
11/05/2021 COSC210 Lecture 18

turing.une.edu.au/~cosc210/lectures/display_notes.php?lecture=18#1 1/8

Lecture 18 - Algorithms for Query Processing and
Optimisation
Dr. Mitchell Welch / Dr. Edmund Sadgrove

Reading

Chapter 19 from Fundamentals of Database Systems by Elmazri and Navathe

Summary

Query Tree Notation

Query Tree Optimisation

Query Transformation Rules

An Algebraic Query Optimisation Algorithm

Selectivity and Cost Estimations

Query Tree Notation

A Query Tree is a data structure that corresponds to a relational algebra expression.

The inputs to the relation are the leaf nodes.

The RA operations are represented by the internal nodes of the tree.

Example:

Query Tree Notation

* Example (a) - Query Tree: * The leaves represent the relations. * Operations are represented by nodes. * The query tree
also represents an order of operations of the RA expression. * Bottom up, the order can be derived. * SQL:

SELECT P.pnumber, P.dnum, E.lname, E.address, E.bdate

FROM PROJECT as P, DEPARTMENT as D, EMPLOYEE as E

WHERE P.dnum = D.dnum AND D.mgrssn = E.ssn AND

 P.plocation = 'Stafford'

Query Tree Notation

((((PROJECT))πpnumber,dnum,lname,address,bdateσplocation Staffor=′ d′

(DEPARTMENT))⋈dnum=dnumber

(EMPLOYEE))⋈mgrssn=ssn

11/05/2021 COSC210 Lecture 18

turing.une.edu.au/~cosc210/lectures/display_notes.php?lecture=18#1 2/8

* Example (c) -
Query Graph: *
The query graph
does not indicate
the order of the
operations. *
Selection and
Join conditions
are represented
by edges. * Nodes
represent the
relations
involved. *
Constant nodes
(double
ovals/circles): *
Represent constant values (a result of selection).

Query trees are the preferred representation as the optimiser needs to show the order of operations for query
executions.

Query Tree Optimisation

Multiple different RA expressions (and there query trees) can be equivalent.

Yielding the same results, but some will be more ef�cient than others.

The query parser will generate an initial tree:

This is depicted in Figure 19.4 (b).

The 'X' symbols represent cartesian product.

This is very inef�cient.

This is a standard form that can be generated from the SQL query.

Query Tree Optimisation

Initial canonical query tree (a):

Optimisation process involves moving the operations down the query tree.

1. Move the SELECT operations down the tree (b).

2. Re-organise the tree: the most selective operations appear �rst (c).

3. Cartesian product operations are replaced with joins (d).

4. Then the projections are moved down the tree (e).

A motivating Example:

SELECT lname

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE pname = 'Aquarius' AND pnumber=pno AND

 essn=ssn AND bdate > '1957-12-31'

Query Tree Optimisation

Steps 2, 3 and 4 of optimizing the query tree:

11/05/2021 COSC210 Lecture 18

turing.une.edu.au/~cosc210/lectures/display_notes.php?lecture=18#1 3/8

* The
query
optimiser must know which transformations
can be performed while still preserving

equivalence.

Query Tree Optimisation.

Transformation rules can be used to perform optimisations of RA expressions, these include:

Commutativity:

Operations who's order can be changed, in and outside parathesis.

E.g.

Associativity:

Where the emphasis on individual operations in an expression can be changed.

E.g.

Cascades:

Conditions that can be broken up into individual operations.

E.g.

Query Transformation Rules

Cascade of σ A conjunctive selection conditions:

Can be broken up into a cascade of individual σ operations:

Commutativity of σ. The σ operation is commutative:

Same result regardless of order:

*

Query Transformation Rules

Cascade of π:

In a cascade (sequence) of π operations, all but the last one can be ignored:

Commuting σ with π:

If the selection condition inolves Attributes in the projection list,

The two operations can be commuted:

((R)) ≡ ((R))σc1 σc2 σc2 σc1

(R θ S) θ T ≡ R θ (S θ T)

(R) ≡ ((. . . ((R)). . .))σ AND AND.. AND c1 c2 cn σc1 σc2 σcn

(R) ≡ ((. . . ((R)). . .))σ AND AND.. AND c1 c2 cn σc1 σc2 σcn

((R)) ≡ ((R))σc1 σc2 σc2 σc1

((. . . ((R)). . .)) ≡ (R)πList1 πList2 πListn πList1

, . . . ,A1 An

11/05/2021 COSC210 Lecture 18

turing.une.edu.au/~cosc210/lectures/display_notes.php?lecture=18#1 4/8

Query Transformation Rules

Commutativity of (and ×).

