Spectral aspects of topological matter with an eye on strings

Guo Chuan Thiang

BICMR, Peking University

Australian Maths, Strings and Fields Seminar

02/10/20

Topological matter: what, why, how?

This talk: *Topological matter* (Nobel '16), based on string-math toolkit: Dualities, *K*-theory, index theory, gerbes, ...

Key **experimental** feature of TM: unusual *spectral* properties which enjoy *topological protection* \rightsquigarrow Index theory!

Desirable to understand why *certain* topological invariants compute certain "topological spectral quantities", *before* passing to "effectively topological theories".

Abstract bulk topological invariants may be undetectable... until they are "transferred" to the boundary as "anomalies". This is the *bulk-boundary correspondence*.

Some experiments¹: edge-following states

¹Lu et at, Nature Photonics (2014); Süsstrunk, Huber, Science (2015); Klembt et at, Nature (2018)

Landau quantisation revisited

On Euclidean plane, Laplacian $-\nabla^2$ has spectrum $[0,\infty)$.

Landau gauge A = x dy for uniform \perp magnetic field $B = dx \wedge dy$. '28-'30: Discretised spectrum for Landau Hamiltonian,

$$H_{\text{Lan}} = -\nabla_A^2 = -\nabla^2 + 2ix \,\partial_y + x^2,$$

Quantum Hall effect in 1980: Robust and universal!

Landau quantisation revisited

Topology enters (TKNN'82): Lattice symmetry $\mathbb{Z}^2 \rightarrow$ Fourier transform to quasi-momentum space ("magnetic Brillouin torus").

 \rightarrow Eigenstates below Fermi energy form a vector bundle over \mathbb{T}^2 , whose Chern class equals Hall conductance. Each Landau level indeed has Chern = 1 (Kunz '87).

This relies on idealised Euclidean geometry, lattice symmetry, rational flux,... not truly universal!

Modern POVs: Gapless edge states

Index and T-duality [L+T:2009.07688, U. Bunke]

With a choice of lattice, we may reduce H_{Lan} to the *compact* torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$, but compensate with moduli \mathbb{T}^2 of quasiperiodic boundary conditions.

T-duality

 $\sqrt{H_{\text{Lan}}} \rightsquigarrow$ family of (twisted) Diracs on T^2 , parametrised by \mathbb{T}^2 .

 $\mathsf{Landau} \ \mathsf{levels} \leftrightarrow \mathsf{Dirac} \ \mathsf{kernel} \leftrightarrow \mathsf{Atiyah}{\operatorname{\mathsf{-Singer}}} \ \mathsf{families} \ \mathsf{index!}$

Actually, can dispense with (fictitious) lattice, by taking the so-called *coarse index*, introduced by Roe in '90s.

Landau levels revisited: supersymmetry

$$\emptyset_{A} = \begin{pmatrix} 0 & i\partial_{x} + (\partial_{y} - ix) \\ i\partial_{x} - (\partial_{y} - ix) & 0 \end{pmatrix}, \quad \emptyset_{A}^{2} = \underbrace{\begin{pmatrix} H_{\text{Lan}} - 1 & 0 \\ 0 & H_{\text{Lan}} + 1 \end{pmatrix}}_{\geq 0}$$

SUSY: H_{Lan} -1 and H_{Lan} +1 have same non-zero spectrum (gaps).

$$\begin{array}{l} H_{\mathrm{Lan}}-1 \geq 0 \Leftrightarrow H_{\mathrm{Lan}}+1 \geq 2 \Rightarrow (0,2) \mbox{ is a gap of } H_{\mathrm{Lan}}\pm 1. \\ \Rightarrow (1,3) \mbox{ is gap of } H_{\mathrm{Lan}}, \mbox{ thus } (2,4) \mbox{ is gap of } H_{\mathrm{Lan}}\pm 1 \\ \Rightarrow (3,5) \mbox{ is gap of } H_{\mathrm{Lan}}... \end{array}$$

Lowest Landau Level is the kernel of D_A^+ .

