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Topological matter: what, why, how?

This talk: Topological matter (Nobel ’16), based on string-math
toolkit: Dualities, K -theory, index theory, gerbes, . . .

Key experimental feature of TM: unusual spectral properties
which enjoy topological protection  Index theory!

Desirable to understand why certain topological invariants
compute certain “topological spectral quantities”, before passing
to “effectively topological theories”.

Abstract bulk topological invariants may be undetectable. . . until
they are “transferred” to the boundary as “anomalies”. This is the
bulk-boundary correspondence.
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Some experiments1: edge-following states

1
Lu et at, Nature Photonics (2014); Süsstrunk, Huber, Science (2015); Klembt et at, Nature (2018) 3 / 27



Landau quantisation revisited
On Euclidean plane, Laplacian −∇2 has spectrum [0,∞).

Landau gauge A = x dy for uniform ⊥ magnetic field B = dx ∧ dy .
’28-’30: Discretised spectrum for Landau Hamiltonian,

HLan = −∇2
A = −∇2 + 2ix ∂y + x2,

•1 •3 •5 •7 •9 · · ·

Quantum Hall effect in 1980: Robust and universal!
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Landau quantisation revisited

Topology enters (TKNN’82): Lattice symmetry Z2 → Fourier
transform to quasi-momentum space (“magnetic Brillouin torus”).

→ Eigenstates below Fermi energy form a vector bundle over T2,
whose Chern class equals Hall conductance. Each Landau level
indeed has Chern = 1 (Kunz ’87).

This relies on idealised Euclidean geometry, lattice symmetry,
rational flux,. . . not truly universal!

Modern POVs: Gapless edge states
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Index and T-duality [L+T:2009.07688, U. Bunke]

With a choice of lattice, we may reduce HLan to the compact torus
T 2 = R2/Z2, but compensate with moduli T2 of quasiperiodic
boundary conditions.

T-duality

√
HLan  family of (twisted) Diracs on T 2, parametrised by T2.

Landau levels ↔ Dirac kernel ↔ Atiyah–Singer families index!

Actually, can dispense with (fictitious) lattice, by taking the
so-called coarse index, introduced by Roe in ’90s.
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Landau levels revisited: supersymmetry

/DA =

(
0 i∂x + (∂y−ix)

i∂x − (∂y−ix) 0

)
, /D

2
A =

(
HLan−1 0

0 HLan+1

)
︸ ︷︷ ︸

≥0

.

SUSY: HLan−1 and HLan+1 have same non-zero spectrum (gaps).

HLan−1 ≥ 0⇔ HLan+1 ≥ 2 ⇒ (0, 2) is a gap of HLan±1.
⇒ (1, 3) is gap of HLan, thus (2, 4) is gap of HLan±1
⇒ (3, 5) is gap of HLan. . .
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Lowest Landau Level is the kernel of /D
+
A .
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Dirac index

Normally, a Dirac operator on compact X has purely discrete
spectrum. Its index is a number

dim ker( /D)+ − dim coker( /D
−

) ∈ Z.

Atiyah–Singer calculates this in terms of top. invariants of X .

For non-compact manifolds, Dirac has continuous spectrum, but
mathematicians Roe–Higson show in ’90s, how to define a coarse
index, living in K∗(C

∗
Roe(X )).

C ∗Roe(X ) ∼ “regularised noncommutative momentum space”.
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Coarse Dirac index

Quite abstract: can’t isolate Dirac kernel and count it. . . ?

Even dim: Ind( /DA) counts “zero-mode bundle over P”, after
coupling to gauge field A to open gaps around 0.

Odd-dim: Ind( /D) measures obstruction to opening spectral gaps.
∼ chiral Dirac operators on R2n+1 are massless!
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SUSY/Lichnerowicz

Spin and Riemannian geometry are related,
Dirac2=Laplacian + curvature terms.

In 2D, spin(2) ∼= u(1). Riemann scalar and EM curvature interplay.

Hyperbolic plane : /D
2
θ− 1

2
=

(
Hθ − θ 0

0 Hθ−1 + θ − 1

)
≥ 0

θ = 0.2

θ = 1.2

θ = 2.2

θ = 3.2

θ = 4.2

•

• •

• • •

• •

· · ·

Hyperbolic Landau levels and ladder operators /D
±
θ− 1

2
.
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Half-plane Landau spectrum?

Euclidean half-plane: Dirichlet spectrum of HLan equals2 [1,∞).