The join operation is commutative, as is the × operation:

Note: the order of the attributes may be different in the result

Query Transformation Rules

Commuting σ with ⋈ (or ×):

Conditions on the attributes of one relation can be commuted.

Conditions on individual relations can also be communted.

The same rules apply if the is replaced by a × operation.

Query Transformation Rules

Commuting π with ⋈ (or ×):

Projections on attributes of individual relations can be communited.

If the join condition (c) includes additional attributes not in L:

These must be added to the projection list.

Query Transformation Rules

Set operations (excluding MINUS) are commutative.

JOIN, CARTESIAN PRODUCT, UNION and INTERSECTION are all individually associative:

Theta represents any of these operations.

Query Transformation Rules

Commuting σ with set operations.

The σ operation commutes with ∪, ∩ and −:

((R)) ≡ ((R))π , ,...,A1 A2 An σc σc π , ,...,A1 A2 An

⋈

R S ≡ S R⋈c ⋈c

R×S ≡ S×R

(R ⋈ S) ≡ ((R)) ⋈ Sσc σc

(R ⋈ S) ≡ ((R)) ⋈ ((S))σc σc1 σc2

(R S) ≡ ((R)) (π , . . . , (S))πL ⋈c π ,...,A1 An ⋈c B1 Bm

(R θ S) θ T ≡ R θ (S θ T)

(R θ S) ≡ ((R)) θ ((S))σc σc σc

11/05/2021 COSC210 Lecture 18

turing.une.edu.au/~cosc210/lectures/display_notes.php?lecture=18#1 5/8

Query Transformation Rules

The π operation commutes with ∪:

Finally we can Convert a (σ, ×) sequence into .

An Algebraic Query Optimisation Algorithm

We can now apply these transformations to our queries to optimise for execution.

This algorithm outline 6 Broad Stages:

Step 1:

We use rule (1) to break up the conjunctive conditions within any select operations.

Step 2:

The next step is to apply the commutativity of the SELECT operation (rule 2).

The select operations can be moved down the query tree as far as possible.

SELECT operations with attributes from a single table can be moved to a leaf node.

SELECT operations that involve attributes from multiple tables represent a join condition.

These can only be placed after the tables have been combined.

An Algebraic Query Optimisation Algorithm

Algorithm continued:

Step 3:

Next we use the rules for commutativity and associativity of the binary operations.

The SELECT operations with the lowest selectivity are moved so they executed �rst.

This should be done so that the select operation is only carried out on already joined relations.

If the SELECT involves attributes from multiple tables.

Step 4:

* CARTESIAN PRODUCT operations are combined SELECT operations to produce
a JOIN (rule 12).

An Algebraic Query Optimisation Algorithm

Algorithm continued:

Step 5:

Using the rules regarding the PROJECT operation can be applied.

The projection operations should be pushed down the tree as far possible.

Only the attributes required in the �nal result or subsequent operations should be retained after each project.

This may require the creation of new project operations

An Algebraic Query Optimisation Algorithm

Algorithm continued:

Step 6:

(R∪S) ≡ ((R)) ∪ ((S))πL πL πL

⋈

((R×S)) ≡ (R S)σc ⋈c

11/05/2021 COSC210 Lecture 18

turing.une.edu.au/~cosc210/lectures/display_notes.php?lecture=18#1 6/8

Identify subtrees that represent groups that can be executed by a single algorithm.

Figure 19.5 uses this approach to optimise the example shown.

The main idea behind this algorithm is reduce the size of the intermediate results as early as possible.

Selectivity and Cost Estimations

The query optimiser:

Does not solely rely on the heuristic rules for improving performance.