Dirac index

Normally, a Dirac operator on *compact* X has purely discrete spectrum. Its index is a *number*

$$\dim \ker(\not\!\!D)^+ - \dim \operatorname{coker}(\not\!\!D^-) \in \mathbb{Z}.$$

Atiyah–Singer calculates this in terms of top. invariants of X.

For non-compact manifolds, Dirac has continuous spectrum, but mathematicians Roe–Higson show in '90s, how to define a coarse index, living in $K_*(C^*_{\text{Roe}}(X))$.

 $C^*_{
m Roe}(X) \sim$ "regularised noncommutative momentum space".

Coarse Dirac index

Quite abstract: can't isolate Dirac kernel and count it...?

Even dim: $\operatorname{Ind}(\mathcal{D}_A)$ counts "zero-mode bundle over *P*", *after coupling to gauge field A to open gaps around* 0.

Odd-dim: Ind(\not{D}) measures obstruction to opening spectral gaps. \sim chiral Dirac operators on \mathbb{R}^{2n+1} are massless!

SUSY/Lichnerowicz

Spin and Riemannian geometry are related, Dirac²=Laplacian + curvature terms.

In 2D, $\mathfrak{spin}(2) \cong \mathfrak{u}(1)$. Riemann scalar and EM curvature interplay.

Hyperbolic plane :
$$\mathcal{D}_{\theta-\frac{1}{2}}^2 = \begin{pmatrix} H_{\theta} - \theta & 0 \\ 0 & H_{\theta-1} + \theta - 1 \end{pmatrix} \ge 0$$

 $\theta = 4.2$
 $\theta = 3.2$
 $\theta = 2.2$
 $\theta = 1.2$
 $\theta = 0.2$

Hyperbolic Landau levels and ladder operators $D_{\theta-\frac{1}{2}}^{\pm}$.

Half-plane Landau spectrum?

- Other boundary geometries/conditions?
- ► Gap-filling in **hyperbolic** geometry?

$\theta = 3.2$ • • • …

Exact spectral calculation is neither *possible* nor *required*.

Real question: "Is the boundary necessarily gapless/anomalous?"

(Coarse) index theory efficiently answers YES to the above!

²De Bièvre, Pulé '02

Half-space Landau Hamiltonians are gapless [L+T:2009.07688]

One shows that Landau spectral projections cannot remain projections when operating on a *generic* half-space

Obstruction is due to Dirac kernel's coarse index localising onto the boundary \Rightarrow Edge spectra interpolate Landau levels!

Note: A randomly concocted "topological invariant" has no reason to localise to generally boundary, nor to have any spectral meaning!

Remark: TKNN Chern number does localise...to perfectly straight boundary (original *K*-theory proof of BBC).

Spectral interpolation / spectral flow

"Boundary of Dirac is Dirac", or "dimensional reduction" is a useful heuristic, the gap-filling needs extra ingredients.

- Need to couple to A to open "non-trivial gaps" in spectrum (break T-symmetry!)
- Need Laplace-type Hamiltonian, bounded from below, to deduce the spectral gaps *above* topologically non-trivial spectra get filled.

Existence of boundary states is nothing special.

But unbroken interpolation of bulk states *is* special!

Trivial spectral flow in finite dimensions

Let $H(t), t \in [0, 1]$ be a loop of self-adjoint operators on finite-dimensional Hilbert space. Plot the eigenvalues:

"What goes up must come down" \longrightarrow trivial spectral flow.

$\infty - \infty \in \mathbb{Z}$: spectral flow

Let $D = -i \frac{d}{d\theta}$ act on circle $S^1 = [0, 1]/_{0 \sim 1}$. Then $\sigma(D) = 2\pi \mathbb{Z}$ with eigenfunctions $\psi_n(\theta) = e^{2\pi i n \theta}$

For $e^{ik} \in U(1)$, twist $D(k) := D + k \rightsquigarrow \sigma(D(k)) = 2\pi\mathbb{Z} + k$.

Spectral flow possible due to "infinite Dirac sea". Partial Fourier-decomposition of unbroken spectrum of $-i\frac{d}{dx}$.