•1 •3 •5 •7 •9 · · ·

I Other boundary geometries/conditions?

I Gap-filling in hyperbolic geometry?

θ = 3.2 • • • · · ·

Exact spectral calculation is neither possible nor required.

Real question: “Is the boundary necessarily gapless/anomalous?”

(Coarse) index theory efficiently answers YES to the above!

2De Bièvre, Pulé ’02
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Half-space Landau Hamiltonians are gapless [L+T:2009.07688]

One shows that Landau spectral projections cannot remain
projections when operating on a generic half-space

Obstruction is due to Dirac kernel’s coarse index localising onto
the boundary ⇒ Edge spectra interpolate Landau levels!

W ′ W

W ′

W ′

W

W ′

W

Note: A randomly concocted “topological invariant” has no reason
to localise to generally boundary, nor to have any spectral meaning!

Remark: TKNN Chern number does localise. . . to perfectly
straight boundary (original K -theory proof of BBC).
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Spectral interpolation / spectral flow

“Boundary of Dirac is Dirac”, or “dimensional reduction” is a
useful heuristic, the gap-filling needs extra ingredients.

I Need to couple to A to open “non-trivial gaps” in spectrum
(break T-symmetry!)

I Need Laplace-type Hamiltonian, bounded from below, to
deduce the spectral gaps above topologically non-trivial
spectra get filled.

Existence of boundary states
is nothing special.

But unbroken interpolation of
bulk states is special!

σ

“P”

σbulk

σbulk
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Trivial spectral flow in finite dimensions

Let H(t), t ∈ [0, 1] be a loop of self-adjoint operators on
finite-dimensional Hilbert space. Plot the eigenvalues:

“What goes up must come down” −→ trivial spectral flow.
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∞−∞ ∈ Z: spectral flow

Let D = −i d
dθ act on circle S1 = [0, 1]/0∼1.

Then σ(D) = 2πZ with eigenfunctions ψn(θ) = e2πinθ

For e ik ∈ U(1), twist D(k) := D + k  σ(D(k)) = 2πZ + k .

Spectral flow possible due to “infinite Dirac sea”. Partial
Fourier-decomposition of unbroken spectrum of −i d

dx .
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Spectral flow

Convert unbounded D(k) to bounded D[(k) := D(k)√
1+D2(k)

.

σ
σbulk

σbulk

The flattened family {D[(k)}e ik∈U(1) is a continuous loop of
bounded self-adjoint Fredholm operators.

In solid-state physics, the infinite Dirac sea comes from
“continuous spectral bands”, not discrete spectrum → −∞!
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Topology of self-adjoint Fredholm operators

Bounded Fredholm operator F ⇔ 0-spectrum at most
finite-multiplicity.

Fredholm index dim ker(F )− dim ker(F ∗) labels connected
components of Fredholms.

Self-adjoint Fredholms are in the zero-index component, but they
contain non-contractible loops!

Atiyah–Singer ’69, showed that F sa
∗ has

πn(F sa
∗ ) ∼= Z, n odd.

π1(F sa
∗ ) ∼= Z is topologically-protected spectral flow, and can be

computed by index theory.
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“Higher” spectral flow

Q: What does π3(F sa
∗ ) ∼= Z mean (spectrally)?

An answer can be found by thinking about Weyl semimetals (chiral
anomaly). Mathematically, one works directly with unbounded
self-adjoint Fredholm operators CF sa, equipped with gap-topology.

In 2000s, BLP established spectral flow for loops in CF sa, and
Joachim showed πodd(CF sa) ∼= Z.

In fact, π1(CF sa), π3(CF sa) ∼= Z are generated by “physically
fundamental” examples!

Examples from topological phases typically have noncompact
manifolds-with-boundary3, having essential spectra.

3At least in “thermodynamic limit”.
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Dirac operators on half-line

Dirac/momentum operator i d
dz on [0,∞) cannot be self-adjoint.

Reason: it is “unidirectional”: no “reflection-at-boundary”.

But /D = −i d
dz ⊕ i d

dz can be made self-adjoint, by reflecting
left-movers to right-movers.

With mass term: /D(m; γ) =

(
−i d

dz me iγ

me−iγ i d
dz

)
, (m, γ) ∈ R̂2.

For m > 0, essential (i.e. bulk) spectrum is

σess( /D(m; γ)) = (−∞,−m] ∪ [m,∞)  Fredholm!
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Loop of half-line Diracs generating π1(CF sa) ∼= Z

Additionally, /D(m; γ) has an eigenfunction z 7→
(

1
1

)
e(m sin γ)z

with eigenvalue m cos γ. Normalisable only when γ ∈ (π, 2π).

