- half-line Diracs lD(m;fy)/,\parametrised
by (m,’)/) A (pX7PY) € R2I
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Weyl semimetals and Fermi arcs

Spec
A

A

Each radius m loop is basically

Fermi
arc

the earlier spectral flow picture. a(B(m; )

. . m
There is one zero-eigenvalue for 0
each loop. Overall, there is a —m

Fermi arc of zero-eigenvalues
connecting origin to infinity.



Topological Fermi arcs [T:2007.06193]

HzNeyl and Hx,veyl occur together in “Weyl semimetals” .
~ Fermi arc connecting their cone tips.

Fermi arc is holographic projection of bulk Dirac string (M+T '17).

In reality, HZV?’I is perturbed in some unknowable way, so Fermi

arc is fuzzy and deformed,. .. but never killed!

NbP TaP TaAs
0.8 Y 0.8 . 08 :
. ~ 06 ~ ~ 06
Actual experimental =z - = Z i
Fermi arcs have ~oay 0. <04
exactly this feature! : ; .
y 927575 o 92750 o 927510 o1
K (AD k(A k(A

Liu et al, Nature Materials (2016)
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Fermi gerbe of Weyl semimetal [c+T: 2009.02064]

In 5D, the Weyl Hamiltonian is TP-invariant, thus
quaternionic-linear in momentum space.

On half-space z > 0, HWeY! decomposes into quaternionic half-line
Dirac operators, parametrised by mass terms in H = R* rather
than C = R?:

m<m;r>=< gz .d>, I e Sp(1) = SU(2) = S°.
ml iz

We prove that the family S3 3T+ P(m;T) € CF* is
topologically non-trivial!

Sketch: Construct a “Fermi gerbe” encoding how eigenvalues
interpolate across the mass gap (—m, m), compute non-trivial
Dixmier—Douady invariant.
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Hamiltonian anomaly and gerbes

Diracs on odd-dimensional compact manifolds, parametrised by
gauge-equivalence classes of connections, is anomalous.

Roughly: Separation of spectra into + and — parts cannot be

done globally, so Fock vacuum is ambiguous®*.

Our {B(m; T)}resp(1y is similarly anomalous.
» For each A € (—m, m), the region of Sp(1) without
A-eigenvalues does admit a sensible vacuum.
» For —m < A\ < p < +m, transitioning between vacua A —
involves determinant line bundle of eigenstates with energy
within (A, ).

» Gerbe data comprises these “transition line bundles”.

*Faddeev—Mickelsson—Carey—Murray (Segal)
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Fermi gerbe of Weyl semimetal [c+T: 2009.02064]

We show that the DD-invariant of the Fermi gerbe for
{D(m;T)}resp(). is the generator of H3(Sp(1),Z).

This means it represents m3(CF"*) = Z~ “higher" spectral flow.

= 5D half-space Weyl semimetal, and also “4D QHE" have
topologically protected Fermi surface of boundary states.

Experimentally: In 3D, there exist T-invariant topological
insulators, detected by gapless surface Dirac cones.

—0
KQ (S3,7y) = Zo. Kane-Mele/Furuta-Kametani-Matsue-Minami
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“Real” Fermi gerbe and topological insulators

Eg(eV)

02 00 02 00 02 M
ky(A-1) k(A1)

Direct proof of topological Dirac
cones (with K. Gomi):

“Real” Fermi gerbe has
DD-invariant in

A3(S2, 7 Z(1)) = Zo.

Stringy B-field interpretation?

vi={1,000}

Bulk conduction

Discovery of
Dirac cone
edges state —
Xia et al, '09

Spectrum
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