Spectral flow

Convert unbounded D(k) to bounded $D^{\flat}(k) := \frac{D(k)}{\sqrt{1+D^2(k)}}$.

The flattened family $\{D^{\flat}(k)\}_{e^{ik} \in U(1)}$ is a continuous loop of bounded self-adjoint Fredholm operators.

In solid-state physics, the infinite Dirac sea comes from "continuous spectral bands", not discrete spectrum $\rightarrow -\infty!$

Topology of self-adjoint Fredholm operators

Bounded Fredholm operator $F \Leftrightarrow 0$ -spectrum at most finite-multiplicity.

Fredholm index $\dim \ker(F) - \dim \ker(F^*)$ labels connected components of Fredholms.

Self-adjoint Fredholms are in the zero-index component, but they contain non-contractible loops!

Atiyah–Singer '69, showed that $\mathcal{F}^{\mathrm{sa}}_*$ has

 $\pi_n(\mathcal{F}^{\mathrm{sa}}_*)\cong\mathbb{Z}, \qquad n \text{ odd.}$

 $\pi_1(\mathcal{F}^{sa}_*) \cong \mathbb{Z}$ is topologically-protected spectral flow, and can be computed by index theory.

"Higher" spectral flow

Q: What does $\pi_3(\mathcal{F}^{sa}_*) \cong \mathbb{Z}$ mean (spectrally)?

An answer can be found by thinking about Weyl semimetals (chiral anomaly). Mathematically, one works directly with *unbounded* self-adjoint Fredholm operators $C\mathcal{F}^{sa}$, equipped with *gap-topology*.

In 2000s, BLP established spectral flow for loops in $C\mathcal{F}^{sa}$, and Joachim showed $\pi_{odd}(C\mathcal{F}^{sa}) \cong \mathbb{Z}$.

In fact, $\pi_1(\mathcal{CF}^{sa}), \pi_3(\mathcal{CF}^{sa}) \cong \mathbb{Z}$ are generated by "physically fundamental" examples!

Examples from *topological phases* typically have *noncompact manifolds-with-boundary*³, having essential spectra.

³At least in "thermodynamic limit".

Dirac operators on half-line

Dirac/momentum operator $i\frac{d}{dz}$ on $[0,\infty)$ cannot be self-adjoint.

Reason: it is "unidirectional": no "reflection-at-boundary".

But $\not D = -i \frac{d}{dz} \oplus i \frac{d}{dz}$ can be made self-adjoint, by reflecting left-movers to right-movers.

For m > 0, essential (i.e. bulk) spectrum is

 $\sigma_{\mathrm{ess}}(\not\!\!D(m;\gamma)) = (-\infty,-m] \cup [m,\infty) \quad \leadsto \text{ Fredholm!}$

Loop of half-line Diracs generating $\pi_1(\mathcal{CF}^{sa}) \cong \mathbb{Z}$

Additionally, $\mathcal{D}(m; \gamma)$ has an eigenfunction $z \mapsto \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{(m \sin \gamma)z}$ with eigenvalue $m \cos \gamma$. Normalisable only when $\gamma \in (\pi, 2\pi)$.

Conclusion: Massive half-line Dirac Hamiltonians are (continuously) parametrised by $(m, \gamma) \in \mathbb{R}^2 \setminus 0$. Each loop around origin has spectral flow +1: one zero mode contributor.

Physics: Weyl semimetals and Fermi arcs

In 3D, L/R-handed Weyl Hamiltonian is $H^{\text{Weyl}} = \mp i \nabla \cdot \boldsymbol{\sigma}$. Fourier: energy-momentum dispersion $\sigma(H^{\text{Weyl}})(\boldsymbol{p}) = \pm |\boldsymbol{p}|$.

Band crossing $\boldsymbol{p} = 0$ is a "U(1)" monopole for the bundle of negative eigenstates. There is a Dirac string to the anti-monopole at infinite momenum.

On a half-space $z \ge 0$, only p_x, p_y are conserved.

 H^{Weyl} decomposes into family of half-line Diracs $D(m; \gamma)$, parametrised by $(m, \gamma) \leftrightarrow (p_x, p_y) \in \mathbb{R}^2$!