The query optimiser compares different strategies and chooses the strategy with the lowest cost.

The optimiser must also limit the number of possibilities tested.

This process is best suited to compiled queries.

Optimisation is not carried out at runtime.

Selectivity and Cost Estimations

The cost components that contribute to the total cost of query execution include:

Access to secondary storage: Hard drive speed.

Intermediate disk usage: Cache.

Computation Costs: Sorting/searching/merging.

Memory Usage Cost: Block reads.

Communication: Between the database and application.

Selectivity and Cost Estimations

In order to calculate the costs the execution strategies:

The DBMS must maintain a catalogue of information.

Some if the information stored includes:

File information such as:

Tuple counts.

Record size.

Number of blocks.

Blocking factor.

Index levels and number of �rst level indexes.

Selectivity and Cost Estimations

Other information stored includes:

The number of distinct values.

The selectivity for each attribute.

Some of this information is relatively static, other items change constantly.

The optimiser needs reasonably up-to-date information for optimisation.

Selectivity and Cost Estimations

11/05/2021 COSC210 Lecture 18

turing.une.edu.au/~cosc210/lectures/display_notes.php?lecture=18#1 7/8

Some examples of Cost estimations on the SELECT operation:

Linear search:

Complexity: linear: O(N) worst case.

Binary Search:

Complexity: logarithmic: O(log2b) �le blocks accessed.

Primary key index:

Complexity: constant: O(1) - one access for each level of the index.

Plus one access for the actual record.

B-Tree Index:

Complexity: O(log(nodes)) - one block access for each level of the B-Tree.

Plus one access for the data.

Selectivity and Cost Estimations

Some examples of the cost estimations on the Join operation:

Where relation R has br blocks and S has bs blocks:

Nested-Loop Join: If R is in the outer loop:

Selectivity and Cost Estimations

* Example query: * Suppose it has the following meta data
in the catalogue.

Selectivity and Cost Estimations

First we examine the possible join ordering.

The potential join orders without considering the
CARTESIAN PRODUCT:

Selectivity and Cost Estimations

Starting with the join between PROJECT and DEPARTMENT:

DEPARTMENT doesn't have any indexing structures (based upon the info in table 19.8).

As a result, a linear search is the only option.

SELECT P.pnumber, P.dnum, E.lname, E.address, E.bdat

FROM PROJECT as P, DEPARTMENT as D, EMPLOYEE as E

WHERE P.dnum = D.dnum AND D.mgrssn = E.ssn AND

 P.plocation = 'Stafford'

= + (∗) + ((∗ |R| ∗ |S|)/bf)CJ1 bR bR bS js rRS

PROJECT ⋈ DEPARTMENT ⋈ EMPLOYEE

DEPARTMENT ⋈ PROJECT ⋈ EMPLOYEE

DEPARTMENT ⋈ EMPLOYEE ⋈ PROJECT

EMPLOYEE ⋈ DEPARTMENT ⋈ PROJECT

11/05/2021 COSC210 Lecture 18

turing.une.edu.au/~cosc210/lectures/display_notes.php?lecture=18#1 8/8

The PROJECT table has the PROJ_PLOC index on the project name attribute.

This index is non-unique, so the optimiser will assume a uniform distribution.

From this the number of corresponding rows for each key value can be estimated.

Using this information, the optimiser can estimate the total block accesses for the operation.

Selectivity and Cost Estimations

We then calculate the cost of the second join:

This operation can make use of the single-loop join.

As there is an index on the EMPLOYEE relation.

The block accesses for each item is given by (x+1) where x is the level.

For PROJECT x=2, therefore 10 lookups will result in 30 block accesses.

Where,

The optimiser can than add the total cost of the operation up.

Selectivity and Cost Estimations

The optimiser can then perform similar calculations on the other potential join combinations.

The cheapest approach can then be selected.

Summary

Query Tree Notation

Query Tree Optimisation

Query Transformation Rules

An Algebraic Query Optimisation Algorithm

Selectivity and Cost Estimations

Reading

Chapter 19 from Fundamentals of Database Systems by Elmazri and Navathe

Selectivity×Num_rows = 10

selectivity = 1/Num_distinct