γ

σ( /D(m; γ))

m

−m

0
π 2π

σess

σess

Conclusion: Massive half-line Dirac Hamiltonians are
(continuously) parametrised by (m, γ) ∈ R̂2 \ 0. Each loop around
origin has spectral flow +1: one zero mode contributor.
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Physics: Weyl semimetals and Fermi arcs

In 3D, L/R-handed Weyl Hamiltonian is HWeyl = ∓i∇ · σ.
Fourier: energy-momentum dispersion σ(HWeyl)(p) = ±|p|.

Band crossing p = 0 is a “U(1)”
monopole for the bundle of negative
eigenstates. There is a Dirac string to
the anti-monopole at infinite momenum.

On a half-space z ≥ 0, only px , py are
conserved.

HWeyl decomposes into family of
half-line Diracs /D(m; γ), parametrised
by (m, γ)↔ (px , py ) ∈ R̂2!
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Weyl semimetals and Fermi arcs

Each radius m loop is basically
the earlier spectral flow picture.

There is one zero-eigenvalue for
each loop. Overall, there is a
Fermi arc of zero-eigenvalues
connecting origin to infinity.

γ

σ( /D(m; γ))

m

−m
0 π 2π

•

σbulk

σbulk
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Topological Fermi arcs [T:2007.06193]

HWeyl
L and HWeyl

R occur together in “Weyl semimetals”.
 Fermi arc connecting their cone tips.

Fermi arc is holographic projection of bulk Dirac string (M+T ’17).

In reality, HWeyl
L/R is perturbed in some unknowable way, so Fermi

arc is fuzzy and deformed,. . . but never killed!

Actual experimental
Fermi arcs have
exactly this feature!

Liu et al, Nature Materials (2016)
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Fermi gerbe of Weyl semimetal [C+T: 2009.02064]

In 5D, the Weyl Hamiltonian is TP-invariant, thus
quaternionic-linear in momentum space.

On half-space z ≥ 0, HWeyl decomposes into quaternionic half-line
Dirac operators, parametrised by mass terms in H ∼= R̂4 rather
than C ∼= R̂2:

/D(m; Γ) =

(
−i d

dz mΓ

mΓ i d
dz

)
, Γ ∈ Sp(1) ∼= SU(2) ∼= S3.

We prove that the family S3 3 Γ 7→ /D(m; Γ) ∈ CF sa is
topologically non-trivial!

Sketch: Construct a “Fermi gerbe” encoding how eigenvalues
interpolate across the mass gap (−m,m), compute non-trivial
Dixmier–Douady invariant.
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Hamiltonian anomaly and gerbes

Diracs on odd-dimensional compact manifolds, parametrised by
gauge-equivalence classes of connections, is anomalous.

Roughly: Separation of spectra into + and − parts cannot be
done globally, so Fock vacuum is ambiguous4.

Our { /D(m; Γ)}Γ∈Sp(1) is similarly anomalous.

I For each λ ∈ (−m,m), the region of Sp(1) without
λ-eigenvalues does admit a sensible vacuum.

I For −m < λ < µ < +m, transitioning between vacua λ→ µ
involves determinant line bundle of eigenstates with energy
within (λ, µ).

I Gerbe data comprises these “transition line bundles”.

4Faddeev–Mickelsson–Carey–Murray (Segal)
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Fermi gerbe of Weyl semimetal [C+T: 2009.02064]

We show that the DD-invariant of the Fermi gerbe for
{ /D(m; Γ)}Γ∈Sp(1), is the generator of H3(Sp(1),Z).

This means it represents π3(CF sa) ∼= Z “higher” spectral flow.

⇒ 5D half-space Weyl semimetal, and also “4D QHE” have
topologically protected Fermi surface of boundary states.

Experimentally: In 3D, there exist T -invariant topological
insulators, detected by gapless surface Dirac cones.

K̃Q
0
(S3, τπ) ∼= Z2. Kane-Mele/Furuta-Kametani-Matsue-Minami
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“Real” Fermi gerbe and topological insulators

Discovery of
Dirac cone
edges state —
Xia et al, ’09

Direct proof of topological Dirac
cones (with K. Gomi):
“Real” Fermi gerbe has
DD-invariant in

H̃3(S2, τπ;Z(1)) ∼= Z2.

Stringy B-field interpretation?
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