Weyl semimetals and Fermi arcs

Each radius *m* loop is basically the earlier spectral flow picture.

There is one zero-eigenvalue for each loop. Overall, there is a Fermi arc of zero-eigenvalues connecting origin to infinity.

Topological Fermi arcs [T:2007.06193]

 H_L^{Weyl} and H_R^{Weyl} occur together in "Weyl semimetals". \rightsquigarrow Fermi arc connecting their cone tips.

Fermi arc is holographic projection of bulk Dirac string (M+T '17).

In reality, $H_{L/R}^{Weyl}$ is perturbed in some unknowable way, so Fermi arc is fuzzy and deformed,... but never killed!

Actual experimental Fermi arcs have exactly this feature!

Liu et al, Nature Materials (2016)

Fermi gerbe of Weyl semimetal [C+T: 2009.02064]

In 5D, the Weyl Hamiltonian is *TP*-invariant, thus quaternionic-linear in momentum space.

On half-space $z \ge 0$, H^{Weyl} decomposes into *quaternionic* half-line Dirac operators, parametrised by mass terms in $\mathbb{H} \cong \widehat{\mathbb{R}}^4$ rather than $\mathbb{C} \cong \widehat{\mathbb{R}}^2$:

$$otin(m;\Gamma) = \begin{pmatrix} -irac{d}{dz} & m\Gamma \\ m\overline{\Gamma} & irac{d}{dz} \end{pmatrix}, \qquad \Gamma \in \operatorname{Sp}(1) \cong \operatorname{SU}(2) \cong S^3.$$

We prove that the family $S^3 \ni \Gamma \mapsto D(m; \Gamma) \in C\mathcal{F}^{sa}$ is topologically non-trivial!

Sketch: Construct a "Fermi gerbe" encoding how eigenvalues interpolate across the mass gap (-m, m), compute non-trivial *Dixmier–Douady invariant*.

Hamiltonian anomaly and gerbes

Diracs on odd-dimensional *compact* manifolds, parametrised by gauge-equivalence classes of connections, is anomalous.

Roughly: Separation of spectra into + and - parts cannot be done globally, so Fock vacuum is ambiguous⁴.

Our $\{ \not D(m; \Gamma) \}_{\Gamma \in \mathrm{Sp}(1)}$ is similarly anomalous.

- For each λ ∈ (−m, m), the region of Sp(1) without λ-eigenvalues does admit a sensible vacuum.
- For −m < λ < μ < +m, transitioning between vacua λ → μ involves determinant line bundle of eigenstates with energy within (λ, μ).</p>
- ► Gerbe data comprises these "transition line bundles".

⁴Faddeev–Mickelsson–Carey–Murray (Segal)

Fermi gerbe of Weyl semimetal [C+T: 2009.02064]

We show that the DD-invariant of the Fermi gerbe for $\{\mathcal{D}(m;\Gamma)\}_{\Gamma\in\mathrm{Sp}(1)}$, is the generator of $H^3(\mathrm{Sp}(1),\mathbb{Z})$.

This means it represents $\pi_3(\mathcal{CF}^{sa}) \cong \mathbb{Z}_{\leadsto}$ "higher" spectral flow.

 \Rightarrow 5D half-space Weyl semimetal, and also "4D QHE" have topologically protected *Fermi surface* of boundary states.

Experimentally: In 3D, there exist *T*-invariant *topological insulators*, detected by gapless surface Dirac cones.

 $\widetilde{\mathit{KQ}}^0(\mathit{S}^3, \tau_\pi) \cong \mathbb{Z}_2.$ Kane-Mele/Furuta-Kametani-Matsue-Minami

"Real" Fermi gerbe and topological insulators

Discovery of Dirac cone edges state — Xia et al, '09

Direct proof of *topological* Dirac cones (with K. Gomi): "Real" Fermi gerbe has DD-invariant in

$$\widetilde{H}^3(S^2, \tau_\pi; \mathbb{Z}(1)) \cong \mathbb{Z}_2.$$

Stringy B-field interpretation?

